榆树范文网

5年级的知识点总结(必备25篇)

94

5年级的知识点总结 第1篇

1、方程的意义

含有未知数的等式,叫做方程。

2、方程和等式的关系

3、方程的解和解方程的区别

使方程左右两边相等的未知数的值,叫做方程的解。

求方程的解的过程叫做解方程。

4、列方程解应用题的一般步骤

(1)弄清题意,找出未知数,并用表示。

(2)找出应用题中数量之间的相等关系,列方程。

(3)解方程。

(4)检验,写出答案。

5、数量关系式

加数=和-另一个加数减数=被减数–差被减数=差+减数

因数=积另一个因数除数=被除数商被除数=商除数

五年级数学下册知识点:图形的变换

图形的变换

1、轴对称图形:把一个图形沿着某一条直线对折,两边能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。

2、成轴对称图形的特征和性质:①对称点到对称轴的距离相等;②对称点的连线与对称轴垂直;③对称轴两边的图形大小形状完全相同。

3、物体旋转时应抓住三点:①旋转中心;②旋转方向;③旋转角度。旋转只改变物体的位置,不改变物体的形状、大小。

5年级的知识点总结 第2篇

五年级上册数学《小数乘法》知识点

一、意义

1、小数乘整数:求几个相同加数的和的简便运算。

如:改用乘法算式表示为(×5),这个乘法算式表示的意义是(5个是多少)

2、小数乘小数:就是求这个数的几分之几是多少。

如:×就是求的十分之八是多少。

二、算理

1、计算方法:按整数乘法的法则算出积,再点小数点;点小数点时,要看因数中xxx几位小数,就从积的右边起数出几位点上小数点。

小数乘法计算法则简记为:一算,二看,三数,四点,五去;

2、注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。

3、乘法的验算有很多种方法:可以交换两个因数的位置再算一遍;可以用估算的方法;还可以用计算器验算。

4、积与因数的关系:

一个数(0除外)乘大于1的数,积比原来的数大;

一个数(0除外)乘小于1的数,积比原来的数小。

用字母表示:a×b=c(a不等于0)

b>1,a>c

b=1,a=c

b<1,a

三、积的近似数

1、求近似数的方法有三种:四舍五入法、进一法、去尾法,在这一单元主要用四舍五入法。

步骤如下:先按照小数乘小数的方法算出积,再按题目的要求和“四舍五入”法取近似值。

注意:表示近似数时小数末尾的0不能随便去掉。

如:保留两位小数是( )

2、通常情况下,人民币的最小单位是分,以元为单位的小数表示“分”的是百分位。

四、混合运算

小数四则运算顺序跟整数是一样的。

整数乘法的交换律、结合律和分配律,对于小数乘法也适用。

关于乘法分配律的简算是这一部分的重点和难点。

案例:××4

×202

×32×

五、解决问题

1、实际生活中的估算应用,可以估大或者估小,要根据实际情况选择适当的估算策略。

2、分段计费的问题,比如乘坐出租车的问题、电费水费的问题都属于分段计费。解决方案有两种:第一种分段计费后在合并;第二种全程单价计算然后再加上少算的金额。

小学五年级上册数学《简易方程》知识点

1、方程的意义

含有未知数的等式,叫做方程。

2、方程和等式的关系

3、方程的解和解方程的区别

使方程左右两边相等的未知数的值,叫做方程的解。

求方程的解的过程叫做解方程。

4、列方程解应用题的一般步骤

(1)弄清题意,找出未知数,并用表示。

(2)找出应用题中数量之间的相等关系,列方程。

(3)解方程。

(4)检验,写出答案。

5、数量关系式

加数=和-另一个加数减数=被减数–差被减数=差+减数

因数=积另一个因数除数=被除数商被除数=商除数

小学五年级xxx习的学习方法

1、合理安排学习计划

根据小升初的形势,六年级寒假就应该是综合复习的时候。这样从三年级暑假开始算起,到六年级寒假只有两年半的时间。我们建议学生在两年半时间里一定要扎实学习奥数知识。整个学习过程要按梯度进行,切莫一味做难题,根据学生学习情况,一步一个台阶。兼顾竞赛、xxx、重点学校培训班,早做规划,早做 准备。

2、巩固基础知识

由于还有一年就要转入小升初的复习阶段,所以五年级之前的奥数基础内容一定要掌握好。之前的奥数内容以应用题、计算为主。对于基本应用题建议利用方程的方法求解,可以达到事半功倍的效果。计算问题需要对基本的简算方法了如指掌,因为这些方法也是以后分数计算和综合混合运算的基础。

3、多做专题练习

五年级是接触专题最多的时期,小学阶段的重要知识点和难点也都集中在这个阶段。其中数论、行程问题、排列组合是重中之重,如果这几个专题掌握的不好,想上一个理想的中学是非常困难的。做专题练习也不能光看做了多少道题,要保证练一道会一道,真正的理解并掌- -

握所做的题目,日积月累,几个重点难点也就不再是老大难问题了。

4、选择合适的班型

秋季的课程将继续依从《新概念奥林匹克丛书》的安排,实行科学的数学课程体系。该体系由《数学思维训练 导引》(已出版)、《数学思维训练 课本》(未出版)和《数学思维训练 教师用书》(未出版)三个部分组成。丛书有很强的系统性、趣味性、实用性、权威性。它的难度由低到高分为三个层次:兴趣篇、拓展篇、超越篇,分别对应新华数课本班、新华数竞赛班和新华数尖子班。无论是注重打牢奥数基础的学生,还是希望在奥数竞赛上摘金夺银的学生,在这里都可以找到适合你的课程。经过暑假的 学习,你一定对自己的实力和潜力有所了解,在秋季的学习中,学生和家长可以根据自身的实力,选择合适的班型。

5、积极参加各种竞赛

尽早参加数学竞赛,能够帮助孩子开阔眼界,拓展思维。另外熟悉比赛题型,为五、六年级在重要竞赛中获奖无疑打下了很好的基础。

5年级的知识点总结 第3篇

问题:2的倍数有哪些?

2的倍数有:2,4,6,8 …

例1、 小蜗牛找倍数(找出3的倍数)。

练习3、5的倍数有哪些?7的倍数呢?

5的倍数:

7的倍数:

一个数的倍数的个数是( ),一个数的最小的倍数是( ),( )的倍数。

用字母表示因数与倍数的关系:a x b = c (a、b、c都是不为0的整数)a、b都是c的因数,c是a和b的倍数。因数和倍数是相互依存的。

说一说:在0、3、4、7、15、16、77、31、62中择两个数,说一说谁是谁的因数?谁是谁的倍数?

1、根据算式:4×8=32

说一说,谁是谁的因数?谁是的倍数?

2、根据算式:63÷7=9

说一说,谁是谁的因数?谁是的倍数?

3、判断:÷我们能说和6是的因数;是的倍数,也是6的倍数吗?为什么?

小试牛刀

1. 填空:

(1)3×7=21,( )和( )是( )的因数,( )是( )和( )的倍数。

(2)72的因数是( ),最小倍数是( ),最小因数是( )。

(3)一个数(0除外),它的因数和最小倍数都是( )。

2.判断:

(1)6是因数,30是倍数。 ( )

(2)因为8÷,所以8是和10的倍数,和10是8的因数。 ( )

(3)一个数的因数一定小于这个数。 ( )

(4)甲数比乙数大,甲因数的个数比乙数多。

3、写出各数的因数或倍数。

小学五年级数学下册分数的意义与性质知识点

( )平均分成( )份,这样的( )份用( )表示。

把( )平均分成( )份,这样的( )份用( )表示。

分数的意义:

一个物体、一些物体等都可以看作一个整体,把这个整体平均分成若干份,这样的一份或几份都可以用分数来表示。

一个整体可以用自然数1表示,通常把它叫单位“1”。

把 看成单位“1”,每个 是 的1/4。

每个茶杯是(这套茶杯)的( )分之( )。

每袋粽子是( )的( )分之( )。

每种颜色的跳棋是( )的( )分之( )。

阴影的方格是( )的( )分之( )。

二 分数单位

把单位“1”平均分成若干份,表示其中一份的数叫分数单位。例如 ( )的分数单位是( ),( )的分数单位是( ),( )的分数单位是( )。

三 分数与除法

1、 把三个苹果平均分给2个人,每个人分几个?

2、 把1个苹果平均分给2个人,每个人分几个?

3、 把3块饼平均分给5个小朋友,每人分得多少块?

3÷5= (块)

5年级的知识点总结 第4篇

大数的认识

1、10个一千是一万,10个一万是十万,10个十万是一百万,10个一百万是一千万。

2、10个一千万是一亿,10个一亿是十亿,10个十亿是一百亿,10个一百亿是一千亿。

3、一(个)、十、百、万、十万、百万、千万、亿、十亿……都是计数单位。

4、按照我国的计数习惯,从右边起,每四个数位是一级。

数位顺序表

数级……亿级万级个级

数位……千亿位百亿位十亿位亿位千万位百万位十万位万位千位百位十位个位

计数单位……千亿百亿十亿亿千万百万十万万千百十个

5、每相邻两个计数单位之间的进率都是10的计数方法叫做十进制计数法。

6、读数时,只是在每一级的末尾加上“万”或“亿”字;每级末尾的0都不读,其它数位有一个0或几个0,都只读一个“零”。

7、写数时,万级和亿级上的数都是按照个级上数的方法来写,哪一位不够用0来补足。改写“万”或“亿”作单位的数,只要将末尾的4个0或8个0去掉或加上“万”或“亿”字就行了。1.把多位数改写成“万”、“亿”。中间要用“=”连接

8、通常我们用“四舍五入”的方法省略尾数求一个数的近似数。

方法是:看尾数位上的数,如果是4或比4小,就把尾数舍去,并在数的末尾添上一个计数单位“万”或者“亿”;如果是5或比5大,要在前一位加1,再把尾数舍去,添上计数单位“万”或者“亿”。得出的是近似数,中间要用“≈”连接。

9、表示物体个数的1,2,3,4,5,6,7,8,9,10,11,…都是自然数。一个物体也没有用0表示,0也是自然数。最小的自然数是0,没有的自然数,自然数的个数是无限的。

10、我国在十四世纪发明的至今仍在使用的计算工具是算盘。算盘上方一个珠子代表5,下方一个珠子表示1。

11、在计算器上,ON/C键是开关及清屏键,CE键是清除键,AC键是归0键。+、-、×、÷键是运算符号键。

怎么样才能打好数学基础

第一,重视数学公式。有很多同学数学学不好就是因为对概念和公式不够重视,具体的表现为对数学概念的理解只是停留在表明,不去挖掘引申的含义,对数学概念的特殊情况不明白。还有对数学概念和公式有的学生只是死记硬背,学生缺乏对概念的理解。

还有一部分同学不重视对数学公式的记忆。其实记忆是理解的基础。我们设想如果你不能将数学公式烂熟于心,那么又怎么能够在数学题目中熟练的应用呢?

第二,就是总结那些相似的数学题目。当我们养成了总结归纳的习惯,那么的学生就会知道自己在解决数学题目的时候哪些是自己比较擅长的,哪些是自己还不足的。

同时善于总结也会明白自己掌握哪些数学的解题方法,只有这样你才能够真正掌握了数学的解题技巧。其实,做到总结和归纳是学会数学的关键,如果学生不会做到这一点那么久而久之,不会的数学题目还是不会。

小学数学整数的概念

十进制计数法;一(个)、十、百、千、万……都叫做计数单位.其中“一”是计数的基本单位.10个1是10,10个10是100……每相邻两个计数单位之间的进率都是十.这种计数方法叫做十进制计数法

整数的读法:从高位一级一级读,读出级名(亿、万),每级末尾0都不读.其他数位一个或连续几个0都只读一个“零”.

整数的写法:从高位一级一级写,哪一位一个单位也没有就写0.

四舍五入法:求近似数,看尾数最高位上的数是几,比5小就舍去,是5或大于5舍去尾数向前一位进1.这种求近似数的方法就叫做四舍五入法.

整数大小的比较:位数多的数较大,数位相同最高位上数大的就大,最高位相同比看第二位较大就大,以此类推.

5年级的知识点总结 第5篇

五年级上册数学《简易方程》知识点

1、方程的意义

含有未知数的等式,叫做方程。

2、方程和等式的关系

3、方程的解和解方程的区别

使方程左右两边相等的未知数的值,叫做方程的解。

求方程的解的过程叫做解方程。

4、列方程解应用题的一般步骤

(1)弄清题意,找出未知数,并用表示。

(2)找出应用题中数量之间的相等关系,列方程。

(3)解方程。

(4)检验,写出答案。

5、数量关系式

加数=和-另一个加数减数=被减数–差被减数=差+减数

因数=积另一个因数除数=被除数商被除数=商除数

小学五年级上册数学知识点

第一单元《小数乘法》知识点

一、小数乘整数 (利用因数的变化引起积的变化规律来计算小数乘法)

知识点一:

1、计算小数加法先把小数点对齐,再把相同数位上的数相加

2、计算小数乘法末尾对齐,按整数乘法法则进行计算。

知识点二:

积中小数末尾有0的乘法。 先计算出小数乘整数的乘积后,积的小数末尾出现0 ,要再根据小数的性质去掉小数末尾的0。如: “0” 应划去

知识点三:

如果乘得的积的小数位数不够要在前面用0补足,再点上小数点。如×2=

知识点四:

计算整数因数末尾有0的小数乘法时,要把整数数位中不是0的最右侧数字与小数的末尾对齐。

思考:

小数乘整数与整数乘整数有什么不同?

1、小数乘整数中有一个因数是小数,所以积一般来说也是小数。

2 小数乘法中积的小暑部分末尾如有0可以根据小数的基本性质去掉小数末尾的0而整数乘法中是不能去掉的。

二、小数乘小数

知识点一:

因数与积的小数位数的关系:因数_有几位小数,积中就有几位小数。

知识点二:

小数乘法的一般计算方法:

先按整数乘法算出积,再给积点上小数点(看因数中xxx几位小数,就从积的右边起输出几位,点上小数点。)乘得的积的小数位数不够要在积的前面用0补足,在点小数点。

小学五年级数学解题技巧

1、对照法

如何正确地理解和运用数学概念?小学数学常用的方法就是对照法。根据数学题意,对照概念、性质、定律、法则、公式、名词、术语的含义和实质,依靠对数学知识的理解、记忆、辨识、再现、迁移来解题的方法叫做对照法。

这个方法的思维意义就在于,训练学生对数学知识的正确理解、牢固记忆、准确辨识。

例1:三个连续自然数的和是18,则这三个自然数从小到大分别是多少?

对照自然数的概念和连续自然数的性质可以知道:三个连续自然数和的平均数就是这三个连续自然数的中间那个数。

例2:判断题:能被2除尽的数一定是偶数。

这里要对照“除尽”和“偶数”这两个数学概念。只有这两个概念全理解了,才能做出正确判断。

2、公式法

运用定律、公式、规则、法则来解决问题的方法。它体现的是由一般到特殊的演绎思维。公式法简便、有效,也是小学生学习数学必须学会和掌握的一种方法。但一定要让学生对公式、定律、规则、法则有一个正确而深刻的理解,并能准确运用。

例3:计算59×37+12×59+59

59×37+12×59+59

=59×(37+12+1)…………运用乘法分配律

=59×50…………运用加法计算法则

=(60-1)×50…………运用数的组成规则

=60×50-1×50…………运用乘法分配律

=3000-50…………运用乘法计算法则

=2950…………运用减法计算法则

3、比较法

通过对比数学条件及问题的异同点,研究产生异同点的原因,从而发现解决问题的方法,叫比较法。

比较法要注意:

(1)找相同点必找相异点,找相异点必找相同点,不可或缺,也就是说,比较要完整。

(2)找联系与区别,这是比较的实质。

(3)必须在同一种关系下(同一种标准)进行比较,这是“比较”的基本条件。

(4)要抓住主要内容进行比较,尽量少用“穷举法”进行比较,那样会使重点不突出。

(5)因为数学的严密性,决定了比较必须要精细,往往一个字,一个符号就决定了比较结论的对或错。

例4:填空:的位是(),这个数小数部分的位是();十分位的数4与十位上的数4相比,它们的()相同,()不同,前者比后者小了()。

这道题的意图就是要对“一个数的位和小数部分的位的区别”,还有“数位和数值”的区别等。

例5:六年级同学种一批树,如果每人种5棵,则剩下75棵树没有种;如果每人种7棵,则缺少15棵树苗。六年级有多少学生?

这是两种方案的比较。相同点是:六年级人数不变;相异点是:两种方案中的条件不一样。

找联系:每人种树棵数变化了,种树的总棵数也发生了变化。

找解决思路(方法):每人多种7-5=2(棵),那么,全班就多种了75+15=90(棵),全班人数为90÷2=45(人)。

4、分类法

根据事物的共同点和差异点将事物区分为不同种类的方法,叫做分类法。分类是以比较为基础的。依据事物之间的共同点将它们合为较大的类,又依据差异点将较大的类再分为较小的类。

分类即要注意大类与小类之间的不同层次,又要做到大类之中的各小类不重复、不遗漏、不交叉。

例6:自然数按约数的个数来分,可分成几类?

答:可分为三类。(1)只有一个约数的数,它是一个单位数,只有一个数1;(2)有两个约数的,也叫质数,有无数个;(3)有三个约数的,也叫合数,也有无数个。

5、分析法

把整体分解为部分,把复杂的事物分解为各个部分或要素,并对这些部分或要素进行研究、推导的一种思维方法叫做分析法。

依据:总体都是由部分构成的。

思路:为了更好地研究和解决总体,先把整体的各部分或要素割裂开来,再分别对照要求,从而理顺解决问题的思路。

也就是从求解的问题出发,正确选择所需要的两个条件,依次推导,一直到问题得到解决为止,这种解题模式是“由果溯因”。分析法也叫逆推法。常用“枝形图”进行图解思路。

例7:玩具厂计划每天生产200件玩具,已经生产了6天,共生产1260件。问平均每天超过计划多少件?

思路:要求平均每天超过计划多少件,必须知道:计划每天生产多少件和实际每天生产多少件。计划每天生产多少件已知,实际每天生产多少件,题中没有告诉,还得求出来。要求实际每天生产多少件玩具,必须知道:实际生产多少天,和实际生产多少件,这两个条件题中都已知。

6、综合法

把对象的各个部分或各个方面或各个要素联结起来,并组合成一个有机的整体来研究、推导和一种思维方法叫做综合法。

用综合法解数学题时,通常把各个题知看作是部分(或要素),经过对各部分(或要素)相互之间内在联系一层层分析,逐步推导到题目要求,所以,综合法的解题模式是执因导果,也叫顺推法。这种方法适用于已知条件较少,数量关系比较简单的数学题。

例8:两个质数,它们的差是小于30的合数,它们的和即是11的倍数又是小于50的偶数。写出适合上面条件的各组数。

思路:11的倍数同时小于50的偶数有22和44。

两个数都是质数,而和是偶数,显然这两个质数中没有2。

和是22的两个质数有:3和19,5和17。它们的差都是小于30的合数吗?

和是44的两个质数有:3和41,7和37,13和31。它们的差是小于30的合数吗?

这就是综合法的思路。

5年级的知识点总结 第6篇

统计表和条形统计图都可以清楚地表示出数量的多少,但条形统计图比统计表更形象直观。更能看出数据之间的关系。

1、条形统计图常用1格代表2个单位,有时还要用半格来代表1个单位。如果要表示的数据比较大,可以用xxx代表5个单位或更多的单位,一个代表几个单位,要根据具体情况来确定,这样比较方便。

2、由统计表画统计图的步骤和注意要点:

(1)观察表中项目,确定数据项(一般为数量)和类别项(小组名称、年份、时间等)

(2)确定横纵轴、刻度以及图的类型(横向或纵向)。

(3)画条形,标数据,注意条形的高度要符合刻度,纵向统计图的顺序是从左往右,横向统计图的顺序是从下往上。

(4)添上图例,根据图例补充完条形的条纹以示区别。

(5)标上标题。

(6)检查要素是否齐全。

4、学会统计图中提取信息,发现问题,进行合理的判断、预测和决策,并能解决生活中的简单问题。

如何学好小学数学的方法

1、重视课本的内容

书本知识是小学生学习数学最根本的一部分了,小学生一定要重视书本上的知识点,不管是概念还是公式以及书本上的练习题,小学生一定要熟练掌握。小学生要想更熟练的掌握书本的知识点,可以将数学课本的每一章节,从头到尾的仔细阅读,这样可以增加自己对容易忽略的知识点的了解。有很多学生常常会忽略课本的习题,虽然课本的习题很简单,但是考察的知识点却特别有针对性,所以一定要引起学生的重视。

2、通过联系对比进行辨析

在数学知识中有不少是由同一基本概念和方法引申出来的种属及其他相关知识,或看来相同,实质不同的知识,学习这类知识的主要方法,是用找联系、抓对比进行辨析。如直线、射线、线段这些概念,它们既有联系又有区别。

3、多做练习题

要想学好初中数学,必须多做练习,我们所说的“多做练习”,不是搞“题海战术”。只做不思,不能起到巩固概念,拓宽思路的作用,而且有“副作用”:把已学过的知识搅得一塌糊涂,理不出头绪,浪费时间又收获不大,我们所说的“多做练习”,是要大家在做了一道新颖的题目之后,多想一想:它究竟用到了哪些知识,是否可以多解,其结论是否还可以加强、推广等等。

4、课后总结和反思

在进行单元小结或学期总结时,要做到以下几点:一看:看书、看笔记、看习题,通过看,回忆、熟悉所学内容;二列:列出相关的知识点,标出重点、难点,列出各知识点之间的关系,这相当于写出总结要点;三做:在此基础上有目的、有重点、有选择地解一些各种档次、类型的习题,通过解题再反馈,发现问题、解决问题。

小学数学三角形的公式

三角形体积

三角形是二维图形,二维图形没有体积公式。一维空间物件(如线)及二维空间物件(如正方形)在三维空间中都是零体积的。

体积,几何学专业术语,是物件占有多少空间的量。体积的国际单位制是立方米。一件固体物件的体积是一个数值用以形容该物件在三维空间所占有的空间。一维空间物件(如线)及二维空间物件(如正方形)在三维空间中都是零体积的。

三角形计算公式

1、两边之和大于第三边,两边之差小于第三边。

2、大角对大边。

3、xxx=三边之和a+b+c

4、面积:

s=1/2ah(底_高/2)

s=1/2absinC(两边与夹角正弦乘积的一半)

s=1/2acsinB

s=1/2bcsinA

不做伸手党!需要更多更详细的资料,可以直接私我奥,有偿,但价格绝对能接受!

5年级的知识点总结 第7篇

小学五年级数学各单元重点知识点

1、小数乘整数:意义——求几个相同加数的和的简便运算。

如:×3表示的3倍是多少或3个是多少。

计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中xxx几位小数,就从积的右边起数出几位点上小数点。

2、小数乘小数:意义——就是求这个数的几分之几是多少。

如:×(整数部分是0)就是求的十分之八是多少。

×(整数部分不是0)就是求的倍是多少。

计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中xxx几位小数,就从积的右边起数出几位点上小数点。

注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。

3、规律:一个数(0除外)乘大于1的数,积比原来的数大;一个数(0除外)乘小于1的数,积比原来的数小。

4、求近似数的方法一般有三种:

⑴四舍五入法;⑵进一法;⑶去尾法

5、计算钱数,保留两位小数,表示计算到分。保留一位小数,表示计算到角。

6、小数四则运算顺序跟整数是一样的。

7、运算定律和性质:

加法:加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)

乘法:乘法交换律:a×b=b×a

乘法结合律:(a×b)×c=a×(b×c)见找4或,见找8或

乘法分配律:(a+b)×c=a×c+b×c或a×c+b×c=(a+b)×c(b=1时,省略b)

变式:(xxx)×c=a×c-b×c或a×c-b×c=(xxx)×c

减法:减法性质:xxx-c=a-(b+c)

除法:除法性质:a÷b÷c=a÷(b×c)

五年级上册数学《数学广角——植树问题》知识点

1、方法:化大为小或化繁为简,画图,列表,再总结应用

2、植树问题:

(1)、两端要栽:

间隔数=总长÷间距;总长=间距×间隔数;

棵数=间隔数+1;间隔数=棵数-1

(类似问题有:竖电线杆,两端插旗......)

(2)、两端不栽:

间隔数=总长÷间距;总长=间距×间隔数;

棵数=间隔数-1;间隔数=棵数+1

(类似问题有:锯木头,剪铁丝......)

(3)、一端栽一端不栽:间隔数=总长÷间距;

总长=间距×间隔数;棵数=间隔数;间隔数=棵数

(类似问题有:敲钟听声,上楼时间.....)

3、锯木问题:段数=次数+1;次数=段数-1总时间=每次时间×次数

4、方阵问题:最外层的数目是:边长×4—4或者是(边长-1)×4;

单边边长=(最外层数目+4)÷4

整个方阵的总数目是:边长×边长

5、封闭的图形(例如围成一个圆形、椭圆形):

总长÷间距=间隔数;棵数=间隔数。

6、过桥问题总长=车身长+车间距×车间隔数+桥(路长)

速度=总长÷时间

7、出租车计费(信件邮资、洗照片)等问题。

计算时分成两部分。(1)标准部分。已经知道总价的,不再计算,不知道总价需计算。

(2)超出部分。超出数量×超出单价。最后相加。

五年级数学重要知识点

1、小数乘整数(P2、3):意义--求几个相同加数的和的简便运算。

如:×3表示的3倍是多少或3个的和的简便运算。

计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中xxx几位小数,就从积的右边起数出几位点上小数点。

2、小数乘小数(P4、5):意义--就是求这个数的几分之几是多少。

如:×就是求的十分之八是多少。

×就是求的倍是多少。

计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数xxx几位小数,就从积的右边起数出几位点上小数点。

注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。

3、规律(1)(P9):一个数(0除外)乘大于1的数,积比原来的数大;

一个数(0除外)乘小于1的数,积比原来的数小。

4、求近似数的方法一般有三种:(P10)

⑴四舍五入法;⑵进一法;⑶去尾法

5、计算钱数,保留两位小数,表示计算到分。保留一位小数,表示计算到角。

6、(P11)小数四则运算顺序跟整数是一样的。

7、运算定律和性质:

加法:加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)

减法:减法性质:xxx-c=a-(b+c)a-(b-c)=xxx+c

乘法:乘法交换律:a×b=b×a

乘法结合律:(a×b)×c=a×(b×c)

乘法分配律:(a+b)×c=a×c+b×c【(xxx)×c=a×c-b×c】

除法:除法性质:a÷b÷c=a÷(b×c)

针对练习:

1、列竖式计算。

27×××

(计算并验算)(得数保留两位小数)(精确到十分位)

2、计算下面各题,能简便运算的要简便运算。

××××105

××××

5年级的知识点总结 第8篇

1、方程的意义

含有未知数的等式,叫做方程。

2、方程和等式的关系

3、方程的解和解方程的区别

使方程左右两边相等的未知数的值,叫做方程的解。

求方程的解的过程叫做解方程。

4、列方程解应用题的一般步骤

(1)弄清题意,找出未知数,并用表示。

(2)找出应用题中数量之间的相等关系,列方程。

(3)解方程。

(4)检验,写出答案。

5、数量关系式

加数=和-另一个加数减数=被减数–差被减数=差+减数

因数=积另一个因数除数=被除数商被除数=商除数

练习题

一、填空。

1、某厂计划每月用煤a吨,实际用煤b吨,每月节约用煤( )吨。

2、一本书100页,平均每页有a行,每行有b个字,那么,这本书xxx( )个字。

3、用字母表示长方形的周长公式( )

4、根据运算定律写出:

9n+5n=( + )n= a××( × )

ab=ba运用( )定律。

5、实验小学六年级学生订阅《希望报》186份,比五年级少订a份。186+a表示( )

6、一块长xxx验田有公顷,它的长是420米,它的宽是( )米。

7、一个等腰三角形的周长是43厘米,底是19厘米,它的腰是( )。

8、甲乙两数的和是,乙数的小数点向右移动一位,就等于甲数。甲数是( );乙数是( )。

二、判断题。(对的打√,错的打×)

1、含有未知数的算式叫做方程。( )

2、5x表示5个x相乘。( )

3、有三个连续自然数,如果中间一个是a,那么另外两个分别是a+1和a-1。( )

4、一个三角形,底a缩小5倍,xxx大5倍,面积就缩小10倍。( )

三、解下列方程。

2x+5=40 15x+6x=168

5x+ —x= ×3—3x=(写出检验过程)

四、列出方程并求方程的解。

(1)、一个数的5倍加上,和是,求这个数。

(2)、比x的3倍少,求x。

五、列方程解应用题。

1、运送吨煤,先用一辆载重4吨的汽车运3次,剩下的用一辆载重为吨的货车运。还要运几次才能运完?

2、一块梯形田的面积是90平方米,上底是7米,下底是11米,它的高是几米?

3、某车间计划四月份生产零件5480个。已生产了9天,再生产908个就能完成生产计划,这9天中平均每天生产多少个?

4、甲乙两车从相距272千米的两地同时相向而行,3小时后两车还相隔17千米。甲每小时行45千米,乙每小时行多少千米?

5、某校六年级有两个班,上学期级数学平均成绩是85分。已知六(1)班40人,平均成绩为分;六(2)班有42人,平均成绩是多少分?

6.用一部收割机收大豆,5天可以收割公顷,照这样计算,7天可以收割多少公顷?公顷大豆需要多少天才能收完

7、服装厂做一件男上衣用米布料,现在有42米布料,可以做多少件这样的男上衣?

8、每一个油桶最多装千克油,购买62千克,至少要准备多少只这样的油桶?

9、某工厂五月份用煤125吨,是四月份用煤量的倍,四月份和五月份共用煤多少吨?

10、15匹马9天喂了千克饲料,每匹马一天要多少千克饲料?

11、明明买了6本练习本,兰兰买了3本同样的练习本,明明比兰兰多花元。

(1)每本练习本多少元?

小学数学比例常考题

(1)什么是比例?

表示两个比相等的`式子叫比例。

(2)什么是比例的项?

组成比例的四个数叫比例的项。

(3)什么是比例外项?

两端的两项叫比例外项。

(4)什么是比例内项?

中间的两项叫比例内项。

(5)什么是比例的基本性质?

在比例中两个外项的积等于两个内项的积。

(6)什么是解比例?

求比例中的未知项叫解比例。

(7)什么是正比例关系?

两种相关的量,一种变化,另一种量也变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量叫正比例的量,它们的关系叫正比例关系。

(8)什么是反比例关系?

两种相关的量,一种变化,另一种也随着变化,如果这两种量中相对应的积一定,这两种量叫反比例的量,它们的关系成反比例关系。

数学运算定律

1.加法交换律:a+b=b+a

两个加数交换位置,和不变,这叫做加法交换律。

2.加法结合律;(a+b)+c=a+(b+c)

先把前两个数相加或者先把后两个数相加,和不变,这叫做加法结合律。

3.乘法交换律:axb=bxa

交换两个因数的位置,积不变,这叫做乘法交换律。

4.乘法结合律:(axb)xc=ax(bxc)或axbxc=ax(bxc)

先把前两个数相乘或者先把后两个数相乘,积不变,这叫做和乘法结合律。

5.乘法分配律:(a+b)xc=axc+bxc或(xxx)xc=axc-bxc

乘法分配律的逆运用:axc+axb=(a+b)xc或axc-bxc=(xxx)xc

(2)明明和兰兰买练习本共花了多少钱?

5年级的知识点总结 第9篇

一、填空。

1、某厂计划每月用煤a吨,实际用煤b吨,每月节约用煤( )吨。

2、一本书100页,平均每页有a行,每行有b个字,那么,这本书xxx( )个字。

3、用字母表示长方形的周长公式( )

4、根据运算定律写出:

9n+5n=( + )n= a××( × )

ab=ba运用( )定律。

5、实验小学六年级学生订阅《希望报》186份,比五年级少订a份。186+a表示( )

6、一块长xxx验田有公顷,它的长是420米,它的宽是( )米。

7、一个等腰三角形的周长是43厘米,底是19厘米,它的腰是( )。

8、甲乙两数的和是,乙数的小数点向右移动一位,就等于甲数。甲数是( );乙数是( )。

二、判断题。(对的打√,错的打×)

1、含有未知数的算式叫做方程。( )

2、5x表示5个x相乘。( )

3、有三个连续自然数,如果中间一个是a,那么另外两个分别是a+1和a-1。( )

4、一个三角形,底a缩小5倍,xxx大5倍,面积就缩小10倍。( )

三、解下列方程。

2x+5=40 15x+6x=168

5x+ —x= ×3—3x=(写出检验过程)

5年级的知识点总结 第10篇

轴对称

1.轴对称的意义:把一个图形沿着某一条直线对折,如果它能够与另一个图形完全重合,那么就说这两个图形成轴对称;这条直线就是对称轴。两个图形完全重合时的点叫做对应点;互相重合的角叫做对应角,互相重合的线段叫做对应线段。

2.五年级下册数学各单元重点知识点:轴对称的性质:对应点到对称轴的距离相等。

3.轴对称的特征:沿对称轴对折,对应点、对应线段、对应角重合。

旋转 1.旋转的意义:物体绕着某一点运动,这种运动叫做旋转。

2.图形旋转方向:钟表中指针的运动方向成为顺时针旋转;反之,称逆时针旋转。

3.图形旋转的性质:图形绕着某一点旋转一定的度数,图形中的对应点、对应线段都旋转相应的度数,相对应的点到旋转点的距离相等,对应角相等。

4.图形旋转的特征:图形旋转后,形状、大小都没有发生变化,只是位置变了。

设计图案的基本方法 1.设计图形的基本方法:利用平移、旋转或对称,可以设计简单而美丽的图案

2.运用平移设计图案的方法:(1)选好基本图形;(2)确定平移的距离;(3)确定平移方向;(4)画出平移后的图形

3.运用平旋转计图案的方法:(1)选好基本图形;(2)确定旋转点;(3)定好旋转角度;(4)沿每次旋转后的基本图形的边缘画图。

4.运用对称设计图案的方法:(1)选好基本图形;(2)定好对称轴;(3)画出基本图形的对称图形。

5年级的知识点总结 第11篇

一、垂直与平行

1、认识平行和垂直

①同一平面内的两条直线的位置关系只有两种:相交和不相交。相交又有成直角的和xxx直角的两种情况。

_“同一平面”是确定两条直线平行关系的前提,如果不在同一平面内,即便不相交,也不能称为互相平行。

②平行线:在同一个平面内不相交的两条直线叫做平行线,也可以说这两条直线互相平行。

平行的表示方法:a//b,读作a平行于b。

生活中平行的例子:窗户相对的框,黑板相对的两条边,公路上的斑马线

③垂直:如果两条直线相交成直角,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。

垂直的表示方法:ab

生活中垂直的例子:三角尺上的两条直角边互相垂直.

④三条直线的特殊关系:

a//b,b//c,那么a//c:在同一平面内,如果两条直线都和第三条直线平行,那么这两条直线互相平行

ab,bc,那么a//c:在同一平面内,如果两条直线都和第三条直线垂直,那么这两条直线互相平行。

2、垂线的画法和性质

①过直线上和直线外一点怎样画这条直线的垂线:把三角尺的一条直角边与已知直线重合;沿着直线移动三角尺,使三角尺的顶点和直线上的已知点重合;从直角的顶点起,沿着另一条直角边画出一条直线,这条直线就是已知直线的垂线。

②过直线外一点怎样画这条直线的垂线:把三角尺的一条直角边与已知直线重合;沿着直线移动三角尺,使三角尺的另一条直角边与直线外的一点重合;沿着三角尺的另一条直角边画一条直线

③垂线的性质:从直线外一点到这条直线所画的垂直线段最短,它的长度叫做这点到直线的距离。

3、平行线的画法及运用

①平行线的画法:固定三角尺,沿一条直角边先画一条直线;用直尺紧靠三角尺的另一条直角边,固定直尺,然后平移三角尺;再沿第一步中的直角边画出另一条直线。

②检验两条直线是否平行的方法:把三角尺的一条直角边与其中的一条直线重合;用直尺紧靠三角尺的另一条直角边,固定直尺,然后平移三角尺;如果第一步的三角尺的直角边与另一条直线完全重合,这两条直线就互相平行,如果不完全重合,这两条直线就不平行。

③两条平行线之间的距离处处相等。

④怎样画长方形:

画垂线的方法:按画出长3厘米的线段,做长方形的长;从画出的线段两端画两条与这条线段垂直的线段,使这两条线段长2厘米;把两条2厘米长的线段点连接起来。

画平行线的方法:画出长3厘米的线段,做长方形的长;把三角尺的一条直角边与这条线段重合,用直尺紧靠三角尺的另一条边,固定直尺,然后平移三角尺使移动的距离达到宽所指定的长度,沿第一步中的直角边画出长所指定的长度;把两条线段相对应的端点连接起来。

二、平行四边形和梯形

1、认识平行四边形和梯形

①四边形分类:一类是两组对边分别平行;另一类是只有一组对边平行

②平行四边形:两组对边分别平行的四边形叫做平行四边形。长方形和正方形是特殊的平行四边形。正方形是特殊的长方形。

③梯形:只有一组对边平行的四边形叫做梯形。生活中的梯形:梯子、堤坝的横截面等

④平行四边形和梯形的相同点和不同点:

相同点:都是四边形;都有平行的对边

不同点:平行四边形的两组对边平行且相等;梯形有且只有一组对边平行,且平行的这组对边不相等

2、平行四边形的特征:平行四边形容易变形,具有不稳定性。

生活中平行四边形不稳定的应用:校园电动推拉门,商店面铺推拉门等

3、平行四边形和梯形各部分名称及高的画法

①为平行四边形和梯形各条边命名

平行四边形的底和高:从平行四边形一条边上的一点到对边引一条垂线,这点和垂足之间的线段叫做平行四边形的高,垂足所在的边叫做平行四边形的底。

②梯形中互相平行的一组对边,较短的边叫做梯形的上底,较长的边叫做梯形的下底,不平行的那组对边,分别叫做梯形的腰。

③等腰梯形:两腰相等的梯形。

④直角梯形:当一条腰与上底、下底垂直时,这个梯形叫直角梯形。

⑤画高时注意:所画的高要用xxx表示;一定要画垂足符号。

练习题

一、基础知识点

1、两组对边分别平行的四边形,叫做(平行四边形)。

2、从平行四边形一条边上的一点向对边引一条垂线,这点和垂足之间的线段叫做平行四边形的(高),垂足所在的边叫做平行四边形的(底)。

3、平行四边形具有(不稳定性)性,容易(变形)。

4、只有一组对边平行的四边形叫做(梯形)。

5、在梯形里,互相平行的一组对边分别叫做梯形的(上底)和(下底),不平行的那组对边叫做梯形的(腰)。从上底的一点向下底引一条垂线,这点和垂足之间的线段叫做梯形的(高)。

6、两腰相等的梯形叫做(等腰梯形)。有一个角是直角的梯形叫做(直角梯形)。

二、基础练习

1、判断对错

(1)梯形有两组对边平行。(×)

(2)长方形是特殊的平行四边形。(√)

(3)平行四边形只有一条高。(×)

(4)平行四边形具有稳定性。(×)

(5)直角梯形只有一个直角。(×)

数学学习方法

逻辑法

逻辑是一切思考的基础。逻辑思维,是人们在认识过程中借助于概念、判断、推理等思维形式对事物进行观察、比较、分析、综合、抽象、概括、判断、推理的思维过程。逻辑思维,在解决逻辑推理问题时使用广泛。

逆向思维法

逆向思维也叫求异思维,它是对司空见惯的似乎已成定论的`事物或观点反过来思考的一种思维方式。敢于“反其道而思之”,让思维向对立面的方向发展,从问题的相反面深入地进行探索,树立新思想,创立新形象。

分类法

根据事物的共同点和差异点将事物区分为不同种类的方法,叫做分类法。分类是以比较为基础的。依据事物之间的共同点将它们合为较大的类,又依据差异点将较大的类再分为较小的类。

分类即要注意大类与小类之间的不同层次,又要做到大类之中的各小类不重复、不遗漏、不交叉。

小学数学常用计算公式

(1)长方形面积=长×宽,计算公式s=a b

(2)正方形面积=边长×边长,计算公式s=a × a

(3)长方形周长:(长+宽)× 2,计算公式s=(a+b)× 2

(4)正方形周长=边长× 4,计算公式s= 4a i

(5)平形四边形面积=底×高,计算公式s=a h.

(6)三角形面积=底×高÷2,计算公式s=a×h÷2

(7)梯形面积=(上底+下底)×高÷2,计算公式s=(a+b)×h÷2

(8)长方体体积=长×宽×高,计算公式v=a bh

(9)圆的面积=圆周率×半径平方,计算公式s=лr2

(10)正方体体积=棱长×棱长×棱长,计算公式v=a3

(11)长方体和正方体的体积都可以写成底面积×高,计算公式v=sh

(12)圆柱的体积=底面积×高,计算公式v=s h

5年级的知识点总结 第12篇

三位数乘两位数

1、在三位数乘两位数中,先用两位数的个位上的数去乘这个三位数,然后用两位数的十位上的数去乘这个三位数。最后将它们的积加起来。

2、因数末尾有0的乘法:写竖式时把0前面的数对齐,只乘0前面的数;两个因数末尾xxx几个0,就在乘得的积的末尾添上几个0。

3、积的变化规律:

①一个因数不变,另一个因数扩大(或缩小)若干倍,积扩大(或缩小)相同的倍数。

例如1:已知:A×B=215,则A×B×2=( )。

这是把B扩大了2倍,而积也应扩大2倍。即215×2=430,所以A×B×2=(430)。

例如2:已知:2×A×B=200,则A×B=( )。

这是把A缩小了2倍,而积也应缩小2倍。即200÷2=100,所以A×B=(100 )。

②一个因数扩大或缩小若干倍,另一个因数缩小或扩大相同的倍数,积不变。

例如:已知:A×B=510,如果A扩大了5倍,B缩小5倍,则积是( 510 )。

③一个因数扩大m倍,另一个因数扩大n倍,则积就扩大m×n倍。

④一个因数缩小m倍,另一个因数缩小n倍,则积就缩小m×n倍。

④一个因数扩大m倍,另一个因数缩小n倍,如果m>n则积扩大(m÷n)倍。如果m

6、速度×时间=路程路程÷时间=速度路程÷速度=时间

单价×数量=总价总价÷数量=单价总价÷单价=数量

平行四边形和梯形

1、在同一平面内不相交的两条直线叫做平行线,也可以说这两条直线互相平行。

2、在同一个平面内如果两条直线相交成直角,就是说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。

3、如果两条直线都和第三条直线平行,那么这两条直线也(互相平行)。

4、如果两条直线都和第三条直线垂直,那么这两条直线也(互相平行)。

5、从直线外一点到这条直线所画的(垂直线段)最短,它的长度叫做这点到直线的(距离)。平行线之间的距离(处处相等)。

6、长方形:对边相等,四个角都是直角,两组对边分别平行。

7、长方形的周长=(长+宽)×2;长方形的面积=长×宽;

8、正方形:四条边都相等,四个角都是直角,两组对边分别平行。

9、正方形的周长=边长×4;正方形的面积=边长×边长。

10两组对边分别平行的四边形叫做平行四边形。其特点是:对边相等,对角相等。两组对边分别平行。

11、只有一组对边平行的四边形叫做梯形。其特点是:只有一组对边平行而另一组对边不平行。平行的两边叫做梯形的底,其中长边叫下底;不平行的两边叫腰;两底间的距离叫梯形的高。

12、正方形是特殊的长方形;长方形和正方形是特殊的平行四边形。

13、平行四边形容易变形,具有不稳定的特性。

14、从平行四边形一条边上的一点到对边引一条垂线,这点和垂足之间的线段叫做平行四边形的高,垂足所在的边叫做平行四边形的底。

15、两腰相等的梯形叫做等腰梯形。等腰梯形的两个底角相等。

16、两个完全一样的梯形可以xxx一个平行四边形。

17、两个完全一样的三角形可以xxx一个平行四边形。

18、我们学过的图形中,长方形、正方形、等腰梯形、菱形是对称图形。

19、过直线外一点只能画一条已知直线的垂线;

20、过直线外一点只能画一条已知直线的平行线。

统计

1、条形统计图的意义:条形统计图是用一个单位长度表示一定的数量,根据数量的多少画成长短不同的直条,然后把这些直条按照一定的顺序排起来。条形统计图的优点是可以很容易看出各种数量的多少。

2、条形统计图的特点:

(1)能够使人们一眼看出各个数据的大小。

(2)易于比较数据之间的差别。

3、我们学过的统计图有横向条形统计图、纵向条形统计图以及单式统计图和复试统计图。

5年级的知识点总结 第13篇

列方程解应用题的方法:

(1)综合法

先把应用题中已知数(量)和所设未知数(量)列成有关的代数式,再找出它们之间的等量关系,进而列出方程。这是从部分到整体的一种思维过程,其思考方向是从已知到未知。

(2)分析法

先找出等量关系,再根据具体建立等量关系的需要,把应用题中已知数(量)和所设的未知数(量)列成有关的代数式进而列出方程。这是从整体到部分的一种思维过程,其思考方向是从未知到已知。

列方程解应用题的范围:

小学范围内常用方程解的应用题:

(1)一般应用题;

(2)和倍、差倍问题;

(3)几何形体的周长、面积、体积计算;

(4)分数、百分数应用题;

(5)比和比例应用题。

平行四边形的面积公式:

底×高(推导方法如图);如用“h”表示高,“a”表示底,“S”表示平行四边形面积,则S平行四边形=ah

三角形面积公式:

S△=1/2xah(a是三角形的底,h是底所对应的高)

梯形面积公式:

(1)梯形的面积公式:(上底+下底)×高÷2.

用字母表示:(a+b)×h÷2

(2)另一计算公式:中位线×高

用字母表示:l·h

(3)对角线互相垂直的梯形:对角线×对角线÷2.

5年级的知识点总结 第14篇

立体图形【认识、表面积、体积】

一、长方体、正方体都有6个面,12条棱,8个顶点。正方体是特殊的长方体。

二、圆柱的特征:一个侧面、两个底面、无数条高。

三、圆锥的特征:一个侧面、一个底面、一个顶点、一条高。

四、表面积:立体图形所有面的面积的和,叫做这个立体图形的表面积。

五、体积:物体所占空间的大小叫做物体的体积。容器所能容纳其它物体的体积叫做容器的容积。

六、圆柱和圆锥三种关系:

①等底等高:体积1︰3

②等底等体积:高1︰3

③等高等体积:底面积1︰3

七、等底等高的圆柱和圆锥:

①圆锥体积是圆柱的1/3,

②圆柱体积是圆锥的3倍,

③圆锥体积比圆柱少2/3,

④圆柱体积比圆锥多2倍。

八、等底等高的圆柱和圆锥:锥1、差2、柱3、和4。

5年级的知识点总结 第15篇

1、由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体。两个面相交的边叫做棱。三条棱相交的点叫做顶点。相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。

长方体特点:

(1)有6个面,8个顶点,12条棱,相对的面的面积相等,相对的棱的长度相等。

(2)一个长方体最多有6个面是长方形,最少有4个面是长方形,最多有2个面是正方形。

2、由6个完全相同的正方形围成的立体图形叫做正方体(也叫做立方体)。

正方体特点:

(1)正方体有12条棱,它们的长度都相等。

(2)正方体有6个面,每个面都是正方形,每个面的面积都相等。

(3)正方体可以说是长、宽、高都相等的长方体,它是一种特殊的长方体。

相同点

不同点

长方体

都有6个面,12条棱,8个顶点。

6个面都是长方形。

(有可能有两个相对的面是正方形)。

相对的棱的长度都相等

正方体

6个面都是正方形。

12条棱都相等。

3、长方体、正方体有关棱长计算公式:

长方体的棱长总和=(长+宽+高)×4=长×4+宽×4+高×4

L=(a+b+h)×4

长=棱长总和÷4-宽-高

a=L÷4-b-h

宽=棱长总和÷4-长-高

b=L÷4-a-h

高=棱长总和÷4-长-宽

h=L÷4-xxx

正方体的棱长总和=棱长×12

L=a×12

正方体的棱长=棱长总和÷12

a=L÷12

4、长方体或正方体6个面和总面积叫做它的表面积。

长方体的表面积=(长×宽+长×高+宽×高)×2

S=2(ab+ah+bh)

无底(或无盖)

长方体表面积=长×宽+(长×高+宽×高)×2

S=2(ab+ah+bh)-ab

S=2(ah+bh)+ab

无底又无盖长方体表面积=(长×高+宽×高)×2

S=2(ah+bh)

贴墙纸

正方体的表面积=棱长×棱长×6 S=a×a×6用字母表示:S= 6a2

生活实际:

油箱、罐头盒等都是6个面

游泳池、鱼缸等都只有5个面

水管、烟囱等都只有4个面。

注意1:用刀分开物体时,每分一次增加两个面。(表面积相应增加)

注意2:长方体或正方体的长、宽、高同时扩大几倍,表面积会扩大倍数的平方倍。

(如长、宽、高各扩大2倍,表面积就会扩大到原来的4倍)。

5、物体所占空间的大小叫做物体的体积。

长方体的体积=长×宽×高V=abh

长=体积÷宽÷高a=V÷b÷h

宽=体积÷长÷高b=V÷a÷h

高=体积÷长÷宽h= V÷a÷b

正方体的体积=棱长×棱长×棱长

V=a×a×a = a3

读作“a的立方”表示3个a相乘,(即a·a·a)

长方体或正方体底面的面积叫做底面积。

长方体(或正方体)的体积=底面积×高

用字母表示:V=S h(横截面积相当于底面积,长相当于高)。

注意:一个长方体和一个正方体的棱长总和相等,但体积不一定相等。

6、箱子、油桶、仓库等所能容纳物体的体积,通常叫做他们的容积。

固体一般就用体积单位,计量液体的体积,如水、油等。

常用的容积单位有升和毫升也可以写成L和ml。

1升=1立方分米

1毫升=1立方厘米

1升=1000毫升

(1L = 1dm3 1ml = 1cm3)

长方体或正方体容器容积的计算方法,跟体积的计算方法相同。

但要从容器里面量长、宽、高。(所以,对于同一个物体,体积大于容积。)

注意:长方体或正方体的长、宽、高同时扩大几倍,体积就会扩大倍数的立方倍。

(如长、宽、高各扩大2倍,体积就会扩大到原来的8倍)。

x形状不规则的物体可以用排水法求体积,形状规则的物体可以用公式直接求体积。

排水法的公式:

V物体=V现在-V原来

也可以V物体=S×(h现在- h原来)

V物体=S×h升高

8、【体积单位换算】

大单位乘进率=小单位

小单位÷进率=大单位

进率:1立方米=1000立方分米=1000000立方厘米(立方相邻单位进率1000)

1立方分米=1000立方厘米=1升=1000毫升

1立方厘米=1毫升

1平方米=100平方分米=10000平方厘米

1平方千米=100公顷=1000000平方米

注意:长方体与正方体关系

把长方体或正方体截成若干个小长方体(或正方体)后,表面积增加了,体积不变。

重量单位进率,时间单位进率,长度单位进率

大单位乘进率=小单位

小单位÷进率=大单位

数学奇偶数性质

1、两个连续整数中必有一个奇数和一个偶数。

2、奇数+奇数=偶数;偶数+奇数=奇数;偶数+偶数+...+偶数=偶数。

3、奇数-奇数=偶数;偶数-奇数=奇数;奇数-偶数=奇数。

4、若a、b为整数,则a+xxxxxx有相同的奇偶性,即a+xxxxxx同为奇数或同为偶数。

5、n个奇数的乘积是奇数,n个偶数的乘积是偶数;算式中有一个是偶数,则乘积是偶数。

6、奇数的个位是1、3、5、7、9;偶数的个位是0、2、4、6、8。

7、奇数的平方除以2、4、8余1。

8、任意两个奇数的平方差是2、4、8的倍数。

数学时分秒知识点

1、钟面上有3根针,它们分别是时针、分针、秒针,其中走得最快的是秒针,走得最慢的是时针。(时针最短,秒针最长)

2、计量很短的时间,常用秒。秒是比分更小的时间单位。

3、钟面上最长最细的针是秒针。秒针走一小格的时间是1秒。

4、秒表:一般在体育运动中用来记录以秒为单位的时间。

5、常用时间单位:时、分、秒。

6、时间单位:时、分、秒,每相邻两个个单位之间的进率都是60。

1时=60分1分=60秒半时=30分30分=半时

7、分针走一圈,时针走一大格,是1小时。秒针走一圈,分针走一小格,是1分。

8、计算一段时间,可以用结束的时刻减去开始的时刻。

5年级的知识点总结 第16篇

小学五年级数学考试知识点

一 图形的变换

轴对称: 如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形, 这条直线叫做对称轴。(正方形,长方形,三角形,平行四边形,圆)

旋转:在平面内,一个图形绕着一个顶点旋转一定的角度得到另一个图形的变化较做旋转,定点O叫做旋转中心,旋转的角度叫做旋转角,原图形上的一点旋转后成为的另一点成为对应点。

旋转的性质:图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动;其中对应点到旋转中心的距离相等;旋转前后图形的大小和形状没有改变;两组对应点非别与旋转中心的连线所成的角相等,都等于旋转角;旋转中心是不动的点。

知识点连接:平移、轴对称、旋转的区别联系

二 因数和倍数

1、整除:被除数、除数和商都是自然数,并且没有xxx。

大数能被小数整除时,大数是小数的倍数,小数是大数的因数。

找因数的方法:

一个数的因数的个数是有限的,其中最小的因数是1,的因数是它本身。

一个数的倍数的个数是无限的,最小的倍数是它本身。

因数与倍数是相对存在,不能脱离开来:2是4的因数,4是2的倍数

因数与倍数指的通常是整数,不能针对小数。×5=12,所以5是12的因数(×)

2、自然数按能不能被2整除来分:奇数 偶数

奇数:不能被2整除的数

偶数:能被2整除的数。

最小的奇数是1,最小的偶数是0.

个位上是0,2,4,6,8的数都是2的倍数。

个位上是0或5的数,是5的倍数。

一个数各位上的数的和是3的倍数,这个数就是3的倍数。

能同时被2、3、5整除的的两位数是90,最小的三位数是120。

3、自然数按因数的个数来分:质数、合数、1.

质数:有且只有两个因数,1和它本身

合数:至少有三个因数,1、它本身、别的因数

1: 只有1个因数。“1”既不是质数,也不是合数。

最小的质数是2,最小的合数是4。

20以内的质数:有8个(2、3、5、7、11、13、17、19)

五年级数学下册倍数知识点

知识点:倍数

问题:2的倍数有哪些?

2的倍数有:2,4,6,8 …

例1、 小蜗牛找倍数(找出3的倍数)。

练习3、5的倍数有哪些?7的倍数呢?

5的倍数:

7的倍数:

一个数的倍数的个数是( ),一个数的最小的倍数是( ),( )的倍数。

用字母表示因数与倍数的关系:a x b = c (a、b、c都是不为0的整数)a、b都是c的因数,c是a和b的倍数。因数和倍数是相互依存的。

说一说:在0、3、4、7、15、16、77、31、62中择两个数,说一说谁是谁的因数?谁是谁的倍数?

1、根据算式:4×8=32

说一说,谁是谁的因数?谁是的倍数?

2、根据算式:63÷7=9

说一说,谁是谁的因数?谁是的倍数?

3、判断:÷我们能说和6是的因数;是的倍数,也是6的倍数吗?为什么?

小试牛刀

1. 填空:

(1)3×7=21,( )和( )是( )的因数,( )是( )和( )的倍数。

(2)72的因数是( ),最小倍数是( ),最小因数是( )。

(3)一个数(0除外),它的因数和最小倍数都是( )。

2.判断:

(1)6是因数,30是倍数。 ( )

(2)因为8÷,所以8是和10的倍数,和10是8的因数。 ( )

(3)一个数的因数一定小于这个数。 ( )

(4)甲数比乙数大,甲因数的个数比乙数多。

3、写出各数的因数或倍数。

因数 倍数(写出5个)

10 4

17 7

28 10

32 12

48 15

五年级下册数学期末考试复习计划

1、“亲其师、信其道”,家长要让孩子与老师心理相融,情感相通,和谐的师生关系才能使教育发生作用。“罗森塔尔”效应充分说明了,教师对学生的良好期待,能使学生增强自信心和上进心,对学生发展具有推动和引导作用。

2、正确认识自我,给予成功机会:成功对人的发展具有激励作用。孩子克服困难,完成时要要及时肯定他们,让他们认识到“我能行”,克服自卑的心理。

3、 激发学习兴趣,消除畏惧心理:兴趣是学好数学的重要因素,能激发学生的学习动机。要让学生对数学产生兴趣,关键在于教师要把数学教得“有趣”。在初一开始学习数学的第一节课,首先让学生知道数学将学些什么,学了数学有什么用,通过一些有趣的实验,生动的讲解,让学生知道“数学有趣”、“数学有用”,然后进一步告诉学生怎样才能学好数学。只要第一步开头开得好,就会减轻学生学习数学的精神压力,激发学生的学习兴趣和积极性,从而创造一个良好的学习数学的心理环境,消除了畏惧心理,树立了要学好数学的自信心。在以后的教学中,还要注意让学生有多动手的机会。多让学生自己动手做,由对数学的好奇而产生要探索它的兴趣。

4、 激励学习动机,强化学习动力:学习动机是直接推动学生进行学习的内在动力,是学习的基本心理因素。当今社会的发展需要高素质的人才,将来要适应和推动社会的发展,必须自强不息,提高自己的智能。而智能的提高是以基础知识的掌握为条件的。要使学生认识到学习是自己的需要。把“要我学”变成“我要学”。加强数学学习上的竞争,考试、参加数学竞赛,还有学习上的落后将潜伏着丧失自尊的威胁,这些都可以形成一种压力,激发学生的学习动机。以积极进取替代惰性心理。

5、加强对学习方法的指导:有些学生,智商并不低,学习也认真了,但是学习成绩总是上不去,他们所存在的问题往往是学习方法不当所造成。

学生掌握知识,有一个科学的学习过程。这个过程包括预习、听课、复习、作业、小结等环节。学习困难学生在这几个环节上往往做不好。如:他们没有养成课前预习的习惯,上课听课思想容易开小差,平时不重视即时复习,总是考试前才匆匆忙忙的复习,作业不能独立完成等等。针对这些情况,对学习方法上的指导主要从这几个方面进行:

(1)指导掌握好预习、听课的环节。学会了课前预习,可以进一步提高听课效率。课堂听课是学生获取知识的主要途径,听课注意力集中是取得好成绩的前提和基础。学习困难学生往往课堂听课的注意力很容易分散,虽然影响听课注意力集中的因素有许多,但是最关键的是帮助学会自我克制,自我约束,才能使听课效率得以提高。

(2)过多的依赖于别人是难以养成自信心的。培养学生的自学能力有利于学生自信心的树立。独立完成作业能逐渐提高自学能力。

(3)联系实际来学习数学。观察和探究是学好数学的基本方法,在我们周围有许多同学们熟悉的自然现象和事物都跟数学知识有关,鼓励注意观察日常生活中的数学现象。掌握了一定的学习方法后,就会尝到甜头,从而进一步激发学习的兴趣,树立学习信心。提高学习的自信心。

5年级的知识点总结 第17篇

1、方法:化大为小或化繁为简,画图,列表,再总结应用

2、植树问题:

(1)、两端要栽:

间隔数=总长÷间距;总长=间距×间隔数;

棵数=间隔数+1;间隔数=棵数-1

(类似问题有:竖电线杆,两端插旗......)

(2)、两端不栽:

间隔数=总长÷间距;总长=间距×间隔数;

棵数=间隔数-1;间隔数=棵数+1

(类似问题有:锯木头,剪铁丝......)

(3)、一端栽一端不栽:间隔数=总长÷间距;

总长=间距×间隔数;棵数=间隔数;间隔数=棵数

(类似问题有:敲钟听声,上楼时间.....)

3、锯木问题:段数=次数+1;次数=段数-1总时间=每次时间×次数

4、方阵问题:最外层的数目是:边长×4—4或者是(边长-1)×4;

单边边长=(最外层数目+4)÷4

整个方阵的总数目是:边长×边长

5、封闭的图形(例如围成一个圆形、椭圆形):

总长÷间距=间隔数;棵数=间隔数。

6、过桥问题总长=车身长+车间距×车间隔数+桥(路长)

速度=总长÷时间

7、出租车计费(信件邮资、洗照片)等问题。

计算时分成两部分。(1)标准部分。已经知道总价的,不再计算,不知道总价需计算。

(2)超出部分。超出数量×超出单价。最后相加。

5年级的知识点总结 第18篇

小学五年级数学知识点

1、分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。

2、分数单位:把单位“1”平均分成若干份,表示这样的一份的数叫做分数单位。

3、分数与除法的关系:除法中的被除数相当于分数的分子,除数相等于分母,用字母表示:a÷b= (b≠0)。

4、真分数和假分数:分子比分母小的分数叫做真分数,真分数小于1。分子比分母大或分子和分母相等的分数叫做假分数,假分数大于1或等于1。由整数部分和分数部分组成的分数叫做带分数。

5、假分数与带分数的互化:把假分数化成带分数,用分子除以分母,所得商作整数部分,xxx作分子,分母不变。把带分数化成假分数,用整数部分乘以分母加上分子作分子,分母不变。

6、分数的基本性质:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质。

7、公因数:几个数共有的因数叫做它们的公因数,其中的一个叫做公因数。

8、互质数:公因数只有1的两个数叫做互质数。两个数互质的特殊判断方法:①1和任何大于1的自然数互质。②2和任何奇数都是互质数。③相邻的两个自然数是互质数。④相邻的两个奇数互质。⑤不相同的两个质数互质。⑥当一个数是合数,另一个数是质数时(除了合数是质数的倍数情况下),一般情况下这两个数也都是互质数。

9、最简分数:分子和分母只有公因数1的分数叫做最简分数。

10、约分:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。

11、最小公倍数:几个数共有的倍数叫做它们的公倍数,其中最小的一个叫做最小公倍数。

12、通分:把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。

13、特殊情况下的公因数和最小公倍数:

①成倍数关系的两个数,公因数就是较小的数,最小公倍数就是较大的数。②互质的两个数,公因数就是1,最小公倍数就是它们的乘积。

14、分数的大小比较:同分母的分数,分子大的分数就大,分子小的分数就小;同分子的分数,分母大的分数反而小,分母小的分数反而大。

15、分数和小数的互化:小数化分数,一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……,去掉小数点作分子,能约分的必须约成最简分数;分数化小数,用分子除以分母,除不尽的按要求保留几位小数。

小学五年级数学知识点:长方体和正方体

1、长方体和正方体的特征:长方体有6个面,每个面都是长方形(特殊的有一组对面是正方形),相对的面完全相同;有12条棱,相对的棱平行且相等;有8个顶点。正方形有6个面,每个面都是正方形,所有的面都完全相同;有12条棱,所有的棱都相等;有8个顶点。

2、长、宽、高:相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。

3、长方体的棱长总和=(长+宽+高)×4 正方体的棱长总和=棱长×12

4、表面积:长方体或正方体6个面的总面积叫做它的表面积。

5、长方体的表面积=(长×宽+长×高+宽×高)×2 S=(ab+ah+bh)×2

正方体的表面积=棱长×棱长×6 用字母表示:S=

6、表面积单位:平方厘米、平方分米、平方米 相邻单位的进率为100

7、体积:物体所占空间的大小叫做物体的体积。

8、长方体的体积=长×宽×高 用字母表示:V=abh 长=体积÷(宽×高) 宽=体积÷(长×高)

高=体积÷(长×宽)

正方体的体积=棱长×棱长×棱长 用字母表示:V= a×a×a

9、体积单位:立方厘米、立方分米和立方米 相邻单位的进率为1000

10、长方体和正方体的体积统一公式:长方体或正方体的体积=底面积×高 V=Sh

11、体积单位的互化:把高级单位化成低级单位,用高级单位数乘以进率;

把低级单位聚成高级单位,用低级单位数除以进率。

12、容积:容器所能容纳物体的体积。

13、容积单位:升和毫升(L和ml) 1L=1000ml 1L=1000立方厘米 1ml=1立方厘米

14、容积的计算:长方体和正方体容器容积的计算方法跟体积的计算方法相同,但要从里面量长、宽、高。

五年级数学怎么提升

1、上课时专心一致

上课时要全心投入课堂活动,这项要求是老生常谈,却是学好数学最简单的途径。孩子有时会自恃数学能力很好,或许是在补习班已学过相关的课程内容,或许是挑战权威,认为老师不够专业,解题能力不比自己厉害,也或者受到其他同学的干扰或自己主动与同学交谈,以致未跟上课堂的学习,更忽视了老师的讲解,这种行为实在是不太聪明。因为上课不专心通常会遭到老师的指正,若再答不出老师问的问题,可是大大的失了面子;若是因不专心而漏失应学而未学的重点,可就连里子也失去了。

2、下课后认真习写题目并检视解题方法

五年级的数学题目不但题目难度提升,计算亦较复杂,计算能力不佳的孩子,会发现自己常常计算错误,在教学经验中还常发现孩子连九九乘法都背错,例如:8×4=36等。

要提高计算的准确度及速度,适度的练习是必要的,所以孩子应每日准时完成功课,老师通常会考量孩子们的需求,分派数学功课让孩子回家写,孩子应积极完成,并建议习写完后,自行检视自己的解题方式是否又快又好?若不然,则尝试其他的解题方式。如此一来,不仅可透过写作业,加强解题的熟练度,更可透过多一次的尝试,练习不同的解题方式,活化自己的思考。

3、遇到问题勇于发问

五年级孩子常因好面子或怕自曝其短,而不愿主动询问师长,不耻下问是学习知识的方式之一,更何况是不耻“上”问;请孩子勇于发问,课堂上遇到不懂之处则问;习写作业时,不懂则问;遇到生活中的数学问题,不懂则问;问师长、问爸妈、问同学,多询问可触发思考,有时在问答的过程中,灵机一动,困难的数学问题一下子就迎刃而解了,xxx不为?

4、多涉猎有趣的数学问题

5年级的知识点总结 第19篇

五年级数学知识点:倍数与因数

1、像0、1、2、3、4、5、6……这样的数是自然数。

2、像-3、-2、-1、0、1、2、3……这样的数是整数。

3、整数与自然数的关系:整数包括自然数。

4、倍数和因数: 举例如4×5=20,20是4和5的倍数,4和5是20的因数,倍数和因数是相互依存的。

5、找倍数:从1倍开始有序的找。

6、一个数倍数的特点: ①一个数的倍数的个数是无限的; ②最小的倍数是它本身; ③没有的倍数。

7、找因数:找一个数的因数,一对一对有序的找较好。

8、一个数因数的特点: ①一个数的因数的个数是有限的; ②最小的因数是1; ③的因数是它本身。

9、2的倍数的特征:个位是0、2、4、6、8的数是2的倍数。

10、奇数和偶数:是2的倍数的数叫偶数,不是2的倍数的数叫奇数。 按一个数是不是2的倍数来分,自然数可以分成两类:奇数和偶数

11、5的倍数的特征:个位是0或5的数是5的倍数。

12、3的倍数的特征:各个数位上的数字的和是3的倍数,这个数就是3的倍数。

13、既是2的倍数又是5的倍数的特征:个位是0的数。 既是2的倍数又是3的倍数的特征:①个位是0、2、4、6、8的数; ②各个数位上的数字的和是3的倍数 既是3的倍数又是5的倍数的特征:①个位是0或5的数; ②各个数位上的数字的和是3的倍数 既是2的倍数又是3的倍数还是5的倍数的特征: ①个位是0的数; ②各个数位上的数字的和是3的倍数 9的倍数的特征:各个数位上的数字的和是9的倍数,这个数就是9的倍数

14、质数:一个数只有1和它本身两个因数,这个数叫质数。最小的质数是2,是的质数中的偶数。 100以内的质数:

15、合数:一个数除了1和它本身以外还有别的因数,这个数叫合数。 1既不是质数也不是合数,最小的合数是4.

16、按一个数的因数个数分,自然数可以分为三类。

小学五年级数学知识点:小数乘法

1、小数乘整数(P2、3):意义——求几个相同加数的和的简便运算。如:×3表示的3倍是多少或3个的和的简便运算。计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中xxx几位小数,就从积的右边起数出几位点上小数点。

2、小数乘小数(P4、5):意义——就是求这个数的几分之几是多少。如:×就是求的十分之八是多少。 ×就是求的倍是多少。计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中xxx几位小数,就从积的右边起数出几位点上小数点。注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。

3、规律(1)(P9):一个数(0除外)乘大于1的数,积比原来的数大; 一个数(0除外)乘小于1的数,积比原来的数小。

4、求近似数的方法一般有三种:(P10) ⑴四舍五入法;⑵进一法;⑶去尾法

5、计算钱数,保留两位小数,表示计算到分。保留一位小数,表示计算到角。

6、(P11)小数四则运算顺序跟整数是一样的。

7、运算定律和性质:加法:加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c) 减法:减法性质:xxx-c=a-(b+c) a-(b-c)=xxx+c 乘法:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c【(xxx)×c=a×c-b×c】除法:除法性质:a÷b÷c=a÷(b×c)

数学学习方法技巧

第一,不懂就问。学习的时候多少都会遇到自己难以解决的问题,这时候就要积极提问、讨论,不要因为害怕胆小,就憋着问题或者略过问题,这样只会造成你在学习上的隐患。

对于那些比较难的问题,可以去向老师提问,或者跟其他同学讨论,你就可能从别人那里学习到好的的方法和技巧。要知道,学习的基础是勤学,学习的关键是好问。

第二,实战培养。有的同学在平时的学习过程中,表现都很好,作业也完成的很不错,可是一到了考试的时候,成绩就不那么理想了,所以在平时,大家要把作业当成考试,然后在考试时,就把它当成作业,适时的去调整方法。

第三,把握良机。如果在一定时间过后,没有对知识点进行复习,就会遗忘。每个人记忆的时长都是不一样的,可以根据自己遗忘的规律去复习功课,这样就能保证牢牢的掌握好知识点了。

5年级的知识点总结 第20篇

1、方法:化大为小或化繁为简,画图,列表,再总结应用

2、植树问题:

(1)、两端要栽:

间隔数=总长÷间距;总长=间距×间隔数;

棵数=间隔数+1;间隔数=棵数-1

(类似问题有:竖电线杆,两端插旗......)

(2)、两端不栽:

间隔数=总长÷间距;总长=间距×间隔数;

棵数=间隔数-1;间隔数=棵数+1

(类似问题有:锯木头,剪铁丝......)

(3)、一端栽一端不栽:间隔数=总长÷间距;

总长=间距×间隔数;棵数=间隔数;间隔数=棵数

(类似问题有:敲钟听声,上楼时间.....)

3、锯木问题:段数=次数+1;次数=段数-1总时间=每次时间×次数

4、方阵问题:最外层的数目是:边长×4—4或者是(边长-1)×4;

单边边长=(最外层数目+4)÷4

整个方阵的总数目是:边长×边长

5、封闭的图形(例如围成一个圆形、椭圆形):

总长÷间距=间隔数;棵数=间隔数。

6、过桥问题总长=车身长+车间距×车间隔数+桥(路长)

速度=总长÷时间

7、出租车计费(信件邮资、洗照片)等问题。

计算时分成两部分。(1)标准部分。已经知道总价的,不再计算,不知道总价需计算。

(2)超出部分。超出数量×超出单价。最后相加。

五年级数学差怎么提高

1、家长可以多鼓励孩子。

从孩子的每一次作业、单元测验以及学校学习中,肯定孩子进步的地方,增加孩子的自信。特别是不要经常将数学成绩与她的其他科目成绩比较,让孩子认为自己是偏科的,应该给孩子树立各科全面发展的榜样。

2、强化计算专题的训练。

孩子应该从小养成勤于思考,主动学习的良好学习习惯。注意力难以集中主要是孩子以前接触数学的练习题量较少,养成做题拖拉的不良习惯,而数学成绩不理想也打击了孩子学习数学的兴趣。所以希望通过强化计算专题的训练,系统地给孩子复习,让孩子期末成绩进步,增加孩子的自信心。找个补习机构是采用小班授课,课堂气氛浓厚、让学生在竞争的环境下激发学习的兴趣;学生有很多的发言机会,可以培养学生的自我展示能力,树立孩子的自信。如果条件允许可以选择一对一辅导,效果更好,更能针对孩子的问题进行辅导。

3、学习是一个自主、长期的过程。

平时孩子的学习是比较努力,如果遇到假期的黄金学习时段,孩子可以全心全意投入数学学习中,针对孩子的特点进行查漏补缺,这对孩子以后的学习和发展是非常重要的。

5年级的知识点总结 第21篇

具体内容 重点知识 学生的实际学习困难

分数的产生和意义 1.单位“1”的意义:一个物体、一些物体都可以看作一个整体,可以用自然数1来表示,通常把它叫做单位“1”。

2.分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。

3.分数单位意义:把单位“1”平均分成若干份,表示其中一份的数叫做分数单位。

4.分数与除法的关系:被除数÷除数=被除数除数 ,反来,分数也可以看作两个数相除,分数的分子相等于被除数,分母相等于除数,分数相等于除号。

5.“求一个数是(占)另一个数的几分之几”的问题的解题办法:用一个数除以另一个数。

真分数和假分数 1.真分数的意义:分子比分母小的分数叫做真分数。

2.真分数的特征:真分数﹤1。

3.假分数的意义:分子比分母大或等于分母的分数叫做假分数。

4.假分数的特征:假分数≦1。

5.带分数的意义:由整数(不包括0)和真分数合成的数叫做真分数。

6.带分数的读法:先读整数部分,再读分数部分,中间加“又”字。

7.带分数的写法:先写整数部分,再写分数部分,分数部分的分数线与整数的中间对齐。

8.假分数化成整数或带分数的方法:用分子除以分母。当分子是分母倍数时,能化成整数;当分子不是分母的倍数时,能化成带分数,商是带分数的整数部分,xxx是分数部分的分子,分母不变。

5年级的知识点总结 第22篇

1、周长:封闭图形一周的长度

长方形:周长=(长+宽)×2 C长=2(a+b) 面积=长×宽 S长=a b

正方形:周长=边长×4 C正=4a 面积=边长×边长 S正=a2

2、平行四边形有无数条高

三角形有三条高。梯形有无数条高。

3、平行四边形面积公式的推导过程:

把平行四边形沿一条高剪下,通过移拼,可以xxx一个长方形。xxx长方形的长与平形四边形的底相等,长方形的宽与平形四边形的高相等,xxx长方形的面积与平形四边形面积相等,因为长方形面积长乘以宽,所以平行四边形底乘以高。

如果用 S表示平形四边形的面积,用a、h分别表示平形四边形的底和高,面积公式可以写成:S=ah

平行四边形的面积=底×高 S平=ah

平行四边形的底=面积÷高 a平=S÷h

平行四边形的高=面积÷底 h平=S÷a

4、三角形面积公式的推导过程:

把两个完全一样的三角形可以xxx一个平行四边形,xxx平行四边形的底与三角形的底相等,平行四边形的高与三角形的高相等,每个三角形的面积是xxx平形四边形面积的一半,因为平形四边形的面积等于底乘以高,所以三角形面积等于底乘以高除以2。

如果用S表示三角形的面积,用a和h分别表示三角形的底和高,面积公式可以写成:S=ah÷2。

三角形的面积=底×高÷2 xxx=ah÷2

三角形的底=面积×2÷高 a三=S×2÷h

三角形的高=面积×2÷底 h三=S×2÷a

5、梯形面积公式的推导过程:

把两个完全一样的梯形可以xxx一个平形四边形,xxx平形四边形的底等于梯形的上底加下底的和,平行四边形的高与梯形的高相等,每个梯形的面积是xxx平形四边形面积的一半,因为平形四边形面积等于底乘以高,所以梯形等于(上底+下底)×高÷2.

如果用 S表示梯形的面积,用a、b和h分别表示梯形的上底和高,面积公式可以写成S=(a+b)h÷2

梯形的面积=(上底+下底)×高÷2 S梯=(a+b)h÷2

梯形的高=面积×2÷(上底+下底) h梯=S×2÷(a+b)

上底+下底=面积×2÷高 a+b=S×2÷h

梯形的上底=面积×2÷高-下底 a梯 =S×2÷h-b

梯形的下底=面积×2÷高-上底 b梯 =S×2÷h-a

◆ 小学五年级上册数学公式汇总(电子打印版)

◆ 小学五年级数学上册解方程练习题,必考题型练习!

◆ 小学五年级数学上册计算题大全(4份),给孩子做一做!

5年级的知识点总结 第23篇

五年级数学下册知识点

一、学习目标:

1.理解分数的意义和基本性质,会比较分数的大小,会把假分数化成带分数或整数,会进行整数、小数的互化,能够比较熟练地进行约分和通分;

2.掌握因数和倍数、质数和合数、奇数和偶数等概念,以及2、3、5的倍数的特征;会求100以内的两个数的公因数和最小公倍数;

3.理解分数加、减法的意义,掌握分数加、减法的计算方法,比较熟练地计算简单的分数加、减法,会解决有关分数加、减法的简单实际问题;

4.知道体积和容积的意义以及度量单位,会进行单位之间的换算,感受有关体积和容积单位的实际意义;

5.结合具体情境,探索并掌握长方体和正方体的体积和表面积的计算方法,探索某些实物体积的测量方法;

6.能在方格纸上画出一个图形的轴对称图形,以及将简单图形旋转90度;欣赏生活中的图案,灵活运用平移、对称和旋转在方格纸上设计图案;

7.通过丰富的实例,理解众数的意义,会求一组数据的众数,并解释结果的实际意义;根据具体的问题,能选择适当的统计量表示数据的不同特征;

8.认识复式折线统计图,能根据需要选择合适的统计图表示数据。

二、学习难点:

1.用轴对称的知识画对称图形;

2.确区别平移和旋转的现象,并能在方格纸上画出一个简单图形沿水平方向、竖直方向平移后的图形;

3.理解因数和倍数的意义;因数和倍数等概念间的联系和区别;正确判断一个常见数是质数还是合数;

4.长方体表面积的计算方法;长方体、正方体体积计算;

5.理解、归纳分数与除法的关系;用除法的意义理解分数的意义;

6.理解真分数和假分数的意义及特征;

7.理解和掌握分数和小数互化的方法。

三、知识点概括总结:

1.轴对称:

如果一个图形沿一条直线折叠,直线两侧的图形能够互相重合,这个图形就叫做轴对称图形,这时,我们也说这个图形关于这条直线(成轴)对称。

对称轴:折痕所在的这条直线叫做对称轴。如下图所示:

2.轴对称图形的性质:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点。轴对称和轴对称图形的特性是相同的,对应点到对称轴的距离都是相等的。

3.轴对称的性质:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。这样我们就得到了以下性质:

(1)如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。

(2)类似地,轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

(3)线段的垂直平分线上的点与这条线段的两个端点的距离相等。

(4)对称轴是到线段两端距离相等的点的集合。

4.轴对称图形的作用:

(1)可以通过对称轴的一边从而画出另一边;

(2)可以通过画对称轴得出的两个图形全等。

5.因数:整数B能整除整数A,A叫作B的倍数,B就叫做A的因数或约数。在自然数的范围内例:在算式6÷2=3中,2、3就是6的因数。

6.自然数的因数(举例):

6的因数有:1和6,2和3.

10的因数有:1和10,2和5.

15的因数有:1和15,3和5.

25的因数有:1和25,5.

7.因数的分类:除法里,如果被除数除以除数,所得的商都是自然数而没有xxx,就说被除数是除数的倍数,除数和商是被除数的因数。

我们将一个合数分成几个质数相乘的形式,这样的几个质数叫做这个合数的质因数。

8.倍数:对于整数m,能被n整除(n/m),那么m就是n的倍数。如15能够被3或5整除,因此15是3的倍数,也是5的倍数。

一个数的倍数有无数个,也就是说一个数的倍数的集合为无限集。注意:不能把一个数单独叫做倍数,只能说谁是谁的倍数。

9.完全数:完全数又称完美数或完备数,是一些特殊的自然数。它所有的真因子(即除了自身以外的约数)的和(即因子函数),恰好等于它本身。

10.偶数:整数中,能够被2整除的数,叫做偶数。

11.奇数:整数中,能被2整除的数是偶数,不能被2整除的数是奇数,

12.奇数偶数的性质:

关于奇数和偶数,有下面的性质:

(1)奇数不会同时是偶数;两个连续整数中必是一个奇数一个偶数;

(2)奇数跟奇数和是偶数;偶数跟奇数的和是奇数;任意多个偶数的和都是偶数;

(3)两个奇(偶)数的差是偶数;一个偶数与一个奇数的差是奇数;

(4)除2外所有的正偶数均为合数;

(5)相邻偶数公约数为2,最小公倍数为它们乘积的一半。

(6)奇数的积是奇数;偶数的积是偶数;奇数与偶数的积是偶数;

(7)偶数的个位上一定是0、2、4、6、8;奇数的个位上是1、3、5、7、9.

13.质数:指在一个大于1的自然数中,除了1和此整数自身外,没法被其他自然数整除的数。

14.合数:比1大但不是素数的数称为合数。1和0既非素数也非合数。合数是由若干个质数相乘而得到的。

质数是合数的基础,没有质数就没有合数。

15.长方体:由六个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫长方体.长方体的任意一个面的对面都与它完全相同。

16.长、宽、高:长方体的每一个矩形都叫做长方体的面,面与面相交的线叫做长方体的棱,三条棱相交的点叫做长方体的顶点,相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。

17.长方体的特征:

(1)长方体有6个面,每个面都是长方形,至少有两个相对的两个面完全相同。特殊情况时有两个面是正方形,其他四个面都是长方形,并且完全相同。

(3)长方体有12条棱,相对的棱长度相等。可分为三组,每一组有4条棱。还可分为四组,每一组有3条棱。

(3)长方体有8个顶点。每个顶点连接三条棱。

(4)长方体相邻的两条棱互相(相互)垂直。

18.长方体的表面积:因为相对的2个面相等,所以先算上下两个面,再算前后两个面,最后算左右两个面。

设一个长方体的长、宽、高分别为a、b、c,则它的表面积S:

S=2ab+2bc+2ca

=2(ab+bc+ca)

19.长方体的体积:

长方体的体积=长×宽×高

设一个长方体的长、宽、高分别为a、b、c,则它的体积V:

V=abc=Sh

20.长方体的棱长:

长方体的棱长之和=(长+宽+高)×4

长方体棱长字母公式C=4(a+b+c)

相对的棱长长度相等

长方体棱长分为3组,每组4条棱。每一组的棱长度相等

21.正方体:侧面和底面均为正方形的直平行六面体叫正方体,即棱长都相等的六面体,又称“立方体”、“正六面体”。正方体是特殊的长方体。

22.正方体的特征:

(1)有6个面,每个面完全相同。

(2)有8个顶点。

(3)有12条棱,每条棱长度相等。

(4)相邻的两条棱互相(相互)垂直。

23.正方体的表面积:

因为6个面全部相等,所以正方体的表面积=一个面的面积×6=棱长×棱长×6

设一个正方体的棱长为a,则它的表面积S:

S=6×a×a或等于S=6a2

24.正方体的体积:

正方体的体积=棱长×棱长×棱长;设一个正方体的棱长为a,则它的体积为:

V=a×a×a

25.正方体的展开图:正方体的平面展开图xxx11种。

小学数学知识点

26.分数:把单位“1”平均分成若干份,表示这样的一份或几份的数叫分数。表示这样的一份的数叫分数单位。

27.分数分类:分数可以分成:真分数,假分数,带分数,百分数

28.真分数:分子比分母小的分数,叫做真分数。真分数小于一。如:1/2,3/5,8/9等等。真分数一般是在正数的范围内研究的。

29.假分数:分子大于或者等于分母的分数叫假分数,假分数大于1或等于1.

假分数通常可以化为带分数或整数。如果分子和分母成倍数关系,就可化为整数,如不是倍数关系,则化为带分数。

30.分数的基本性质:分数的分子和分母同时乘以或除以一个不为0的数,分数的值不变。

31.约分:

五年级下学期数学复习计划

一、指导思想:

根据本学期工作计划的安排,结合班级学生及数学学习的具体情况,本着以素质教育为核心,以提高学生实际数学能力为重点,力求挖掘学生的积极性和学习潜在能力,在不增加学习负担的前提下,进一步争取数学整体教学质量的提高。

二、复习目标:

1、使学生比较系统地、牢固地复习有关图形的变换,分数的意义和性质,复习分数加、减法计算,长方体和正方体,简单的统计,学会使用简便算法,合理、灵活地进行计算,会解简易方程,养成检查和验算的习惯。

2、使学生巩固已获得的一些计量单位的大小的表象,牢固地掌握所学的单位间的进率,能够比较熟练地进行名数的简单改写。

3、使学生牢固地掌握所学的几何形体的特征,能够比较熟练地计算一些几何形体的周长、面积和体积,巩固所学的简单的画图、测量等技能。

4、使学生掌握所学的统计初步知识,能够看和绘制简单的统计图表,并且能够计算求平均数问题。

5、使学生牢固地掌握所学的一些常见的数量关系和应用题的解答方法,能够比较灵活地运用所学知识独立地解答不复杂的应用题和生活中一些简单的实际问题。

三、总复习中应注意的几个问题:

1、重视基础知识的复习和知识之间的联系。

2、注意启发、引导学生进行合理的整理和复习。

3、加强反馈,注意因材施教。

4、以“课标”为本,扣紧“三维”目标。

5、力求做到上不封顶,下要保底。

四、复习措施:

1、在复习分块章节中,重视基础知识的复习,加强知识之间的联系。使学生在理解上进行记忆。比如:基础概念、法则、性质、公式……在课堂上、在系统复习中纠正学生的错误,同时防止学生机械地背诵;但是对于计量单位要求学生在记忆时,比较相对的单位,理顺关系。

2、在复习基础知识的同时,紧抓学生的能力的培养。

(1)四则混合运算方面,重视整数、小数、分数的四则混合运算,既要提高学生计算的正确率,又要培养学生善于利用简便方法计算。利用晚自习与课后辅导时间对学生进行多次的过关练习。

(2)在量的计量和几何初步知识上,多利用实物的直观性培养学生的空间想象能力,利用习题类型的全面性,指导学生学习。

(3)应用题中着重训练学生的审题,分析数量关系,寻求合理的简便解题方法,练讲结合,归纳总结,抓订正、抓落实。

(4)其它的知识将在复习过程中穿插的进行,以学生的不同情况做出具体要求。

3、在复习过程中注意启发,加强“培优补差”工作。对学习能力较差,基础薄弱的学生,要求尽量跟上复习进度,同时开“小灶”,利用课间与课后时间,按最低的要求进行辅导。而对于能力较强,程度较好的学生,鼓励他们多看多想多做,老师随时给他们提供指导和帮助。

4、在复习期间,引导学生主动、自觉的复习,进行系统化的归纳和整理,对学生多采用鼓励、表扬的方法,调动学习的积极性。

5、在复习过程中,对学生的掌握情况要做到心中有数,认真地与学生进行反馈交流,达到预期的复习目标。

五、复习时间安排:

1、6月16、17日复习图形的变换、因数和倍数;

2、6月18日复习分数的意义和性质和分数加、减法计算;

3、6月19日复习长方体和正方体;

4、6月20日复习简单统计、数学广角;

5、6月23日第五次检测;

5、6月24、25日准备期末测试。

五年级下数学复习计划大全

一、学情分析

总体情况:多数学生已经形成良好的学习习惯,上课能认真听讲,积极思维,课后认真按时完成作业。但也有一部分学困生,这些学生惰性强,上课不动脑筋思考问题,写作业效率低,不能主动及时订正。普遍存在的问题是学生做题较粗心,计算不用草稿纸,计算的正确率不高,解决问题不仔细审题,理解能力不够强,需要在复习中加强训练。

二、复习目标

5年级的知识点总结 第24篇

1、小数除法的意义:与整数除法的意义相同,是已知两个因数的积与其中一个因数,求另一个因数的运算。

如:÷表示已知两个因数的积是与其中一个因数是,求另一个因数是多少。

2、小数除以整数,按整数除法的方法去除,商的小数点要和被除数的小数点对齐。如果除到末尾仍有xxx,要添0再继续除。

3、被除数比除数大的,商大于1。被除数比除数小的,商小于1。

4、计算除数是小数的除法,先移动除数的小数点,使它变成整数,除数的小数点向右移动几位,被除数的小数点也向右移动几位,数位不够的要添0补足。再按照除数是整数的小数除法进行计算。

5、一个数(0除外)除以1,商等于原来的数。

一个数(0除外)除以大于1的数,商比原来的数小。

一个数(0除外)除以小于1的数,商比原来的数大。

6、一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。

7、小数部分的位数是有限的小数,叫做有限小数。小数部分是无限的小数叫做无限小数。循环小数就是无限小数中的一种。

8、一个循环小数的小数部分,依次不断重复出现的数字,叫做这个循环小数的循环节。

9、写循环小数时,可以只写第一个循环节,并在这个循环节的首位和末位上面各记一个循环点。循环点最多只点两个。

10、取近似数有三种方法:1、四舍五入法;2、去尾法;3、进一法。在解决实际问题时,要根据实际情况取商的近似值。

11、除数是小数的除法计算法则:除数是小数的除法,先移动除数的小数点,使它变成整数;除数的小数点向右移动几位,被除数的小数点也向右移动几位(位数不够的,在被除数的末尾用0补足);然后按照除数是整数的小数除法进行计算。

12、商的变化规律:

被除数与除数同时扩大或者缩小相同的倍数,商不变。

除数不变,被除数乘或除以几(0除外),商也乘或除以几。

被除数不变,除数扩大,商反而缩小;除数缩小,商反而扩大。

5年级的知识点总结 第25篇

1、运算定律和性质:

(1)加法交换律:两个数相加,交换加数的位置,它们的和不变。即a+b=b+a 。

(2)加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加,它们的和不变。即(a+b)+c=a+(b+c) 。

(3)乘法交换律:两个数相乘,交换因数的位置它们的积不变。即a×b=b×a。

(4)乘法结合律:三个数相乘,先把前两个数相乘,再乘第三个数;或者先把后两个数相乘,再和第一个数相乘,它们的积不变。即(a×b)×c=a×(b×c)。

(5)乘法分配律:两个数的和(差)与一个数相乘,可以把两个数分别与这个数相乘,再把两个积相加(减)。即(a+b)×c=a×c+b×c 。

(6)商不变性质:被除数和除数同时扩大(乘)或缩小(除以)相同的倍数(0除外),商不变。

(7)减法的性质:一个数连续减去两个数,可以用这个数减去这两个数的和,差不变

(8)除法的性质:一个数连续除以两个数,可以用这个数除以后两个数的积。

2、含有未知数的等式,称为方程。

3、使方程左右两边相等的未知数的值,叫做方程的解。

4、正方形的边长用a表示,面积用S表示,周长用C表示,则:

5、长方形的长用a表示,宽用b表示,面积用S表示,周长用C表示,则:

6、路程用s表示,速度用表示v表示,时间用t表示,则:

7、用a表示商品的单价,x表示数量,c表示总价,则:

8、用a表示工作效率,用t表示工作时间,用c表示工作总量,则:

9、方程和算术式不同:

算术式是一个式子,它由运算符号和已知数组成,它表示未知数。方程是一个等式,在方程里的未知数可以参加运算,并且只有当未知数为特定的数值时,方程才成立 。

10、列方程解应用题的范围:

(1)一般应用题;

(2)和倍、差倍问题;

(3)几何形体的周长、面积、体积计算;

(4)分数、百分数应用题;

(5)比和比例应用题。

11、解方程:

求方程的解的过程叫做解方程。

12、列方程解应用题的意义:

用方程式去解答应用题求得应用题的未知量的方法。

13、列方程解答应用题的步骤(设、列、解、答)

(1)设:弄清题意,确定未知数并用x表示;

(2)列:找出题中的数量之间的等量关系,并根据等量关系列方程

(3)解:解方程;

(4)答:检查或验算,写出答案。

14、列方程解应用题的方法

(1)综合法

先把应用题中已知数(量)和所设未知数(量)列成有关的代数式,再找出它们之间的等量关系,进而列出方程。这是从部分到整体的一种 思维过程,其思考方向是从已知到未知。

(2)分析法

先找出等量关系,再根据具体建立等量关系的需要,把应用题中已知数(量)和所设的未知数(量)列成有关的代数式进而列出方程。这是从整体到部分的一种思维过程,其思考方向是从未知到已知。

15、有字母的式子里,字母中间的乘号可以记作“·”,也可以省略不写。加号、减号除号以及数与数之间的乘号不能省略。

16、数与数间的乘号不能省略。

17、果知道一个式子中各字母所表示的数值,把它们代入式子中,就可求出式子的值。代入时要把原来省略的运算符号重新补上去。

18、x×x可以写作x·x或x,x2 读作a的平方,2x表示x+x,特别地1x=x这里的:“1“我们不写

19、解方程一般方法:

(1)方程左右两边同时加上或减去、乘以或除以同一个数(0除外),方程的解不变

(2)被除数÷除数=商,除数=被除数÷商,被除数=商×除数。

例:÷x=3,x=÷3=

被减数-减数=差,减数=被减数-差,被减数=减数+差。

例:,x=

因数×因数=积,因数=积÷另一个因数。

例:5x=15,x=15÷5=3

加数+加数=和,加数=和-另一个加数。

例:x+10=15,x=15-10=5

(3)方程中有括号,可根据不同情况将括号展开,或将括号里的内容当成一个整体。