榆树范文网

初一的数学知识点总结(必备14篇)

127

初一的数学知识点总结 第1篇

填空题答题技巧

要求熟记的基本概念、基本事实、数据公式、原理,复习时要特别细心,注意记熟,做到临考前能准确无误、清晰回忆。

对那些起关键作用的,或最容易混淆记错的概念、符号或图形要特别注意,因为考查的往往就是它们。如区间的端点开还是闭、定义域和值域要用区间或集合表示、单调区间误写成不等式或把两个单调区间取了并集等等。

解答题答题技巧

(1)仔细审题。注意题目中的关键词,准确理解考题要求。

(2)规范表述。分清层次,要注意计算的准确性和简约性、逻辑的条理性和连贯性。

(3)给出结论。注意分类讨论的问题,最后要归纳结论。

(4)讲求效率。合理有序的书写试卷和使用草稿纸,节省验算时间。

初一的数学知识点总结 第2篇

第一课祖国境内的远古居民

我国最早的人类1.我国境内已知的最早的人类是元谋人,距今约170万年。

2.人和动物的根本区别是会不会制造工具。

北京人北京人距今约70-20万年,保留猿的特征,但手脚分工明显,能制造和使用工具,使用打制石器。

山顶洞人山顶洞人距今约3万年。

第二课原始的农耕生活

河姆渡的原始农耕1、时间:距今约七千年;2、生活地区:长江流域

半坡原始居民的生活1、时间:距今约五、六千年;2、生活地区:黄河流域

大汶口原始居民1、时间:距今约四、五千年;2、地区:黄河流域

第三课华夏之祖

华夏之祖黄帝和炎帝,

人文初祖——黄帝(原因:四发明)

尧舜禹的“禅让”三

夏朝建立1.夏朝的建立,标志着奴隶制度开始了。我国奴隶社会开始于公元前21世纪。

2.约公元前2070年,xxx夏朝,是我国历第一个王朝。夏朝的建立,标志着我国早期国家的建立。

第四课夏、商、西周的兴亡

夏朝的兴衰1.禹死后,把王位传给他的儿子启,使世袭制度代替禅让制,“家天下”取代了“公天下”。

2.约公元前16,xxx桀,xxx商建。公元前1046年,商、周在牧野大战。商灭,武王建立周朝,定都镐,又称镐京,历叫西周。

西周的分封制1.目的:为了xxx治,西周实行分封制。

2.内容:xxx把土地和平民、奴隶,分给亲属、功臣等,封他们为诸侯。xxx须服从xxx的命令,向天子交纳贡品,平时镇守疆土,战时带兵随从天子作战。

3.作用:开发了边远地区,加强了统治,使西周成为一个强盛的国家。

第五课灿烂的青铜文明

1.在原始社会末期,我国已经出现了青铜器。商朝是我国青铜文化的灿烂时期。的青铜器有司母戊鼎(造型雄伟)和四羊方尊(造型精美)。

2.与商周同期,我国西南地区的成都平原,也盛行一种独特的青铜文化,这就是举世闻名的“三星堆”文化。那里出土的青铜面具、大型青铜立人像、青铜神树等,引起中外人士的瞩目。

第六课春秋战国的纷争

春秋争霸1.公元前770年,周平xxx迁洛邑,史称“东周”。东周分为春秋和战国两个时期。

2.齐桓公任用管仲为相,积极改革内政,发展生产;同时改革军制,组建强大的军队,以“尊王攘夷”为号令,逐步成为春秋第一霸主。

3.公元前7世纪后期,晋楚双方城濮大战后晋文公成为中原霸主。百年后,楚庄王做了中原霸主。

战国xxxxxx国xxx按东南西北到中间的顺序排列为齐、楚、秦、燕、xxx、魏、xxx

2.发生于公元前260年,秦、xxx之间决定性战役是xxx之战。xxx之战使东方六国再也无力抵挡秦国。

第七课大变革的时代

铁农具和牛耕的使用1.春秋时期是我国奴隶制度瓦解时期,战国时期是我国封建制度的形成时期。

2.我国农业发展的一次革命是指牛耕。牛耕:最迟春秋末年使用,战国推广。铁农具:春秋出现,战国推广。

的都江堰战国时期,xxx为秦国修筑的都江堰是举世闻名的防洪灌溉工程。成都平原成为“天府之国”。

商鞅变法1.时间、地点:公元前356年,秦国。

2.内容:①国家承认土地私有,允许自由买卖。②奖励耕战,生产粮食布帛多的人,可免除徭役;根据军功大小授予爵位和田宅,废除没有军功的旧贵族的特权。③建立县制,由国君直接派官吏治理。

3.作用:经过商鞅变法,秦国的经济得到了发展,军队战斗力不断增强,发展成为战国后期最富强的封建国家。

第八课中华文化的勃兴(一)

1.我国有文字可考的历史,从商朝开始。

2.商朝人刻在龟甲或兽骨上的文字,称为“甲骨文”。

第九课中华文化的勃兴(二)

1.xxx是春秋晚期人,其言论记录在《论语》中,他提出“仁”的学说,主张“爱人”,“为政以德”,教育上提出:因材施教,温故而知新,老老实实的学习态度。《论语》由xxx弟子整理编写。

2.老子是春秋晚期人,其学说记录在《道德经》中,他认为一切事物都有对立面,对立的双方能够相互转化。《道德经》由战国时期道家学派整理而成。

3.墨子是战国时期人,主张“兼爱”、“非攻”,反对以大欺小、以强凌弱,支持正义战争。

4.孟子是战国人,认为“春秋无义战”,反对一切战争。主张“仁政”治国,轻徭薄赋,强调保护环境。5.xxx是战国末期人,主张改革,反对空谈仁义,提倡法制。

6.孙武是春秋晚期人,著有《孙子兵法》一书,其军事思想是:“知彼知己,百战不殆。”

第十课“秦王扫六合”

xxx六国和中央集权统治的建立1.灭六国时间:从公元前230年至前2,秦王嬴政陆续灭掉六国。

2.秦朝建立:前221年,建立起我国历第一个统一的中央集权的封建国家——秦朝,定都咸阳。

3.中央集权统治的建立

(1)目的:为了加强统治创立了封建专制主义的中央集权制度。

(2)统治者是皇帝,中央设丞相,太尉,御史大夫分管行政、军事和监察

(3)地方推行郡县制度。(县制起源于商鞅变法,一直沿用到今天)

秦朝xxx一的措施1.政治上:建立起我国历第一个统一的中央集权的封建国家

2.经济上:统一货币(统一使用圆开方孔铜钱)、度量衡。

3.文化上:统一文字(把小篆作为全国规范文字)

4.思想上:焚书坑儒。

5.军事上:反击匈奴,北筑长城(西起临洮,东到辽东)。南凿灵渠,开发南疆。

6.xxx后在地方上推行郡县制度。

第十二课大一统的汉朝

1.汉武帝的大一统具体措施:

(1)政治上:汉武帝接受主父偃的建议,颁布“推恩令”,允许诸王将自己的封地分给子弟,建立较小的xxx,削弱了诸xxx的力量;

(2)思想上:接受xxx“罢黜百家,独尊儒术”的建议,把儒家思想作为封建社会的正统思想,儒家思想在中国古代的统治地位由此确立。

(3)军事上:对匈奴展开多次大规模的反击战,基本解除匈奴对北部边郡的威胁。

(4)经济上:将铸币权和盐铁经营权收归中央,统一铸造五铢钱。

第十五课汉通西域和丝绸之路

xxx通西域1.西域位置:西汉时期,人们把今甘肃玉门关和阳关以西,也就是今天新疆地区和更远的地方。

2.xxx两次通西域:

(1)公元前138年,xxx第一次出使西域。(目的:联络大月氏人夹击匈奴)

(2)公元前1,xxx第二次出使西域。(目的:加强与西域各国的友好交往)

3.西域都护的设置:公元前60年,西汉设置西域都护,总管西域事务。从此,今新疆地区开始隶属于_管辖,成为我国不可分割的一部分。

丝绸之路从长安通过河西走廊、今新疆地区,往西亚,再往欧洲,这条沟通中西交通的陆上要道就是历的丝绸之路。作用:丝绸之路的开辟,有力的促进东西方经济、文化交流,对促进汉朝的兴盛产生积极的作用。

第十六课昌盛的秦汉文化(一)

1.目前世界上已知的最早的纸出现在西汉早期。

2.东汉改进造纸术的重要历史人物是xxx。意义:世界各国的造纸术,大多是由我国直接或间接传去的。造纸术的发明是我国人民对世界文化的巨大贡献。

3.东汉时期的xxx造的地动仪。作用:测定地震的方向。是世界公认的最早的地震仪器。

4.东汉xxx最早制成了“麻沸散”,是世界医学的创举。主要著作《五禽戏》。

5.东汉末年的张仲景著《伤寒杂病论》。书中阐述中医理论和治病原则。他医德高尚,医术高明,后世尊称他为“医圣”。

第十七课昌盛的秦汉文化(二)

佛教起源佛教源于古印度,西汉末年(公元前1世纪末)传入我国中原地区(xxx通西域后,佛教沿丝绸之路逐步传到中国)。东汉时期在我国得到广泛传播。

道教我国土生土长的宗教,东汉时期,道教在民间兴起。

司马迁司马迁是我国古代伟大的史学家,他生活在西汉汉武帝时代。著有《史记》,《史记》记述了从黄帝到汉武帝时期的史事,是我国第一部纪传体通史。

雕塑秦汉时期的雕塑艺术水平很高,它的杰出代表是轰动世界的xxx陵兵马俑。

第十八课xxx立

赤壁之战2赤壁之战是我国历的以少胜多的战役。为xxx立局面的形成奠定基础。2.

xxx立的局面形成2,xxx汉献帝,称帝,国号魏,定都洛阳,东汉结束。221年,xxx在成都称帝,国号汉,史称蜀。222年,xxx称王,国号吴,后定都建业。

三国经济魏重视修建水利工程,农业发达,xxx丝织业兴旺,吴国造船业发达,230年,xxx派将军卫温等,率军万余人,横渡台湾海峡,到达夷洲(即台湾)。

第十九课江南地区的开发

1.西晋建立:266年,xxx的孙子司马炎夺得皇位,建立晋朝,定都洛阳,史称“西晋”。280年,西晋灭吴国。

2.“五胡”内迁:从东汉末年以后,匈奴、鲜卑、羯、氐、羌等北方少数民族陆续内迁。

3.西晋灭亡:3,内迁匈奴人的一支xxx西晋。

4.xxx立:西晋灭亡的第二年(3),xxx重建晋朝,史称“东晋”,都城在建康。

世纪后期,氐族人建立前秦_,前秦王苻坚用汉人xxx为丞相,统一黄河流域。

6.南朝的更迭:420年,大将xxx自立为帝,国号“xxx,结束东晋。此后,南方经历了宋、齐、梁、xxx个王朝,总称为“南朝”

7.江南地区的开发

(1)开发时间:从东汉末年开始

(2)开发原因:

①江南地区雨量充沛,气候较热,土地肥沃,具有发展农业的优越条件。(自然条件)

②江南地区战乱较少,许多人为了躲避北方的战乱,逃往江南地区。(社会原因)

③北人南迁给江南地区带去了劳动力和先进的生产技术。(根本原因)

(3)表现:修建许多水利工程;大片xxx开垦为良田;稻田开始使用绿肥,牛耕和粪肥也得到推广;小麦的种植推广到江南。

(4)意义:为经济重心的南移奠定了基础。

第二十课北方民族的大融合

北方的统一和民族的融合4世纪后期,我国东北地区鲜卑族的一支强大起来,建立了北魏,439年,统一黄河流域。当时各族人民长期生活在一起,生产、生活相互影响,民族融合已经成为趋势。

北魏孝文帝改革1.迁都:北魏建都平城(今山西大同)。气候干旱,粮食供应不足;位置偏北,不利于对中原地区的统治,也不利于学习和接受汉族先进的文化。孝文帝决定迁都洛阳。

2.孝文帝改革措施包括:

①在朝廷中使用汉语,禁用鲜卑语;②官员及其家属必须穿戴汉族服饰;③将鲜卑族的姓氏改为汉族姓氏,把皇族由姓拓跋改为姓元;④鼓励鲜卑贵族与汉族贵族联姻;⑤采用汉族的官制、律令;⑥学习汉族的礼法,尊崇xxx,以孝治国,提倡尊老、养老的风气等。

3.改革的作用:促进了民族融合,加速了北方民族的封建化进程。

第二十一课承上启下的魏晋南北朝文化(一)

1.南朝的祖冲之是我国古代的数学家和天文学家,他利用并发展前人创造的“割圆术”,在世界上第一次把圆周率的数值确定为和之间。这项成果世界近一千年。

2.北朝的贾思勰是我国历农学家。所著的《xxx要术》是我国现存的第一部完整的农业科学著作,在世界占有重要地位。《xxx要术》总结了北方人民长期积累的生产经验,介绍了农、林、牧、副、渔业的生产技术和方法。

第二十二课魏晋南北朝文化(二)

书法艺术(1)书法逐渐成为一种艺术的时间:东汉末年。

(2)演变:魏晋时期,书法字体由篆书、隶书转化到楷书,草书和行书也逐渐流行。

(3)书圣:东晋的xxx,集书法之大成,其字或端xxx,或“飘若浮云,矫若惊龙”,他的代表作《兰亭序》,有“天下第一行书”的美誉。xxx被后人称为“书圣”。

绘画魏晋南北朝时绘画艺术有较大发展,东晋的xxx之最为出色,代表作有《女史箴图》、《洛神赋图》

石窟艺术为了宣传佛教,北朝的统治者开凿石窟,雕造佛像。山西大同平城附近的云冈石窟和河南洛阳附近的龙门石窟,是的两大石窟。

初一的数学知识点总结 第3篇

1.有理数:

(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;π不是有理数;

(2)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;

2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.

3.相反数:

(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;

(2)注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;

4.绝对值:

(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;

(2)绝对值可表示为:

绝对值的问题经常分类讨论;

(3)a|是重要的非负数,即|a|≥0;注意:|a|?|b|=|a?b|,

5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0

初一的数学知识点总结 第4篇

初中一年级数学上册知识点

二元一次方程组

1.二元一次方程:含有两个未知数,并且含未知数项的次数是1,这样的方程是二元一次方程.注意:一般说二元一次方程有无数个解.

2.二元一次方程组:两个二元一次方程联立在一起是二元一次方程组.

3.二元一次方程组的解:使二元一次方程组的两个方程,左右两边都相等的两个未知数的值,叫二元一次方程组的解.注意:一般说二元一次方程组只有解(即公共解).

4.二元一次方程组的解法:

(1)代入消元法;(2)加减消元法;

(3)注意:判断如何解简单是关键.

※5.一次方程组的应用:

(1)对于一个应用题设出的未知数越多,列方程组可能容易一些,但解方程组可能比较麻烦,反之则难列易解

(2)对于方程组,若方程个数与未知数个数相等时,一般可求出未知数的值;

(3)对于方程组,若方程个数比未知数个数少一个时,一般求不出未知数的值,但总可以求出任何两个未知数的关系.

一元一次不等式(组)

1.不等式:用不等号,把两个代数式连接起来的式子叫不等式.

2.不等式的基本性质:

不等式的基本性质1:不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;

不等式的基本性质2:不等式两边都乘以(或除以)同一个正数,不等号的方向不变;

不等式的基本性质3:不等式两边都乘以(或除以)同一个负数,不等号的方向要改变.

3.不等式的解集:能使不等式成立的未知数的值,叫做这个不等式的解;不等式所有解的集合,叫做这个不等式的解集.

4.一元一次不等式:只含有一个未知数,并且未知数的次数是1,系数不等于零的不等式,叫做一元一次不等式;它的标准形式是ax+b0或ax+b0,(a0).

5.一元一次不等式的解法:一元一次不等式的解法与解一元一次方程的解法类似,但一定要注意不等式性质3的应用;注意:在数轴上表示不等式的解集时,要注意空圈和实点.

七年级下册数学知识点

一、事件:

1、事件分为必然事件、不可能事件、不确定事件。

2、必然事件:事先就能肯定一定会发生的事件。也就是指该事件每次一定发生,不可能不发生,即发生的可能是100%(或1)。

3、不可能事件:事先就能肯定一定不会发生的事件。也就是指该事件每次都完全没有机会发生,即发生的可能性为零。

4、不确定事件:事先无法肯定会不会发生的事件,也就是说该事件可能发生,也可能不发生,即发生的可能性在0和1之间。

二、等可能性:是指几种事件发生的可能性相等。

1、概率:是反映事件发生的可能性的大小的量,它是一个比例数,一般用P来表示,P(A)=事件A可能出现的结果数/所有可能出现的结果数。

2、必然事件发生的概率为1,记作P(必然事件)=1;

3、不可能事件发生的概率为0,记作P(不可能事件)=0;

4、不确定事件发生的概率在0—1之间,记作0

三、几何概率

1、事件A发生的概率等于此事件A发生的可能结果所组成的面积(用SA表示)除以所有可能结果组成图形的面积(用xxx表示),所以几何概率公式可表示为P(A)=SA/xxx,这是因为事件发生在每个单位面积上的概率是相同的。

2、求几何概率:

(1)首先分析事件所占的面积与总面积的关系;

(2)然后计算出各部分的面积;

(3)最后代入公式求出几何概率。

初一数学学习方法

一预习

对于理科学习,预习是必不可少的。我们在预习中,应该把书上的内容看一遍,尽力去理解,对解决不了的问题适当作出标记,请教老师或课上听讲解决,并试着做一做书后的习题检验预习效果。

二听讲

这一环节最为重要,因为老师把知识的精华都浓缩在课堂上,听数学课时应做到抓住老师讲题的思路,方法。有问题记下来,课下整理,解决,数学课上一定要积极思考,跟着老师的思路走。

三复习

体会老师课上的例题,整理思维,想想自己是怎么想的,与老师的思路有何异同,想想每一道题的考点,并试着一题多解,做到举一反三。

四作业

认真完成老师留的习题,适当挑选一些课外习题作为练习,但切忌一味追求偏题,怪题,更不要打“题海战术”。

五总结

这一步是为了更好的掌握所学知识。在学完一段知识或做了一道典型题后可总结:总结专题的数学知识;总结自己卡壳的地方;总结自己是怎么错的,错在哪里,总结题目的“陷阱”设在哪里及总结自己或他人的想法。

如何挑选及处理习题

一市面上的习题集数不胜数,大多数的习题集互相抄袭,漏洞百出,使同学在练习的过程中费时费力。我认为历的考试真题是的习题,它紧扣考试大纲,难度适中,不会出现偏题怪题的现象。同时也使同学们紧紧的把握考试的方向,少走弯路。

二有的同学喜欢“题海战术”拿题就做,从不总结,感觉作的越多,成绩越高。这是学习数学的弊端之一。

要记住:题不在于多而在于精。作题是必不可少的,但作完每一道题都要认真的反思,这道题的考点是什么,这道题的解题方法有多少种,哪种方法最简便,对于作错的习题要反复的思考,找出错误的原因,确保该知识点的熟练掌握。

三很多同学喜欢作偏题,难题。但却疏忽了对书本中的定义,概念及公式的理解。从而导致了在考试中经常出现“基本题”失误的现象。

因此,在平时的数学练习中,要对书中的每一个知识点都要深刻的理解,找出可能出现的考点,陷阱。在考试中则要做到“基本题全作对,稳作中档题一分不浪费,尽力冲击高档题,即使错了不后悔。”

初一的数学知识点总结 第5篇

初中一年级数学上册知识点

1.有理数:

(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;π不是有理数;

(2)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;

2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.

3.相反数:

(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;

(2)注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;

4.绝对值:

(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;

(2)绝对值可表示为:

绝对值的问题经常分类讨论;

(3)a|是重要的非负数,即|a|≥0;注意:|a|?|b|=|a?b|,

5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.

七年级下册数学知识点

一、事件:

1、事件分为必然事件、不可能事件、不确定事件。

2、必然事件:事先就能肯定一定会发生的事件。也就是指该事件每次一定发生,不可能不发生,即发生的可能是100%(或1)。

3、不可能事件:事先就能肯定一定不会发生的事件。也就是指该事件每次都完全没有机会发生,即发生的可能性为零。

4、不确定事件:事先无法肯定会不会发生的事件,也就是说该事件可能发生,也可能不发生,即发生的可能性在0和1之间。

二、等可能性:是指几种事件发生的可能性相等。

1、概率:是反映事件发生的可能性的大小的量,它是一个比例数,一般用P来表示,P(A)=事件A可能出现的结果数/所有可能出现的结果数。

2、必然事件发生的概率为1,记作P(必然事件)=1;

3、不可能事件发生的概率为0,记作P(不可能事件)=0;

4、不确定事件发生的概率在0—1之间,记作0

三、几何概率

1、事件A发生的概率等于此事件A发生的可能结果所组成的面积(用SA表示)除以所有可能结果组成图形的面积(用xxx表示),所以几何概率公式可表示为P(A)=SA/xxx,这是因为事件发生在每个单位面积上的概率是相同的。

2、求几何概率:

(1)首先分析事件所占的面积与总面积的关系;

(2)然后计算出各部分的面积;

(3)最后代入公式求出几何概率。

七年级数学上册期末复习资料

一元一次方程及其解法

①方程是含有未知数的等式。

②方程都只含有一个未知数(元)x,未知数x的指数都是1(次),这样的整式方程叫做一元一次方程。

③注意判断一个方程是否是一元一次方程要抓住三点:

1)未知数所在的式子是整式(方程是整式方程);

2)化简后方程中只含有一个未知数;(系数中含字母时不能为零)

3)经整理后方程中未知数的次数是1.

④解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解。方程的解代入满足,方程成立。

⑤等式的性质:

1)等式两边同时加上或减去同一个数或同一个式子(整式或分式),等式不变(结果仍相等)。a=b得:a+(-)c=b+(-)c

2)等式两边同时乘以或除以同一个不为零的数,等式不变。

a=b得:a×c=b×c或a÷c=b÷c(c≠0)

注意:运用性质时,一定要注意等号两边都要同时+、-、×、÷;运用性质2时,一定要注意0这个数。

⑥解一元一次方程一般步骤:

去分母(方程两边同乘各分母的最小公倍数)→去括号→移项→合并同类项→系数化1;

以上是解一元一次方程五个基本步骤,在实际解方程的过程中,五个

步骤不一定完全用上,或有些步骤还需要重复使用.因此,解方程时,

要根据方程的特点,灵活选择方法.在解方程时还要注意以下几点:

⑴去分母:在方程两边都乘以各分母的最小公倍数,不要漏乘不含

分母的项;分子是一个整体,去分母后应加上括号;

注意:去分母(等式的基本性质)与分母化整(分数的基本性质)是两个概念,不能混淆;

⑵去括号:遵从先去小括号,再去中括号,最后去大括号不要漏乘括号的项;不要弄错符号(连着符号相乘);

⑶移项:把含有未知数的项移到方程的一边,其他项都移到方程的另一边(以=为界限),移项要变号;

⑷合并同类项:不要丢项,解方程是同解变形,每一步都是一个方程,

不能像计算或化简题那样写能连等的形式.

⑸系数化1:(两边同除以未知数的系数)把方程化成ax=b(a≠0)

的形式,字母及其指数不变系数化成1在方程两边都除以未知数的系数a,得到方程的解不要分子、分母搞颠倒(一步一步来)

初一的数学知识点总结 第6篇

有理数的乘除法

有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。

乘积是1的两个数互为倒数。

有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。

两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。 mì

求n个相同因数的积的运算,叫乘方,乘方的结果叫幂(power)。在a的n次方中,a叫做底数(base number),n叫做指数(exponent)。

负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0。

把一个大于10的数表示成a×10的n次方的形式,用的就是科学计数法。

从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字(significant digit)。

上面内容是初中数学有理数的乘除法知识点总结,想必大家都已经做好笔记了,接下来还有更详细的初中数学知识点尽在哦,希望同学们关注了。

初中数学知识点总结:平面直角坐标系

下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。

平面直角坐标系

平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。

平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合

三个规定:

①正方向的规定横轴取向右为正方向,纵轴取向上为正方向

②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。

③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。

相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。

初中数学知识点:平面直角坐标系的构成

对于平面直角坐标系的构成内容,下面我们一起来学习哦。

平面直角坐标系的构成

在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。

通过上面对平面直角坐标系的构成知识的讲解学习,希望同学们对上面的内容都能很好的掌握,同学们认真学习吧。

初中数学知识点:点的坐标的性质

下面是对数学中点的坐标的性质知识学习,同学们认真看看哦。

点的坐标的性质

建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。

对于平面内任意一点C,过点C分别向X轴、Y轴作垂线,垂足在X轴、Y轴上的对应点a,b分别叫做点C的横坐标、纵坐标,有序实数对(a,b)叫做点C的坐标。

一个点在不同的象限或坐标轴上,点的坐标不一样。

初一的数学知识点总结 第7篇

小学一年级数学知识点

前后(前后的位置关系)

1、注意用前、后等词语描述物体的顺序与描述物体的准确位置两者之间的区别。

2、鹿在最前面,谁在它的后面?这个答案不,不仅仅有一个松鼠,还有兔子、乌龟和蜗牛都在鹿的后面。

3、注意让学生会用前、后等词语描述物体的相对位置。

上下(上下的位置关系)

1、在具体的情境中理解“上下”的相对性。

2、能用语言表达实际情境中物体的“上下”位置关系。

左右(左右的位置关系)

1、能用语言描述物体的左右位置关系。

2、能在情境中体会左右位置的相对性。进一步再体会:两人如果面向同一方向,他们所看到的左右位置与顺序是一致的;如果面对着面,他们看到的左右位置与顺序是相反的。

教室(前后、上下、左右综合应用)

综合运用前面三课所学的知识,进行物品的位置与顺序的描述活动

小学一年级上册数学知识点总结

一、6—10的认识:

1、数数:根据物体的个数,可以用6—10各数来表示。数数时,从前往后数也就是从小往大数。

2、10以内数的顺序:

(1)从前往后数:0、1、2、3、4、5、6、7、8、9、10。

(2)从后往前数:10、9、8、7、6、5、4、3、2、1、0。

3、比较大小:按照数的顺序,后面的数总是比前面的数大。

4、序数含义:用来表示物体的次序,即第几个。

5、数的组成:一个数(0、1除外)可以由两个比它小的数组成。如:10由9和1组成。

记忆数的组成时,可由一组数想到调换位置的另一组。

二、6—10的加减法

1、10以内加减法的计算方法:根据数的组成来计算。

2、一图四式:根据一副图的思考角度不同,可写出两道加法算式和两道减法算式。

3、“大括号”下面有问号是求把两部分合在一起,用加法计算。“大括号”上面的一侧有问号是求从总数中去掉一部分,还剩多少,用减法计算。

三、连加连减

1、连加的计算方法:计算连加时,按从左到右的顺序进行,先算前两个数的和,再与第三个数相加。

2、连减的计算方法:计算连减时,按从左到右的顺序进行,先算前两个数的差,再用所得的数减去第三个数。

四、加减混合

加减混合的计算方法:计算时,按从左到右的顺序进行,先把前两个数相加(或相减),再用得数与第三个数相减(或相加)。

数学学习方法技巧

营建超卓的讲堂气氛

现代教育论以为:超卓的讲堂气氛能够成为传递常识的无声媒体,能够成为启迪智慧的钥匙,能够成为熏陶品德的潜在力量。每位教师都有殷切的领会:讲堂气氛在很大程度上影响着学生学习自动性的发挥。在教育中,教师规划学生喜欢的、赋有情味的学习活动,激起学生学习的喜欢,让学生愉快地进行数学学习;教师给学生供给充沛的参加数学活动的机会,引导学生在自主根究、协作沟通中获取数学常识、技术、数学思想办法,让学生经历一个生动生动、自动根究、赋有特性的发明进程。这一切,需求超卓的讲堂气氛来支撑。

教师要为学生营建民主、和谐的学习氛围。讲堂上实在的民主、和谐,源于师生的一种爱。教育进程是师生信息沟通的双向进程,也是师生情感沟通的进程。教师经过自己的教育活动用爱润泽学生的心田,引起学生对数学学习的热心,使之自动积极地参加学习活动。以“0的知道和有关的加减法”一课为例,在写0活动中,教师用到了这几句话“你想写0吗?”“好,伸出小手看屏幕书空”“在日字格里描一行0吧”“你以为写0时应留神什么?”“想给咱班小朋友说些什么?”“教师相信你的0必定写得很漂亮,动着手,在下面日字格里写几个0吧!”安排学生进行书空、描0、总结写0的办法、独立写0各项活动。

教师的言语渗透对学生的了解,对学生的尊重和信赖,融入了对学生深深的关爱,使学生愉快、自动获取写0的办法。在根究常识的进程中,学生有错时,不是批判责怪,而是再给学生一次机会。如请学生说出“盘子里1个桃,用数几标明?”时,出现“小猴吃了1个桃,用1标明”的答复。教师不急不躁,接着问:“那个盘子里的桃数用几标明呢?”小朋友马上说出“用1标明。”又如处理“两片荷叶上一共有几只青蛙?”的问题时,一位学生说出4-0,其他学生急于表达自己的等式4+0或0+4。

此刻,教师给学生自己纠正的机会,以“教师没有听清楚”为由,请学生再说一遍。美妙地为学生赢得领会成功的机会。“再给一次机会”让学生感到温暖、遭到鼓动,维护了学生学习的喜欢,维护了学生根究常识的积极性。学生在民主、宽松、和谐的教育空气中心情舒畅,思想生动,敢想、感说,愿想、愿说,学习潜能和自动性得到充沛发挥。

初一的数学知识点总结 第8篇

指数函数

(一)指数与指数幂的运算

1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈_.

当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.此时,的次方根用符号表示.式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand).

当是偶数时,正数的次方根有两个,这两个数互为相反数.此时,正数的正的次方根用符号表示,负的次方根用符号-表示.正的次方根与负的次方根可以合并成±(>0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作。

注意:当是奇数时,当是偶数时,

2.分数指数幂

正数的分数指数幂的意义,规定:

0的正分数指数幂等于0,0的负分数指数幂没有意义

指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.

3.实数指数幂的运算性质

(二)指数函数及其性质

1、指数函数的概念:一般地,函数叫做指数函数(exponential),其中x是自变量,函数的定义域为R.

注意:指数函数的底数的取值范围,底数不能是负数、零和1.

2、指数函数的图象和性质

理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。

高一年级数学高效学习方法

1.先看专题一,整数指数幂的有关概念和运算性质,以及一些常用公式,这公式不但在初中要求熟练掌握,高中的课程也是经常要用到的。

2.二次函数,二次方程不仅是初中重点,也是难点。在高中还是要学的内容,并且增加了一元二次不等式的解法,这个就要根据二次函数图像来理解了!解不等式的时候就要从先解方程的根开始,二次项系数大于0时,有个口诀得记下:“大于号取两边,小于号取中间”。

3.因式分解的方法这个比较重要,高中也是经常用的,比如证明函数的单调性,常在做差变形是需要因式分解,还有解一元多次方程的时候往往也先需要分解因式,之后才能求出方程的根。

4.判别式很重要,不仅能判断二次方程的根有几个,大于零2个根;等于零1个根;小于零无根。而且还能判断二次函数零点的情况,人教版必修一就会学到。集合里面有许多题也要用到。

初一的数学知识点总结 第9篇

初一数学下册期末考试知识点总结一(xxx)

第七章 平面图形的认识(二) 1

第八章 幂的运算 2

第九章 整式的乘法与因式分解 3

第十章 二元一次方程组 4

第十一章 一元一次不等式 4

第十二章 证明 9

第七章 平面图形的认识(二)

一、知识点:

1、“三线八角”

① 如何由线找角:一看线,二看型。

同位角是“F”型;

内错角是“Z”型;

同旁内角是“U”型。

② 如何由角找线:组成角的三条线中的公共直线就是截线。

2、平行公理:

如果两条直线都和第三条直线平行,那么这两条直线也平行。

简述:平行于同一条直线的两条直线平行。

补充定理:

如果两条直线都和第三条直线垂直,那么这两条直线也平行。

简述:垂直于同一条直线的两条直线平行。

3、平行线的判定和性质:

判定定理 性质定理

条件 结论 条件 结论

同位角相等 两直线平行 两直线平行 同位角相等

内错角相等 两直线平行 两直线平行 内错角相等

同旁内角互补 两直线平行 两直线平行 同旁内角互补

4、图形平移的性质:

图形经过平移,连接各组对应点所得的线段互相平行(或在同一直线上)并且相等。

5、三角形三边之间的关系:

三角形的任意两边之和大于第三边;

三角形的任意两边之差小于第三边。

若三角形的三边分别为a、b、c,

6、三角形中的主要线段:

三角形的高、角平分线、中线。

注意:①三角形的高、角平分线、中线都是线段。

②高、角平分线、中线的应用。

7、三角形的内角和:

三角形的3个内角的和等于180°;

直角三角形的两个锐角互余;

三角形的一个外角等于与它不相邻的两个内角的和;

三角形的一个外角大于与它不相邻的任意一个内角。

8、多边形的内角和:

n边形的内角和等于(n-2)180°;

任意多边形的外角和等于360°。

第八章 幂的运算

幂(p5

初一的数学知识点总结 第10篇

一、知识梳理

知识点1:正、负数的概念:我们把像3、2、+、这样的数叫做正数,它们都是比0大的数;像-3、-2、、这样数叫做负数。它们都是比0小的数。0既不是正数也不是负数。我们可以用正数与负数表示具有相反意义的量。

知识点2:有理数的概念和分类:整数和分数统称有理数。有理数的分类主要有两种:

注:有限小数和无限循环小数都可看作分数。

知识点3:数轴的概念:像下面这样规定了原点、正方向和单位长度的直线叫做数轴。

知识点4:绝对值的概念:

(1)几何意义:数轴上表示a的点与原点的距离叫做数a的绝对值,记作|a|;

(2)代数意义:一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;零的绝对值是零。

注:任何一个数的绝对值均大于或等于0(即非负数).

知识点5:相反数的概念:

(1)几何意义:在数轴上分别位于原点的两旁,到原点的距离相等的两个点所表示的数,叫做互为相反数;

(2)代数意义:符号不同但绝对值相等的两个数叫做互为相反数。0的相反数是0。

知识点6:有理数大小的比较:

有理数大小比较的基本法则:正数都大于零,负数都小于零,正数大于负数。

数轴上有理数大小的比较:在数轴上表示的两个数,右边的数总比左边的大。

用绝对值进行有理数大小的比较:两个正数,绝对值大的正数大;两个负数,绝对值大的负数反而小。

知识点7:有理数加法法则:

(1)同号两数相加,取相同的符号,并把绝对值相加;

(2)异号两数相加,绝对值相等时,和为0;绝对值不等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;

(3)一个数与0相加,仍得这个数.

知识点8:有理数加法运算律:

加法交换律:两个数相加,交换加数的位置,和不变。

加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

知识点9:有理数减法法则:减去一个数,等于加上这个数的相反数。

知识点10:有理数加减混合运算:根据有理数减法的法则,一切加法和减法的运算,都可以统一成加法运算,然后省略括号和加号,并运用加法法则、加法运算律进行计算。

初一的数学知识点总结 第11篇

一、重点字词

给下列加点字注音。

tānhuànshìyǎngjuébiéqiáocuìfángshànwāndòu

瘫痪侍养诀别憔悴仿膳豌豆

二、问题:

1.课文主要写了什么?

课文讲述了重病缠身的母亲,体贴入微地照顾双腿瘫痪的儿子,鼓励儿子要好好活下去的故事,歌颂了伟大而无私的母爱.

课文写了四件事:

(1)1当“我”发脾气时,母亲对我的抚慰.

(2)母亲重病缠身,却不告诉儿子,不想给儿子增添痛苦.

(3)母亲央求“我”去看花

(4)母亲的临终嘱托

2.“我”的双腿瘫痪之后,母亲的侍弄的花为什么都死了?

答:因为“我”的原因,母亲已精疲力竭,无力再照顾花了。

3.文中写到“我”坐在窗前看落叶,“母亲进来了,挡在窗前”。你怎样理解母亲挡住落叶的行为?

答:因为母亲希望“我”的心情好一点,也有助于病情。

4.为什么“我”答应去看花,母亲竟高兴得坐立不安?为什么“我”责备她“烦不烦”,她却笑了?这说明什么?

答:因为母亲看到了“希望”,这是“我”第一次答应母亲带“我”去玩。

5.前面母亲说“好好儿活”和最后“我”说“要好好儿活”各有什么含意?这样写在文章结构上有什么作用?

答:因为母亲知道自己命不久矣,从而想让“我”以后照顾自己。后文写“要好好儿活”是“我”知道了母亲的良苦用心,决定好好照顾自己。在文章结构上起“前后呼应”的效果。

初一年级上学期语文期中复习资料

初一的数学知识点总结 第12篇

第一章:丰富的图形世界

1、几何图形

从实物中抽象出来的各种图形,包括立体图形和平面图形。

2、点、线、面、体

①几何图形的组成

点:线和线相交的地方是点,它是几何图形中最基本的图形。

线:面和面相交的地方是线,分为直线和曲线。

面:包围着体的是面,分为平面和曲面。

体:几何体也简称体。

②点动成线,线动成面,面动成体。

3、生活中的立体图形

生活中的立体图形(按名称分)

①圆柱

②棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……

①圆锥

②棱锥

4、棱柱及其有关概念:

棱:在棱柱中,任何相邻两个面的交线,都叫做棱。

侧棱:相邻两个侧面的交线叫做侧棱。

n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。

5、正方体的平面展开图:

11种(经常考:考试形式:展开的图形能否xxx正方体;正方体对面图案)

6、截一个正方体:

用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。

7、三视图:

物体的三视图指主视图、俯视图、左视图。

主视图:从正面看到的图,叫做主视图。

左视图:从左面看到的图,叫做左视图。

俯视图:从上面看到的图,叫做俯视图。

第二章:有理数及其运算

1、有理数的分类

①正有理数

有理数{ ②零

③负有理数

有理数{ ①整数

②分数

2、相反数:

只有符号不同的两个数叫做互为相反数,零的相反数是零

3、数轴:

规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,三要素缺一不可)。任何一个有理数都可以用数轴上的一个点来表示。

4、倒数:

如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和—1。零没有倒数。

5、绝对值:

在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值,(|a|≥0)。

若|a|=a,则a≥0;

若|a|=-a,则a≤0。

正数的绝对值是它本身;

负数的绝对值是它的相反数;

0的绝对值是0。

互为相反数的两个数的绝对值相等。

6、有理数比较大小:

正数大于0,负数小于0,正数大于负数;

数轴上的两个点所表示的数,右边的总比左边的大;

两个负数,绝对值大的反而小。

7、有理数的运算:

①五种运算:加、减、乘、除、乘方

多个数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积的符号为负;当负因数有偶数个时,积的符号为正。只要有一个数为零,积就为零。

有理数加法法则:

同号两数相加,取相同的符号,并把绝对值相加。

异号两数相加,绝对值值相等时和为0;

绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

一个数同0相加,仍得这个数。

互为相反数的两个数相加和为0。

有理数减法法则:

减去一个数,等于加上这个数的相反数!

有理数乘法法则:

两数相乘,同号得正,异号得负,并把绝对值相乘。

任何数与0相乘,积仍为0。

有理数除法法则:

两个有理数相除,同号得正,异号得负,并把绝对值相除。

0除以任何非0的数都得0。

注意:0不能作除数。

有理数的乘方:求n个相同因数a的积的运算叫做乘方。

正数的任何次幂都是正数,负数的偶次幂是正数,负数的奇次幂是负数。

②有理数的运算顺序

先算乘方,再算乘除,最后算加减,如果有括号,先算括号里面的。

③运算律(5种)

加法交换律

加法结合律

乘法交换律

乘法结合律

乘法对加法的分配律

8、科学记数法

一般地,一个大于10的数可以表示成a×

10n的形式,其中1≦n<10,n是正整数,这种记数方法叫做科学记数法。(n=整数位数—1)

第三章:整式及其加减

1、代数式

用运算符号(加、减、乘、除、乘方、开方等)把数或表示数的字母连接而成的式子叫做代数式。单独的一个数或一个字母也是代数式。

注意:

①代数式中除了含有数、字母和运算符号外,还可以有括号;

②代数式中不含有“=、>、<、≠”等符号。等式和不等式都不是代数式,但等号和不等号两边的式子一般都是代数式;

③代数式中的字母所表示的数必须要使这个代数式有意义,是实际问题的要符合实际问题的意义。

代数式的书写格式:

①代数式中出现乘号,通常省略不写,如vt;

②数字与字母相乘时,数字应写在字母前面,如4a;

③带分数与字母相乘时,应先把带分数化成假分数。

④数字与数字相乘,一般仍用“×”号,即“×”号不省略;

⑤在代数式中出现除法运算时,一般写成分数的形式;注意:分数线具有“÷”号和括号的双重作用。

⑥在表示和(或)差的代数式后有单位名称的,则必须把代数式括起来,再将单位名称写在式子的后面。

2、整式:单项式和多项式统称为整式。

①单项式:

都是数字和字母乘积的形式的代数式叫做单项式。单项式中,所有字母的指数之和叫做这个单项式的次数;数字因数叫做这个单项式的系数。

注意:

单独的一个数或一个字母也是单项式;

单独一个非零数的次数是0;

当单项式的系数为1或—1时,这个“1”应省略不写,如—ab的系数是—1,a3b的系数是1。

②多项式:

几个单项式的和叫做多项式。多项式中,每个单项式叫做多项式的项;次数最高的项的次数叫做多项式的次数。

③同类项:

所含字母相同,并且相同字母的指数也相同的项叫做同类项。

注意:

①同类项有两个条件:a。所含字母相同;b。相同字母的指数也相同。

②同类项与系数无关,与字母的排列顺序无关;

③几个常数项也是同类项。

4、合并同类项法则:

把同类项的系数相加,字母和字母的指数不变。

5、去括号法则

①根据去括号法则去括号:

括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不改变符号;括号前面是“—”号,把括号和它前面的“—”号去掉,括号里各项都改变符号。

②根据分配律去括号:

括号前面是“+”号看成+1,括号前面是“—”号看成—1,根据乘法的分配律用+1或—1去乘括号里的每一项以达到去括号的目的。

6、添括号法则

添“+”号和括号,添到括号里的各项符号都不改变;添“—”号和括号,添到括号里的各项符号都要改变。

7、整式的运算:

整式的加减法:(1)去括号;(2)合并同类项。

第四章基本平面图形

1、线段、射线、直线

表示方法

直线AB(或BA)

直线l

无端点

无法度量

射线OM

无法度量

线段AB(或BA)

线段l

可度量长度

2、直线的性质

①直线公理:经过两个点有且只有一条直线。(两点确定一条直线。)

②过一点的直线有无数条。

③直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。

3、线段的性质

①线段公理:两点之间的所有连线中,线段最短。(两点之间线段最短。)

②两点之间的距离:两点之间线段的长度,叫做这两点之间的距离。

③线段的大小关系和它们的长度的大小关系是一致的。

4、线段的中点:

点M把线段AB分成相等的两条相等的线段AM与BM,点M叫做线段AB的中点。AM = BM =1/2AB (或AB=2AM=2BM)。

5、角:

有公共端点的两条射线组成的图形叫做角,两条射线的公共端点叫做这个角的顶点,这两条射线叫做这个角的边。或:角也可以看成是一条射线绕着它的端点旋转而成的。

6、角的表示

角的表示方法有以下四种:

①用数字表示单独的角,如∠1,∠2,∠3等。

②用小写的xxx母表示单独的一个角,如∠α,∠β,∠γ,∠θ等。

③用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如∠B,∠C等。

④用三个大写英文字母表示任一个角,如∠BAD,∠BAE,∠CAE等。

注意:用三个大写字母表示角时,一定要把顶点字母写在中间,边上的字母写在两侧。

7、角的度量

角的度量有如下规定:把一个平角180等分,每一份就是1度的角,单位是度,用“°”表示,1度记作“1°”,n度记作“n°”。

把1°的角60等分,每一份叫做1分的角,1分记作“1’”。

把1’的角60等分,每一份叫做1秒的角,1秒记作“1””。

1°=60’,1’=60”

8、角的平分线

从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。

9、角的性质

①角的大小与边的长短无关,只与构成角的两条射线的幅度大小有关。

②角的大小可以度量,可以比较,角可以参与运算。

10、平角和xxx:

一条射线绕着它的端点旋转,当终边和始边成一条直线时,所形成的角叫做平角。

终边继续旋转,当它又和始边重合时,所形成的角叫做xxx。

11、多边形:

由若干条不在同一条直线上的线段首尾顺次相连组成的'封闭平面图形叫做多边形。

连接不相邻两个顶点的.线段叫做多边形的对角线。

从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以画(n—3)条对角线,把这个n边形分割成(n—2)个三角形。

12、圆:

平面上,一条线段绕着一个端点旋转一周,另一个端点形成的图形叫做圆。

固定的端点O称为圆心,线段OA的长称为半径的长(通常简称为半径)。

圆上任意两点A、B间的部分叫做圆弧,简称弧,读作“圆弧AB”或“弧AB”;

由一条弧AB和经过这条弧的端点的两条半径OA、OB所组成的图形叫做扇形。

顶点在圆心的角叫做圆心角。

第五章一元一次方程

1、方程

含有未知数的等式叫做方程。

2、方程的解

能使方程左右两边相等的未知数的值叫做方程的解。

3、等式的性质

①等式的两边同时加上(或减去)同一个代数式,所得结果仍是等式。

②等式的两边同时乘以同一个数((或除以同一个不为0的数),所得结果仍是等式。

4、一元一次方程

只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程。

5、移项:

把方程中的某一项,改变符号后,从方程的一边移到另一边,这种变形叫做移项。

6、解一元一次方程的一般步骤:

①去分母

②去括号

③移项(把方程中的某一项改变符号后,从方程的一边移到另一边,这种变形叫移项。)

④合并同类项

⑤将未知数的系数化为1

第六章数据的收集与整理

1、普查与抽样调查

为了特定目的对全部考察对象进行的全面调查,叫做普查。

其中被考察对象的全体叫做总体,组成总体的每一个被考察对象称为个体。

从总体中抽取部分个体进行调查,这种调查称为抽样调查,其中从总体抽取的一部分个体叫做总体的一个样本。

2、扇形统计图

扇形统计图:利用圆与扇形来表示总体与部分的关系,扇形的大小反映部分占总体的百分比的大小,这样的统计图叫做扇形统计图。(各个扇形所占的百分比之和为1)

圆心角度数=360°×该项所占的百分比。(各个部分的圆心角度数之和为360°)

3、频数直方图

频数直方图是一种特殊的条形统计图,它将统计对象的数据进行了分组画在横轴上,纵轴表示各组数据的频数。

4、各种统计图的特点

条形统计图:能清楚地表示出每个项目的具体数目。

折线统计图:能清楚地反映事物的变化情况。

扇形统计图:能清楚地表示出各部分在总体中所占的百分比。

初一的数学知识点总结 第13篇

第一章有理数

1、大于0的数是正数。

2、有理数分类:正有理数、0、负有理数。

3、有理数分类:整数(正整数、0、负整数)、分数(正分数、负分数)

4、规定了原点,单位长度,正方向的直线称为数轴。

5、数的大小比较:

①正数大于0,0大于负数,正数大于负数。

②两个负数比较,绝对值大的反而小。

6、只有符号不同的两个数称互为相反数。

7、若a+b=0,则a,b互为相反数

8、表示数a的点到原点的距离称为数a的绝对值

9、绝对值的三句:正数的绝对值是它本身,

负数的绝对值是它的相反数,

0的绝对值是0。

10、有理数的计算:先算符号、再算数值。

11、加减: ①正+正 ②大-小 ③小-大=-(大-小) ④-☆-О=-(☆+О)

12、乘除:同号得正,异号的负

13、乘方:表示n个相同因数的乘积。

14、负数的奇次幂是负数,负数的偶次幂是正数。

15、混合运算:先乘方,再乘除,后加减,同级运算从左到右,有括号的先算括号。

16、科学计数法:用ax10n 表示一个数。(其中a是整数数位只有一位的数)

17、左边第一个非零的数字起,所有的数字都是有效数字。

【知识梳理】

1.数轴:数轴三要素:原点,正方向和单位长度;数轴上的点与实数是一一对应的。

2.相反数实数a的相反数是-a;若a与b互为相反数,则有a+b=0,反之亦然;几何意义:在数轴上,表示相反数的两个点位于原点的两侧,并且到原点的距离相等。

3.倒数:若两个数的积等于1,则这两个数互为倒数。

4.绝对值:代数意义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0;

几何意义:一个数的绝对值,就是在数轴上表示这个数的点到原点的距离.

5.科学记数法:,其中。

6.实数大小的比较:利用法则比较大小;利用数轴比较大小。

7.在实数范围内,加、减、乘、除、乘方运算都可以进行,但开方运算不一定能行,如负数不能开偶次方。实数的运算基础是有理数运算,有理数的一切运算性质和运算律都适用于实数运算。正确的确定运算结果的符号和灵活的使用运算律是掌握好实数运算的关键。

初一数学二单元知识点归纳

(一)正负数

1.正数:大于0的数。

2.负数:小于0的数。

即不是正数也不是负数。

4.正数大于0,负数小于0,正数大于负数。

(二)有理数

1.有理数:由整数和分数组成的数。包括:正整数、0、负整数,正分数、负分数。可以写成两个整之比的形式。(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。如:π)

2.整数:正整数、0、负整数,统称整数。

3.分数:正分数、负分数。

(三)数轴

1.数轴:用直线上的点表示数,这条直线叫做数轴。(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。)

2.数轴的三要素:原点、正方向、单位长度。

3.相反数:只有符号不同的两个数叫做互为相反数。0的相反数还是0。

4.绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。

(四)有理数的加减法

1.先定符号,再算绝对值。

2.加法运算法则:同号相加,到相同符号,并把绝对值相加。异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。一个数同0相加减,仍得这个数。

3.加法交换律:a+b=b+a两个数相加,交换加数的位置,和不变。

4.加法结合律:(a+b)+c=a+(b+c)三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。(?b)减去一个数,等于加这个数的相反数。

(五)有理数乘法(先定积的符号,再定积的大小)

1.同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。

2.乘积是1的两个数互为倒数。

3.乘法交换律:ab=ba

4.乘法结合律:(ab)c=a(bc)

5.乘法分配律:a(b+c)=ab+ac

(六)有理数除法

1.先将除法化成乘法,然后定符号,最后求结果。

2.除以一个不等于0的数,等于乘这个数的倒数。

3.两数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数,都得0。(七)乘方1.求n个相同因数的积的运算,叫做乘方。写作an。(乘方的结果叫幂,a叫底数,n叫指数)2.负数的奇数次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0。3.同底数幂相乘,底不变,指数相加。

4.同底数幂相除,底不变,指数相减。

(八)有理数的加减乘除混合运算法则

1.先乘方,再乘除,最后加减。

2.同级运算,从左到右进行。

3.如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

(九)科学记数法、近似数、有效数字。

初一的数学知识点总结 第14篇

有理数加法法则

1、同号两数相加,取相同的符号,并把绝对值相加;

2、异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;

3、一个数与0相加,仍得这个数。

有理数加法的运算律

1、加法的交换律:a+b=b+a;

2、加法的结合律:(a+b)+c=a+(b+c)

有理数减法法则

减去一个数,等于加上这个数的相反数;即a—b=a+(—b)

有理数乘法法则

1、两数相乘,同号为正,异号为负,并把绝对值相乘;

2、任何数同零相乘都得零;

3、几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定。