高中数学所有知识点总结 第1篇
高中数学知识点总结如下:
1.概率与统计:包括概率、统计、概率的意义、xxx和二维正态分布、样本和抽样分布、参数估计、假设检验、方差分析、回归分析等。
2.微积分:包括极限、导数、微分、不定积分、定积分、常微分方程、偏微分方程、差分方程等。
3.线性代数:包括矩阵、向量、线性方程组、矩阵的相似对角化、二次型、线性空间、线性变换、矩阵的行列式、矩阵的逆矩阵、矩阵的秩、向量组的相关性、向量组的极大线性无关组等。
4.概率论与数理统计:包括随机事件与概率、概率的基本性质与运算法则、古典概型、条件概率、独立性、随机变量与分布函数、正态分布、二维随机变量与分布函数、条件概率与相互独立性、期望、方差、协方差与相关系数、矩、中心极限定理等。
5.平面几何:包括点和距离、平行和垂直、xxx、四边形、圆和扇形、平面图形和空间图形等。
6.平面解析几何:包括点与线的坐标、直线的方程与性质、圆的标准方程与性质、椭圆的标准方程与性质、双曲线的标准方程与性质、抛物线的标准方程与性质、参数方程与极坐标方程等。
7.集合与函数:包括集合与集合运算、函数与映射、函数图像与性质、指数与指数幂、对数与对数运算、函数图像变换等。
8.三角函数:包括三角函数的概念与图像、同角三角函数基本xxx、正弦函数和xxx函数的图像与性质、正切函数的图像与性质、两角和与差的正弦、xxx和正切函数、二倍角公式等。
9.数列:包括数列的概念与表示、等差数列与等比数列的概念与性质、数列的通项公式与通项公式求法、数列的求和公式、数列的极限等。
10.立体几何:包括多面体和旋转体的体积和表面积、平面基本性质、直线和平面、平面和平面、直线、平面之间的位置关系、平行和垂直的判定和性质、以及角度和平面角、距离等。
以上是高中数学知识点总结,具体的学习方法和应对考试技巧需要根据个人情况来制定。
高中数学所有知识点总结 第2篇
一、直线与圆:
1、直线的倾斜角的范围是
在平面直角坐标系中,对于一条与轴相交的直线,如果把轴绕着交点按逆时针方向转到和直线重合时所转的最小正角记为,就叫做直线的倾斜角。当直线与轴重合或平行时,规定倾斜角为0;
2、斜率:已知直线的倾斜角为α,且α≠90°,则斜率k=tanα.
过两点(x1,y1),(x2,y2)的直线的斜率k=(y2-y1)/(x2-x1),另外切线的斜率用求导的方法。
3、直线方程:⑴点斜式:直线过点斜率为,则直线方程为,
⑵斜截式:直线在轴上的截距为和斜率,则直线方程为
4、直线与直线的位置关系:
(1)平行A1/A2=B1/B2注意检验(2)垂直A1A2+B1B2=0
5、点到直线的距离公式;
两条平行线与的距离是
6、圆的标准方程:.⑵圆的一般方程:
注意能将标准方程化为一般方程
7、过圆外一点作圆的切线,一定有两条,如果只求出了一条,那么另外一条就是与轴垂直的直线.
8、直线与圆的位置关系,通常转化为圆心距与半径的关系,或者利用垂径定理,构造直角xxx解决弦长问题.①相离②相切③相交
9、解决直线与圆的关系问题时,要充分发挥圆的平面几何性质的作用(如半径、半弦长、弦心距构成直角xxx)直线与圆相交所得弦长
二、圆锥曲线方程:
1、椭圆:①方程(a>b>0)注意还有一个;xxx:|PF1|+|PF2|=2a>2c;③e=④长轴长为2a,短轴长为2b,焦距为2c;a2=b2+c2;
2、双曲线:①方程(a,b>0)注意还有一个;xxx:||PF1|-|PF2||=2a<2c;③e=;④实轴长为2a,虚轴长为2b,焦距为2c;渐进线或c2=a2+b2
3、抛物线:①方程y2=2px注意还有三个,能区别开口方向;xxx:|PF|=d焦点F(,0),准线x=-;③焦半径;焦点弦=x1+x2+p;
4、直线被圆锥曲线截得的弦长公式:
5、注意解析几何与向量结合问题:1、,.(1);(2).
2、数量积的定义:已知两个非零向量a和b,它们的夹角为θ,则数量|a||b|cosθ叫做a与b的数量积,记作a·b,即
3、模的计算:|a|=.算模可以先算向量的平方
4、向量的运算过程中完全平方公式等照样适用:
三、直线、平面、简单几xxx:
1、学会三视图的分析:
2、斜二测画法应注意的地方:
(1)在已知图形中取互相垂直的轴Ox、Oy。画直观图时,把它画成对应轴o'x'、o'y'、使∠x'o'y'=45°(或135°);(2)平行于x轴的线段长不变,平行于y轴的线段长减半.(3)直观图中的45度原图中就是90度,直观图中的90度原图一定不是90度.
3、表(侧)面积与体积公式:
⑴柱体:①表面积:S=S侧+2S底;②侧面积:S侧=;③体积:V=S底h
⑵锥体:①表面积:S=S侧+S底;②侧面积:S侧=;③体积:V=S底h:
⑶台体①表面积:S=S侧+S上底S下底②侧面积:S侧=
⑷球体:①表面积:S=;②体积:V=
4、位置关系的证明(主要方法):注意立体几何证明的书写
(1)直线与平面平行:①线线平行线面平行;②面面平行线面平行。
(2)平面与平面平行:①线面平行面面平行。
(3)垂直问题:线线垂直线面垂直面面垂直。核心是线面垂直:垂直平面内的两条相交直线
5、求角:(步骤-------Ⅰ.找或作角;Ⅱ.求角)
⑴异面直线xxx角的求法:平移法:平移直线,构造xxx;
⑵直线与平面xxx的角:直线与射影xxx的角
四、导数:导数的意义-导数公式-导数应用(极值最值问题、曲线切线问题)
1、导数的定义:在点处的导数记作.
2.导数的几何物理意义:曲线在点处切线的斜率
①k=f/(x0)表示过曲线y=f(x)上P(x0,f(x0))切线斜率。V=s/(t)表示即时速度。a=v/(t)表示加速度。
3.常见函数的导数公式:
4.导数的四则运算法则:
5.导数的应用:
(1)利用导数判断函数的单调性:设函数在某个区间内可导,如果,那么为增函数;如果,那么为减函数;
注意:如果已知为减函数求字母取值范围,那么不等式xxx。
(2)求极值的步骤:
①求导数;
②求方程的根;
③列表:检验在方程根的左右的符号,如果左正右负,那么函数在这个根处取得极大值;如果左负右正,那么函数在这个根处取得极小值;
(3)求可导函数值与最小值的步骤:
ⅰ求的根;ⅱ把根与区间端点函数值比较,的为值,最小的是最小值。
高中数学所有知识点总结 第3篇
什么是不等式?
一般地,用纯粹的大于号“>”、小于号“<”连接的不等式称为严格不等式,用不小于号(大于或等于号)“≥”、不大于号(小于或等于号)“≤”连接的不等式称为非严格不等式,或称广义不等式。总的来说,用不等号(<,>,≥,≤,≠)连接的式子叫做不等式。
通常不等式中的数是实数,字母也代表实数,不等式的一般形式为F(x,y,……,z)≤G(x,y,……,z)(其中不等号也可以为<,≤,≥,>中某一个),两边的解析式的公共定义域称为不等式的定义域,不等式既可以表达一个命题,也可以表示一个问题。
数学知识点1、不等式性质比较大小方法:
(1)作差比较法(2)作商比较法
不等式的基本性质
①对称性:a > b,b > a
②传递性:a > b,b > ca > c
③可加性:a > b a + c > b + c
④可积性:a > b,c > 0,ac > bc
⑤加法法则:a > b,c > d,a + c > b + d
⑥乘法法则:a > b > 0,c > d > 0,ac > bd
⑦乘xxx:a > b > 0,an > bn(n∈N)
⑧开xxx:a > b > 0
数学知识点2、算术平均数与几何平均数定理:
(1)如果a、b∈R,那么a2 + b2 ≥2ab;(当且仅当a=b时等号)
(2)如果a、b∈R+,那么(当且仅当a=b时等号)推广:
如果为实数,则重要结论
(1)如果积xy是定值P,那么当x=y时,和x+y有最小值2;
(2)如果和x+y是定值S,那么当x=y时,和xy有最大值S2/4。
数学知识点3、证明不等式的常用方法:
比较法:比较法是最基本、最重要的方法。
当不等式的'两边的差能分解因式或能配成平方和的形式,则选择作差比较法;当不等式的两边都是正数且它们的商能与1比较大小,则选择作商比较法;碰到绝对值或根式,我们还可以考虑作平方差。
综合法:从已知或已证明过的不等式出发,根据不等式的性质推导出欲证的不等式。综合法的放缩经常用到均值不等式。
分析法:不等式两边的联系不够清楚,通过寻找不等式成立的充分条件,逐步将欲证的不等式转化,直到寻找到易证或已知成立的结论。
高中数学所有知识点总结 第4篇
一、集合与简易逻辑:
1)、 理解集合中的有关概念 (1)集合中元素的特征: 确定性 , 互异性 , 无序性 。
(2)集合与元素的关系用符号 , 表示。
(3)常用数集的符号表示:自然数集 ;正整数集 、 ;整数集 ;有理数集 、实数集 。
(4)集合的表示法: 列举法 , 描述法 , xxx 。
(5)空集是指不含任何元素的集合。空集是任何集合的子集,是任何非空集合的真子集。
2)、 集合中元素的个数的计算: (1)若集合 中有 n个元素,则集合 的所有不同的子集个数为_________,所有真子集的个数是__________,所有非空真子集的个数是 。
3)、 若 ; 则 是 的充分非必要条件 ;
若 ; 则 是 的必要非充分条件 ;
若 ; 则 是 的充要条件 ;
若 ; 则 是 的既非充分又非必要条件 ;
4)、 原命题与逆否命题,否命题与逆命题具有相同的 ;
5)、 反证法:当证明“若 ,则 ”感到困难时,改证它的等价命题“若 则 ”成立,
步骤:1、假设结论反面成立;2、从这个假设出发,推理论证,得出矛盾;3、由矛盾判断假设不成立,从而肯定结论正确。
矛盾的1、与原命题的条件矛盾;2、导出与假设相矛盾的命题;3、导出一个恒假命题。
适用与待证命题的结论涉及“不可能”、“不是”、“至少”、“至多”、“唯一”等字眼时。
正面词语 等于 大于 小于 是 都是 至多有一个
正面词语 至少有一个 任意的 所有的 至多有n个 任意两个
二、函数
1)、映射与函数:
(1)映射的概念:
(2)一一映射:
(3)函数的概念:
2)、函数的三要素: , , 。
(1)函数解析式的求法: xxx法(拼凑):②换元法:③待定系数法:④赋值法:
(2)函数定义域的求法: 含参问题的定义域要分类讨论; 对于实际问题,在求出函数解析式后;必须求出其定义域,此时的定义域要根据实际意义来确定。
(3)函数值域的求法: ①配方法:转化为二次函数,利用二次函数的特征来求值;②逆求法(反求法):通过反解,用y来表示x,再由x的取值范围,通过解不等式,得出y的取值范围;④换元法:通过变量代换转化为能求值域的函数,化归思想;⑤三角有界法:转化为只含正弦、xxx的函数,运用三角函数有界性来求值域;⑥基本不等式法:利用平均值不等式公式来求值域;⑦单调性法:函数为单调函数,可根据函数的单调性求值域。⑧数形结合:根据函数的几何图形,利用数型结合的方法来求值域。
3)、函数的性质: 函数的单调性、奇偶性、周期性
单调性:定义:注意定义是相对与某个具体的区间而言。
判定方法有:定义法(作差比较和作商比较) 导数法(适用于多项式函数) 复合函数法和图像法。
应用:比较大小,证明不等式,解不等式。
奇偶性:定义:注意区间是否关于原点对称,比较f(x) 与f(-x)的关系。f(x) -f(-x)=0 f(x) =f(-x) f(x)为偶函数; f(x)+f(-x)=0 f(x) =-f(-x) f(x)为奇函数。
判别方法:定义法, 图像法 ,复合函数法 应用:把函数值进行转化求解。
周期性:定义:若函数f(x)对定义域内的任意x满足:f(x+T)=f(x),则T为函数f(x)的周期。
其他:若函数f(x)对定义域内的任意x满足:f(x+a)=f(x-a),则2a为函数f(x)的周期.
应用:求函数值和某个区间上的函数解析式。
4)、图形变换:函数图像变换:(重点)要求掌握常见基本函数的图像,掌握函数图像变换的一般规律。
常见图像变化规律:(注意平移变化能够用向量的语言解释,和按向量平移联系起来思考)
平移变换 y=f(x)→y=f(x+a),y=f(x)+b
注意:(?)有系数,要先提取系数。如:把函数y=f(2x)经过平移得到函数y=f(2x+4)的图象。
(?)会结合向量的平移,理解按照向量 (m,n)平移的意义。
对称变换 y=f(x)→y=f(-x),关于y轴对称
y=f(x)→y=-f(x) ,关于x轴对称
y=f(x)→y=fx,把x轴上方的图象保留,x轴下方的图象关于x轴对称
y=f(x)→y=f(x)把y轴右边的图象保留,然后将y轴右边部分关于y轴对称。(注意:它是一个偶函数)
伸缩变换:y=f(x)→y=f(ωx),
y=f(x)→y=Af(ωx+φ)具体参照三角函数的图象变换。
5)、反函数:
(1)定义:
(2)函数存在反函数的条件: ;
(3)互为反函数的定义域与值域的关系: ;
(4)求反函数的步骤:①将 看成关于 的方程,解出 ,若有两解,要注意解的选择;②将 互换,得 ;③写出反函数的定义域(即 的值域)。
(5)互为反函数的图象间的关系:
(6)原函数与反函数具有相同的单调性;
(7)原函数为奇函数,则其反函数仍为奇函数;原函数为偶函数,它一定不存在反函数。
三、数列
本章是高考命题的主体内容之一,应切实进行全面、深入地复习,并在此基础上,突出解决下述几个问题:(1)等差、等比数列的证明须用定义证明,值得注意的是,若给出一个数列的前 项和 ,则其通项为 若 满足 则通项公式可写成 .(2)数列计算是本章的中心内容,利用等差数列和等比数列的通项公式、前 项和公式及其性质熟练地进行计算,是高考命题重点考查的内容.(3)解答有关数列问题时,经常要运用各种数学思想.善于使用各种数学思想解答数列题,是我们复习应达到的目标. ①函数思想:等差等比数列的通项公式求和公式都可以看作是 的函数,所以等差等比数列的某些问题可以化为函数问题求解.
②分类讨论思想:用等比数列求和公式应分为 及 ;已知 求 时,也要进行分类;
③整体思想:在解数列问题时,应注意摆脱呆板使用公式求解的思维定势,运用整
体思想求解.
(4)在解答有关的数列应用题时,要认真地进行分析,将实际问题抽象化,转化为数学问题,再利用有关数列知识和方法来解决.解答此类应用题是数学能力的综合运用,决不是简单地模仿和套用所能完成的.特别注意与年份有关的等比数列的第几项不要弄错.
1)、基本概念:
1、 数列的定义及表示方法:
2、 数列的项与项数:
3、 有穷数列与无穷数列:
4、 递增(减)、摆动、循环数列:
5、 数列{an}的通项公式an:
6、 数列的前n项和公式Sn:
7、 等差数列、公差d、等差数列的结构:
xxx面积公式
由不在同一直线上的三条线段首尾顺次连接所组成的封闭图形叫做xxx。平面上三条直线或球面上三条弧线所围成的图形。 三条直线所围成的图形叫平面xxx;三条弧线所围成的图形叫球面xxx,也叫三边形。
面积公式:
(1)S=ah/2
(2).已知xxx三边a,b,c,则 (海伦公式)(p=(a+b+c)/2)
S=√[p(p-a)(p-b)(p-c)]
=(1/4)√[(a+b+c)(a+b-c)(a+c-b)(b+c-a)]
(3).已知xxx两边a,b,这两边夹角C,则S=1/2 * absinC
(4).设xxx三边分别为a、b、c,内切圆半径为r
S=(a+b+c)r/2
(5).设xxx三边分别为a、b、c,外接圆半径为R
S=abc/4R
(6).根据三角函数求面积:
S= absinC/2 a/sinA=b/sinB=c/sinC=2R
注:其中R为外切圆半径。
[高一数学知识要点与公式总结]
高中数学所有知识点总结 第5篇
六、解析几何
这部分内容说起来容易做起来难,需要掌握几类问题,第一类直线和曲线的位置关系,要掌握它的通法;第二类动点问题;第三类是弦长问题;第四类是对称问题;第五类重点问题,这类题往往觉得有思路却没有一个清晰的答案,但需要要掌握比较好的算法,来提高做题的准确度。
七、压轴题
同学们在最后的备考复习中,还应该把重点放在不等式计算的方法中,难度虽然很大,但是也切忌在试卷中留空白,平时多做些压轴题真题,争取能解题就解题,能思考就思考。
高考数学直线方程知识点:什么是直线方程
从平面解析几何的角度来看,平面上的直线就是由平面直角坐标系中的一个二元一次方程所表示的图形。求两条直线的交点,只需把这两个二元一次方程联立求解,当这个联立方程组无解时,两直线平行;有无穷多解时,两直线重合;只有一解时,两直线相交于一点。常用直线向上方向与 X 轴正向的 夹角( 叫直线的倾斜角 )或该角的正切(称直线的斜率)来表示平面上直线(对于X轴)的倾斜程度。可以通过斜率来判断两条直线是否互相平行或互相垂直,也可计算它们的交角。直线与某个坐标轴的交点在该坐标轴上的坐标,称为直线在该坐标轴上的截距。直线在平面上的位置,由它的斜率和一个截距完全确定。在空间,两个平面相交时,交线为一条直线。因此,在空间直角坐标系中,用两个表示平面的三元一次方程联立,作为它们相交所得直线的方程。
高中数学所有知识点总结 第6篇
轨迹,包含两个方面的问题:凡在轨迹上的点都符合给定的条件,这叫做轨迹的纯粹性(也叫做必要性);凡不在轨迹上的点都不符合给定的条件,也就是符合给定条件的点必在轨迹上,这叫做轨迹的完备性(也叫做充分性)。
一、求动点的'轨迹方程的基本步骤。
1、建立适当的坐标系,设出动点M的坐标;
2、写出点M的集合;
3、列出方程=0;
4、化简方程为最简形式;
5、检验。
二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。
1、直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。
2、定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。
3、相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。
4、参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。
5、交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。
求动点轨迹方程的一般步骤:
①建系——建立适当的坐标系;
②设点——设轨迹上的任一点P(x,y);
③列式——列出动点p所满足的xxx;
④代换——依条件的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,并化简;
⑤证明——证明所求方程即为符合条件的动点轨迹方程。
高中数学所有知识点总结 第7篇
高中数学知识点汇总
1.必修课程由5个模块组成:
必修1:集合,函数概念与基本初等函数(指数函数,幂函数,对数函数)
必修2:立体几何初步、平面解析几何初步。
必修3:算法初步、统计、概率。
必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。
必修5:解xxx、数列、不等式。
以上所有的知识点是所有高中生必须掌握的,而且要懂得运用。
选修课程分为4个系列:
系列1:2个模块
选修1-1:常用逻辑用语、圆锥曲线与方程、空间向量与立体几何。
选修1-2:统计案例、推理与证明、数系的扩充与复数、框图
系列2:3个模块
选修2-1:常用逻辑用语、圆锥曲线与方程、空间向量与立体几何
选修2-2:导数及其应用、推理与证明、数系的扩充与复数
选修2-3:计数原理、随机变量及其分布列、统计案例
选修4-1:几何证明选讲
选修4-4:坐标系与参数方程
选修4-5:不等式选讲
2.重难点及其考点:
重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数
难点:函数,圆锥曲线
高考相关考点:
1.集合与逻辑:集合的逻辑与运算(一般出现在高考卷的第一道选择题)、简易逻辑、充要条件
2.函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数函数、对数函数、函数的应用
3.数列:数列的有关概念、等差数列、等比数列、数列求通项、求和
4.三角函数:有关概念、同角关系与诱导公式、和差倍半公式、求值、化简、证明、三角函数的图像及其性质、应用
5.平面向量:初等运算、坐标运算、数量积及其应用
6.不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式(经常出现在大题的选做题里)、不等式的应用
7.直线与圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系
8.圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用
9.直线、平面、简单几xxx:空间直线、直线与平面、平面与平面、棱柱、棱锥、球、空间向量
10.排列、组合和概率:排列、组合应用题、二项式定理及其应用
11.概率与统计:概率、分布列、期望、方差、抽样、正态分布
12.导数:导数的概念、求导、导数的应用
13.复数:复数的概念与运算
高中数学学习要注意的方法
1.用心感受数学,欣赏数学,掌握数学思想。有位数学家曾说过:数学是用最小的空间集中了的理想。
2.要重视数学概念的理解。高一数学与初中数学的区别是概念多并且较抽象,学起来“味道”同以往很不一样,解题方法通常就来自概念本身。学习概念时,仅仅知道概念在字面上的含义是不够的,还须理解其隐含着的深层次的含义并掌握各种等价的表达方式。例如,为什么函数y=f(x)与y=f-1(x)的图象关于直线y=x对称,而y=f(x)与x=f-1(y)却有相同的图象;又如,为什么当f(x-1)=f(1-x)时,函数y=f(x)的图象关于y轴对称,而y=f(x-1)与y=f(1-x)的图象却关于直线x=1对称,不透彻理解一个图象的对称性与两个图象的对称关系的区别,两者很容易混淆。
3.对数学学习应抱着二个词――“严谨,创新”,所谓严谨,就是在平时训练的时候,不能一丝马虎,是对就是对,错了就一定要承认,要找原因,要改正,万不可以抱着“好像是对的”的心态,蒙混过关。至于创新呢,要求就高一点了,要求在你会解决此问题的情况下,你还会不会用另一种更简单,更有效的方法,这就需要扎实的基本功。平时,我们看到一些人,做题时从不用常规方法,总爱自己创造一些方法以“偏方”解题,虽然有时候也能让他撞上一些好的方法,但我认为是不可取的。因为你首先必须学会用常规的方法,在此基础上你才能创新,你的创新才有意义,而那些总是片面“追求”新方法的人,他们的思维有如空中楼阁,必然是昙花一现。当然我们要有创新意识,但是,创新是有条件的,必须有扎实的基础,因此我想劝一下那些基础不牢,而平时总爱用“偏方”的同学们,该是清醒一下的时候了,千万不要继续钻那可怜的牛角尖啊!
4.建立良好的学习数学习惯,习惯是经过重复练习而xxx来的稳重持久的条件反射和自然需要。建立良好的学习数学习惯,会使自己学习感到有序而轻松。高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。另外还要保证每天有一定的自学时间,以便加宽知识面和培养自己再学习能力。
5.多听、多作、多想、多问:此“四多”乃培养数学能力的要诀,“听”就是在“学”,作是“练习”(作课本上的习题或其它问题),也就是把您所学的,应用到解决问题上。“听”与“作”难免会碰到疑难,那就要靠“想”的功夫去打通它,假如还想不通,解不来就要“问”――问同学、问老师或参考书,务必将疑难解决为止。这就是所谓的学问:既学又问。
6.要有毅力、要有恒心:基本上要有一个认识:数学能力乃是长期努力累积的结果,而不是一朝一夕之功所能达到的。您可能花一天或一个晚上的功夫把某课文背得滚瓜烂熟,第二天考背诵时对答如流而获高分,也有可能花了一两个礼拜的时间拼命学数学,但到头来数学可能还考不好,这时候您可不能气馁,也不必为花掉的时间惋惜。
高中数学复习的五大要点分析
一、端正态度,切忌浮躁,忌急于求成
在第一轮复习的过程中,心浮气躁是一个非常普遍的现象。主要表现为平时复习觉得没有问题,题目也能做,但是到了考试时就是拿xxx高分!这主要是因为:
高中数学所有知识点总结 第8篇
集合的分类:
(1)按元素属性分类,如点集,数集。
(2)按元素的个数多少,分为有/无限集
关于集合的概念:
(1)确定性:作为一个集合的元素,必须是确定的,这就是说,不能确定的对象就不能构成集合,也就是说,给定一个集合,任何一个对象是不是这个集合的元素也就确定了。
(2)互异性:对于一个给定的集合,集合中的元素一定是不同的(或说是互异的),这就是说,集合中的任何两个元素都是不同的对象,相同的对象归入同一个集合时只能算作集合的一个元素。
(3)无序性:判断一些对象时候构成集合,关键在于看这些对象是否有明确的标准。
集合可以根据它含有的元素的个数分为两类:
含有有限个元素的集合叫做有限集,含有无限个元素的集合叫做无限集。
非负整数全体构成的集合,叫做自然数集,记作N。
在自然数集内排除0的集合叫做正整数集,记作N+或NX。
整数全体构成的集合,叫做整数集,记作Z。
有理数全体构成的.集合,叫做有理数集,记作Q。(有理数是整数和分数的统称,一切有理数都可以化成分数的形式。)
实数全体构成的集合,叫做实数集,记作R。(包括有理数和无理数。其中无理数就是无限不循环小数,有理数就包括整数和分数。数学上,实数直观地定义为和数轴上的点一一对应的数。)
1、列举法:如果一个集合是有限集,元素又不太多,常常把集合的所有元素都列举出来,写在花括号“{}”内表示这个集合,例如,由两个元素0,xxx的集合可表示为{0,1}。
有些集合的元素较多,元素的排列又呈现一定的规律,在不致于发生误解的情况下,也可以列出几个元素作为代表,其他元素用省略号表示。
例如:不大于100的自然数的全体构成的集合,可表示为{0,1,2,3,…,100}。
无限集有时也用上述的列举法表示,例如,自然数集N可表示为{1,2,3,…,n,…}。
2、描述法:一种更有效地描述集合的方法,是用集合中元素的特征性质来描述。
例如:正偶数构成的集合,它的每一个元素都具有性质:“能被2整除,且大于0”
而这个集合外的其他元素都不具有这种性质,因此,我们可以用上述性质把正偶数集合表示为{x∈R│x能被2整除,且大于0}或{x∈R│x=2n,n∈N+},大括号内竖线左边的X表示这个集合的任意一个元素,元素X从实数集合中取值,在竖线右边写出只有集合内的元素x才具有的性质。
一般地,如果在集合I中,属于集合A的任意一个元素x都具有性质p(x),而不属于集合A的元素都不具有的性质p(x),则性质p(x)叫做集合A的一个特征性质。于是,集合A可以用它的性质p(x)描述为{x∈I│p(x)}它表示集合A是由集合I中具有性质p(x)的所有元素构成的,这种表示集合的方法,叫做特征性质描述法,简称描述法。
例如:集合A={x∈R│x2—1=0}的特征是X2—1=0
高中数学所有知识点总结 第9篇
有界性
设函数f(x)在区间X上有定义,如果存在M>0,对于一切属于区间X上的x,恒有|f(x)|≤M,则称f(x)在区间X上有界,否则称f(x)在区间上无界。
单调性
设函数f(x)的定义域为D,区间I包含于D.如果对于区间上任意两点x1及x2,当x1f(x2),则称函数f(x)在区间I上是单调递减的。单调递增和单调递减的.函数统称为单调函数。
奇偶性
设为一个实变量实值函数,若有f(—x)=—f(x),则f(x)为奇函数。
几何上,一个奇函数关于原点对称,亦即其图像在绕原点做180度旋转后不会改变。
奇函数的例子有x、sin(x)、sinh(x)和erf(x)。
设f(x)为一实变量实值函数,若有f(x)=f(—x),则f(x)为偶函数。
几何上,一个偶函数关于y轴对称,亦即其图在对y轴映射后不会改变。
偶函数的例子有|x|、x2、cos(x)和cosh(x)。
偶函数不可能是个双射映射。
连续性
在数学中,连续是函数的一种属性。直观上来说,连续的函数就是当输入值的变化足够小的时候,输出的变化也会随之足够小的函数。如果输入值的某种微小的变化会产生输出值的一个突然的跳跃甚至无法定义,则这个函数被称为是不连续的函数(或者说具有不连续性)。
高中数学所有知识点总结 第10篇
空间两条直线只有三种位置关系:平行、相交、异面。
按是否共面可分为两类:
(1)共面:平行、相交
(2)异面:
异面直线的定义:不同在任何一个平面内的两条直线或既不平行也不相交。
异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。
两异面直线xxx的角:范围为(0°,90°)esp。空间向量法。
两异面直线间距离:公垂线段(有且只有一条)esp。空间向量法。
若从有无公共点的角度看可分为两类:
(1)有且仅有一个公共点——相交直线;(2)没有公共点——平行或异面。
直线和平面的位置关系:
直线和平面只有三种位置关系:在平面内、与平面相交、与平面平行。
①直线在平面内——有无数个公共点
②直线和平面相交——有且只有一个公共点
直线与平面xxx的角:平面的'一条斜线和它在这个平面内的射影xxx的锐角。
空间向量法(找平面的法向量)
规定:a、直线与平面垂直时,xxx的角为直角;b、直线与平面平行或在平面内,xxx的角为0°角。
由此得直线和平面xxx角的取值范围为[0°,90°]。
最小角定理:斜线与平面xxx的角是斜线与该平面内任一条直线xxx角中的最小角。
三垂线定理及逆定理:如果平面内的一条直线,与这个平面的一条斜线的射影垂直,那么它也与这条斜线垂直。
直线和平面垂直
直线和平面垂直的定义:如果一条直线a和一个平面内的任意一条直线都垂直,我们就说直线a和平面互相垂直。直线a叫做平面的垂线,平面叫做直线a的垂面。
直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。
直线与平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。直线和平面平行——没有公共点
直线和平面平行的定义:如果一条直线和一个平面没有公共点,那么我们就说这条直线和这个平面平行。
直线和平面平行的判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。
直线和平面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
高中数学所有知识点总结 第11篇
把握教材去理解
要提高数学能力,当然是通过课堂来提高,要充分利用好课堂这块阵地,学习高一数学的过程是活的,老师教学的对象也是活的,都在随着教学过程的发展而变化,尤其是当老师注重能力教学的时候,教材是反映不出来的。数学能力是随着知识的发生而同时形成的,无论是形成一个概念,掌握一条法则,会做一个习题,都应该从不同的能力角度来培养和提高。课堂上通过老师的教学,理解所学内容在教材中的地位,弄清与前后知识的联系等,只有把握住教材,才能掌握学习的主动。
认真听课做笔记
在课堂教学中培养好的听课习惯是很重要的。当然听是主要的,听能使注意力集中,要把老师讲的关键性部分听懂、听会。听的时候注意思考、分析问题,但是光听不记,xxx记不听必然顾此失彼,课堂效益低下,因此应适当地有目的性的记好笔记,领会课上老师的主要精神与意图。科学的记笔记可以提高45分钟课堂效益。
避免遗留问题
在数学课堂中,老师一般少xxx提问与板演,有时还伴随着问题讨论,因此可以听到许多的信息,这些问题是很有价值的。对于那些典型问题,带有普遍性的问题都必须及时解决,不能把问题的结症遗留下来,甚至沉淀下来,有价值的问题要及时抓住,遗留问题要有针对性地补,注重实效。
3高中数学常见的方法有哪些
温故知新,把握要领
先把书看透,再动手做作业。做作业前,首先温故有关的知识,回顾概念,掌握要求,了解有关的注意事项,明确学习的目的,把握解题的规范化要求,然后再动手做作业,就心中有数,练中学,学中练,达到巩固目的,强化了知识,提高了能力。
但事实上,我们许多同学没有这个好习惯,拿到题目就做。这样,首先是速度慢,效率低。另外,由于概念不清,有的概念理解错误,做了题目起不到应有的作用,甚至还有反作用,巩固了错误,在相应方面形成了一个顽疾,为以后学习埋下后患。
明确题意,构建思路
题海战术的最大特点是以做题的数量作为标准,并期望以多取胜。由于高考升学的压力,不少同学不知不觉的掉进题海,拿到题目不假思索,跟着感觉走,时常出现张冠李戴,答非所问等现象,也会出现漏解或者画蛇添足,劳而无功。长期下去,最大的坏处是形成不严谨的思维习惯,不利于将来的发展。
审题是我们解题的前奏工作,不可忽视,在解题前必须审清题意,分析条件和结论,并且根据条件和结论进行联想:以前遇到过类似或者部分类似的问题吗?当时是用什么方法解决的?在这里还有效吗?等等。通过联想构建解题思路,设计解题程序,把握解题要点,为正确快速解题扫清障碍,奠定基础。
高中数学所有知识点总结 第12篇
一、集合有关概念
1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。
2、集合的中元素的三个特性:
1)元素的确定性;
2)元素的互异性;
3)元素的无序性。
说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。
(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。
(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。
(4)集合元素的三个特性使集合本身具有了确定性和整体性。
3、集合的表示:{…}如{我校的篮球队员},{太平洋大西洋印度洋北冰洋}
1)用拉丁字母表示集合:A={我校的篮球队员}B={12345}。
2)集合的表示方法:列举法与描述法。
注意啊:常用数集及其记法:
非负整数集(即自然数集)记作:N
正整数集N_或N+整数集Z有理数集Q实数集R
关于“属于”的概念
集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A记作a∈A,相反,a不属于集合A记作a:A。
列举法:把集合中的元素一一列举出来,然后用一个大括号括上。
描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表示某些对象是否属于这个集合的方法。
①语言描述法:例:{不是直角xxx的xxx}
②数学式子描述法:例:不等式x—3>2的解集是{x?R|x—3>2}或{x|x—3>2}
4、集合的分类:
1)有限集含有有限个元素的集合。
2)无限集含有无限个元素的集合。
3)空集不含任何元素的'集合例:{x|x2=—5}。
二、集合间的基本关系
1、“包含”关系子集
注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
反之:集合A不包含于集合B或集合B不包含集合A记作AB或BA。
2、“相等”关系(5≥5,且5≤5,则5=5)
实例:设A={x|x2—1=0}B={—11}“元素相同”
结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B。
①任何一个集合是它本身的子集。AA
②真子集:如果A?B且A?B那就说集合A是集合B的真子集,记作AB(或BA)
③如果ABBC那么AC
④如果AB同时BA那么A=B
3、不含任何元素的集合叫做空集,记为Φ。
规定:空集是任何集合的子集,空集是任何非空集合的真子集。
三、集合的运算
1、交集的定义:一般地,由所有属于A且属于B的元素所组成的集合叫做AB的交集。
记作A∩B(读作”A交B”),即A∩B={x|x∈A,且x∈B}。
2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做AB的并集。记作:A∪B(读作”A并B”),即A∪B={x|x∈A,或x∈B}。
3、交集与并集的性质:A∩A=AA∩φ=φA∩B=B∩A,A∪A=A,A∪φ=AA∪B=B∪A。
4、全集与补集
(1)补集:设S是一个集合,A是S的一个子集(即),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)
记作:CSA即CSA={x?x?S且x?A}。
(2)全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集。通常用xxx表示。
(3)性质:⑴CU(CUA)=A⑵(CUA)∩A=Φ⑶(CUA)∪A=U。
高中数学所有知识点总结 第13篇
总体和样本
①在统计学中,把研究对象的全体叫做总体。
②把每个研究对象叫做个体。
③把总体中个体的总数叫做总体容量。
④为了研究总体的有关性质,一般从总体中随机抽取一部分:x1,x2,....,x-x研究,我们称它为样本.其中个体的个数称为样本容量。
简单随机抽样
也叫纯随机抽样。就是从总体中不加任何分组、划类、排队等,完全随。
机地抽取调查单位。特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。简单随机抽样是其它各种抽样形式的基础,高三。通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。
简单随机抽样常用的方法
①抽签法
②随机数表法
③计算机模拟法
④使用统计软件直接抽取。
在简单随机抽样的样本容量设计中,主要考虑:
①总体变异情况;
②允许误差范围;
③概率保证程度。
抽签法
①给调查对象群体中的每一个对象编号;
②准备抽签的工具,实施抽签;
③对样本中的每一个个体进行测量或调查。
拓展阅读:高二数学学习方法
一、提高听课的效率是关键
课前预习能提高听课的针对性。预习中发现的难点,就是听课的重点;对预习中遇到的没有掌握好的有关的旧知识,可进行补缺,以减少听课过程中的.困难;有助于提高思维能力,预习后把自己理解了的东西与老师的讲解进行比较、分析即可提高自己思维水平;预习还可以培养自己的自学能力。其次就是听课要全神贯注。
二、做好复习和总结工作
做好及时的复习。课完课的当天,必须做好当天的复习。复习的有效方法不是一遍遍地看书或笔记,而是采取回忆式的复习,然后打开笔记与书本,对照一下还有哪些没记清的,把它补起来,就使得当天上课内容xxx来,同时也就检查了当天课堂听课的效果如何,也为改进听课方法及提高听课效果提出必要的改进措施。
三、指导做一定量的练习题
做题的目的在于检查你学的知识,方法是否掌握得很好。如果你掌握得不准,甚至有偏差,那么多做题的结果,反而巩固了你的缺欠,因此,要在准确地把握住基本知识和方法的基础上做一定量的练习是必要的。而对于中档题,尢其要讲究做题的效益,这就需要在做题后进行一定的“反思”,思考一下本题所用的基础知识,把它们联系起来,你就会得到更多的经验和教训,更重要的是养成善于思考的好习惯,这将大大有利于你今后的学习。
高中数学所有知识点总结 第14篇
一、高中数列基本公式:
1、一般数列的通项an与前n项和Sn的关系:an=
2、等差数列的通项公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1为首项、ak为已知的第k项) 当d≠0时,an是xxx的一次式;当d=0时,an是一个常数。
3、等差数列的前n项和公式:Sn=
Sn=
Sn=
当d≠0时,Sn是xxx的二次式且常数项为0;当d=0时(a1≠0),Sn=na1是xxx的.正比例式。
4、等比数列的通项公式: an= a1qn-1an= akqn-k
(其中a1为首项、ak为已知的第k项,an≠0)
5、等比数列的前n项和公式:当q=1时,Sn=n a1 (是xxx的正比例式);
当q≠1时,Sn=
Sn=
二、高中数学中有关等差、等比数列的结论
1、等差数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m- S3m、……仍为等差数列。
2、等差数列{an}中,若m+n=p+q,则
3、等比数列{an}中,若m+n=p+q,则
4、等比数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m- S3m、……仍为等比数列。
5、两个等差数列{an}与{bn}的和差的数列{an+bn}、{an-bn}仍为等差数列。
6、两个等比数列{an}与{bn}的积、商、倒数组成的数列仍为等比数列。
7、等差数列{an}的任意等距离的项构成的数列仍为等差数列。
8、等比数列{an}的任意等距离的项构成的数列仍为等比数列。
9、三个数成等差数列的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3d
10、三个数成等比数列的设法:a/q,a,aq;
四个数成等比的错误设法:a/q3,a/q,aq,aq3 (为什么?)
高中数学所有知识点总结 第15篇
平面内,直线Ax+By+C=O与圆x^2+y^2+Dx+Ey+F=0的位置关系判断一般方法是
讨论如下2种情况:
(1)由Ax+By+C=O可得y=(-C-Ax)/B,[其中B不等于0],
代入x^2+y^2+Dx+Ey+F=0,即成为一个关于x的一元二次方程f(x)=0。
利用判别式b^2-4ac的符号可确定圆与直线的位置关系如下:
如果b^2-4ac>0,则圆与直线有2交点,即圆与直线相交
如果b^2-4ac=0,则圆与直线有1交点,即圆与直线相切
如果b^2-4ac<0,则圆与直线有0交点,即圆与直线相离
(2)如果B=0即直线为Ax+C=0,即x=-C/A,它平行于y轴(或垂直于x轴)
将x^2+y^2+Dx+Ey+F=0化为(x-a)^2+(y-b)^2=r^2
令y=b,求出此时的两个x值x1,x2,并且我们规定x1
当x=-C/Ax2时,直线与圆相离
当x1
当x=-C/A=x1或x=-C/A=x2时,直线与圆相切
圆的定理:
1、不在同一直线上的三点确定一个圆。
2、垂径定理:垂直于弦的直径平分这条弦并且平分弦所对的两条弧
1、①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
2、圆的两条平行弦所夹的弧相等
3、圆是以圆心为对称中心的中心对称图形
4、圆是定点的距离等于定长的点的集合
5、圆的内部可以看作是圆心的距离小于半径的点的集合
6、圆的外部可以看作是圆心的距离大于半径的点的集合
7、同圆或等圆的半径相等
8、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
9、定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等
10、推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等
11、定理:圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角
12、①直线L和⊙O相交d
②直线L和⊙O相切d=r
③直线L和⊙O相离d>r
13、切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线
14、切线的性质定理:圆的切线垂直于经过切点的半径
15、推论1经过圆心且垂直于切线的直线必经过切点
16、推论2经过切点且垂直于切线的直线必经过圆心
17、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角
18、圆的外切四边形的两组对边的和相等外角等于内对角
19、如果两个圆相切,那么切点一定在连心线上
20、①两圆外离d>R+r
②两圆外切d=R+r
③两圆相交R-rr)
④两圆内切d=R-r(R>r)
⑤两圆内含dr)
21、定理:相交两圆的连心线垂直平分两圆的公共弦
22、定理:把圆分成n(n≥3):
(1)依次连结各分点所得的多边形是这个圆的内接正n边形
(2)经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形
23、定理:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
24、正n边形的每个内角都等于(n-2)×180°/n
25、定理:正n边形的半径和边心距把正n边形分成2n个全等的直角xxx
26、正n边形的面积Sn=pnrn/2,p表示正n边形的周长
27、正xxx面积√3a/4,a表示边长
28、如果在一个顶点周围有k个正n边形的角,这些角的和应为360°
29、弧长计算公式:L=n兀R/180
30、扇形面积公式:S扇形=n兀R^2/360=LR/2
31、内公切线长=d-(R-r)外公切线长=d-(R+r)
32、定理:一条弧所对的圆周角等于它所对的圆心角的一半
33、推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
34、推论2xxx(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径
35、弧长公式l=a*r,a是圆心角的弧度数r>0,扇形面积公式s=1/2*l*r
空间两条直线只有三种位置关系:平行、相交、异面
高中数学所有知识点总结 第16篇
1、圆的标准方程
在平面直角坐标系中,以点O(a,b)为圆心,以r为半径的圆的标准方程是:
(x-a)^2+(y-b)^2=r^2
2、圆的一般方程
把圆的标准方程展开,移项,合并同类项后,可得圆的一般方程是:
x^2+y^2+Dx+Ey+F=0
和标准方程对比,其实D=-2a,E=-2b,F=a^2+b^2
相关知识:圆的离心率e=0。在圆上任意一点的曲率半径都是r。
高中数学所有知识点总结 第17篇
1.定义法:
判断B是A的条件,实际上就是判断B=>A或者A=>B是否成立,只要把题目中所给的条件按逻辑关系画出箭头示意图,再利用定义判断即可.
2.转换法:
当所给命题的充要条件不易判断时,可对命题进行等价装换,例如改用其逆否命题进行判断.
3.集合法
在命题的条件和结论间的关系判断有困难时,可从集合的角度考虑,记条件p、q对应的`集合分别为A、B,则:
若A∩B,则p是q的充分条件.
若A∪B,则p是q的必要条件.
若A=B,则p是q的充要条件.
若A∈B,且B∈A,则p是q的既不充分也不必要条件.
高中数学所有知识点总结 第18篇
(1)不等关系
感受在现实世界和日常生活中存在着大量的不等关系,了解不等式(组)的实际背景。
(2)一元二次不等式
①经历从实际情境中抽象出一元二次不等式模型的过程。
②通过函数图象了解一元二次不等式与相应函数、方程的联系。
③会解一元二次不等式,对给定的一元二次不等式,尝试设计求解的'程序框图。
(3)二元一次不等式组与简单线性规划问题
①从实际情境中抽象出二元一次不等式组。
②了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组(参见例2)。
③从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决(参见例3)。
(4)基本不等式
①探索并了解基本不等式的证明过程。
②会用基本不等式解决简单的(小)值问题。
高中数学所有知识点总结 第19篇
一、平面的基本性质与推论
1、平面的基本性质:
公理1如果一条直线的两点在一个平面内,那么这条直线在这个平面内;
公理2过不在一条直线上的三点,有且只有一个平面;
公理3如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。
2、空间点、直线、平面之间的位置关系:
直线与直线—平行、相交、异面;
直线与平面—平行、相交、直线属于该平面(线在面内,最易忽视);
平面与平面—平行、相交。
3、异面直线:
平面外一点A与平面一点B的连线和平面内不经过点B的直线是异面直线(判定);
xxx的`角范围(0,90)度(平移法,作平行线相交得到夹角或其补角);
两条直线不是异面直线,则两条直线平行或相交(反证);
异面直线不同在任何一个平面内。
求异面直线xxx的角:平移法,把异面问题转化为相交直线的夹角
二、空间中的平行关系
1、直线与平面平行(核心)
定义:直线和平面没有公共点
判定:不在一个平面内的一条直线和平面内的一条直线平行,则该直线平行于此平面(由线线平行得出)
性质:一条直线和一个平面平行,经过这条直线的平面和这个平面相交,则这条直线就和两平面的交线平行
2、平面与平面平行
定义:两个平面没有公共点
判定:一个平面内有两条相交直线平行于另一个平面,则这两个平面平行
性质:两个平面平行,则其中一个平面内的直线平行于另一个平面;如果两个平行平面同时与第三个平面相交,那么它们的交线平行。
3、常利用xxx中位线、平行四边形对边、已知直线作一平面找其交线
三、空间中的垂直关系
1、直线与平面垂直
定义:直线与平面内任意一条直线都垂直
判定:如果一条直线与一个平面内的两条相交的直线都垂直,则该直线与此平面垂直
性质:垂直于同一直线的两平面平行
推论:如果在两条平行直线中,有一条垂直于一个平面,那么另一条也垂直于这个平面
直线和平面xxx的角:【0,90】度,平面内的一条斜线和它在平面内的射影说成的锐角,特别规定垂直90度,在平面内或者平行0度
2、平面与平面垂直
定义:两个平面xxx的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(二面角的平面角:以二面角的棱上任一点为端点,在两个半平面内分别作垂直于棱的两条射线xxx的角)
判定:一个平面过另一个平面的垂线,则这两个平面垂直
性质:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直
高中数学所有知识点总结 第20篇
一、求导数的方法
(1)基本求导公式
(2)导数的四则运算
(3)复合函数的导数
设在点x处可导,y=在点处可导,则复合函数在点x处可导,且即
二、关于极限
1、数列的极限:
粗略地说,就是当数列的项n无限增大时,数列的项无限趋向于A,这就是数列极限的描述性定义。记作:=A。如:
2、函数的极限:
当自变量x无限趋近于常数时,如果函数无限趋近于一个常数,就说当x趋近于时,函数的极限是,记作
三、导数的概念
1、在处的导数。
2、在的导数。
3。函数在点处的'导数的几何意义:
函数在点处的导数是曲线在处的切线的斜率,
即k=,相应的切线方程是
注:函数的导函数在时的函数值,就是在处的导数。
例、若=2,则=()A—1B—2C1D
四、导数的综合运用
(一)曲线的切线
函数y=f(x)在点处的导数,就是曲线y=(x)在点处的切线的斜率。由此,可以利用导数求曲线的切线方程。具体求法分两步:
(1)求出函数y=f(x)在点处的导数,即曲线y=f(x)在点处的切线的斜率k=
(2)在已知切点坐标和切线斜率的条件下,求得切线方程为x。
集合与函数
1.进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和xxx图进行求解。
2.在应用条件时,易A忽略是空集的情况
3.你会用补集的思想解决有关问题吗?
4.简单命题与复合命题有什么区别?四种命题之间的相互关系是什么?如何判断充分与必要条件?
5.你知道“否命题”与“命题的否定形式”的区别。
6.求解与函数有关的问题易忽略定义域优先的原则。
7.判断函数奇偶性时,易忽略检验函数定义域是否关于原点对称。
8.求一个函数的解析式和一个函数的反函数时,易忽略标注该函数的定义域。
9.原函数在区间[-a,a]上单调递增,则一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调。例如:。
10.你熟练地掌握了函数单调性的证明方法吗?定义法(取值, 作差, 判正负)和导数法
11. 求函数单调性时,易错误地在多个单调区间之间添加符号“∪”和“或”;单调区间不能用集合或不等式表示。
12.求函数的值域必须先求函数的定义域。
13.如何应用函数的单调性与奇偶性解题?
①比较函数值的大小;
②解抽象函数不等式;
③求参数的范围(xxx问题).这几种基本应用你掌握了吗?
14.解对数函数问题时,你注意到真数与底数的限制条件了吗?
(真数大于零,底数大于零且不等于1)字母底数还需讨论
15.三个二次(哪三个二次?)的关系及应用掌握了吗?如何利用二次函数求最值?
16.用换元法解题时易忽略换元前后的等价性,易忽略参数的范围。
17.“实系数一元二次方程有实数解”转化时,你是否注意到:当时,“方程有解”不能转化为。若原题中没有指出是二次方程,二次函数或二次不等式,你是否考虑到二次项系数可能为的零的情形?
求函数的单调性 :
利用导数求函数单调性的基本方法:设函数yf(x)在区间(a,b)内可导,(1)如果恒f(x)0,则函数yf(x)在区间(a,b)上为增函数;(2)如果恒f(x)0,则函数yf(x)在区间(a,b)上为减函数;(3)如果恒f(x)0,则函数yf(x)在区间(a,b)上为常数函数.
利用导数求函数单调性的基本步骤:①求函数yf(x)的定义域;②求导数f(x);③解不等式f(x)0,解集在定义域内的不间断区间为增区间;④解不等式f(x)0,解集在定义域内的不间断区间为减区间.
反过来,也可以利用导数由函数的单调性解决相关问题(如确定参数的取值范围):设函数yf(x)在区间(a,b)内可导,
(1)如果函数yf(x)在区间(a,b)上为增函数,则f(x)0(其中使f(x)0的x值不构成区间);
(2)如果函数yf(x)在区间(a,b)上为减函数,则f(x)0(其中使f(x)0的'x值不构成区间);
(3)如果函数yf(x)在区间(a,b)上为常数函数,则f(x)0xxx.
求函数的单调性
利用导数求函数单调性的基本方法:设函数yf(x)在区间(a,b)内可导,(1)如果恒f(x)0,则函数yf(x)在区间(a,b)上为增函数;(2)如果恒f(x)0,则函数yf(x)在区间(a,b)上为减函数;(3)如果恒f(x)0,则函数yf(x)在区间(a,b)上为常数函数.
利用导数求函数单调性的基本步骤:①求函数yf(x)的定义域;②求导数f(x);③解不等式f(x)0,解集在定义域内的不间断区间为增区间;④解不等式f(x)0,解集在定义域内的不间断区间为减区间.
反过来,也可以利用导数由函数的单调性解决相关问题(如确定参数的取值范围):设函数yf(x)在区间(a,b)内可导,
(1)如果函数yf(x)在区间(a,b)上为增函数,则f(x)0(其中使f(x)0的x值不构成区间);
(2)如果函数yf(x)在区间(a,b)上为减函数,则f(x)0(其中使f(x)0的'x值不构成区间);
(3)如果函数yf(x)在区间(a,b)上为常数函数,则f(x)0xxx.
数列题
1、证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;
2、最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;
3、证明不等式时,有时构造函数,利用函数单调性很简单
高中数学所有知识点总结 第21篇
(一)导数第一定义
设函数 y = f(x) 在点 x0 的某个领域内有定义,当自变量 x 在 x0 处有增量 △x ( x0 + △x 也在该邻域内 ) 时,相应地函数取得增量 △y = f(x0 + △x) - f(x0) ;如果 △y 与 △x 之比当 △x→0 时极限存在,则称函数 y = f(x) 在点 x0 处可导,并称这个极限值为函数 y = f(x) 在点 x0 处的导数记为 f'(x0) ,即导数第一定义
(二)导数第二定义
设函数 y = f(x) 在点 x0 的某个领域内有定义,当自变量 x 在 x0 处有变化 △x ( x - x0 也在该邻域内 ) 时,相应地函数变化 △y = f(x) - f(x0) ;如果 △y 与 △x 之比当 △x→0 时极限存在,则称函数 y = f(x) 在点 x0 处可导,并称这个极限值为函数 y = f(x) 在点 x0 处的导数记为 f'(x0) ,即 导数第二定义
(三)导函数与导数
如果函数 y = f(x) 在开区间 I 内每一点都可导,就称函数f(x)在区间 I 内可导。这时函数 y = f(x) 对于区间 I 内的每一个确定的 x 值,都对应着一个确定的导数,这就构成一个新的`函数,称这个函数为原来函数 y = f(x) 的导函数,记作 y', f'(x), dy/dx, df(x)/dx。导函数简称导数。
(四)单调性及其应用
1.利用导数研究多项式函数单调性的一般步骤
(1)求f(x)
(2)确定f(x)在(a,b)内符号 (3)若f(x)>0在(a,b)上xxx,则f(x)在(a,b)上是增函数;若f(x)<0在(a,b)上xxx,则f(x)在(a,b)上是减函数
2.用导数求多项式函数单调区间的一般步骤
(1)求f(x)
(2)f(x)>0的解集与定义域的交集的对应区间为增区间; f(x)<0的解集与定义域的交集的对应区间为减区间
学习了导数基础知识点,接下来可以学习高二数学中涉及到的导数应用的部分。
高中数学所有知识点总结 第22篇
一、集合有关概念
1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。
2、集合的中元素的三个特性:1.元素的确定性;2.元素的互异性;3.元素的无序性.
3、集合的表示:(1){?}如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(2).用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}4
.集合的表示方法:列举法与描述法。
常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N*或N+整数集Z有理数集Q实数集R
5.关于“属于”的概念
集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A记作a∈A,相反,a不属于集合A记作a?A
列举法:把集合中的元素一一列举出来,然后用一个大括号括上。
描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表
示某些对象是否属于这个集合的方法。6、集合的分类:
(1).有限集含有有限个元素的集合(2).无限集含有无限个元素的集合
(3).空集不含任何元素的集合例:{x|x2=-5}=Φ
二、集合间的基本关系
1.“包含”关系—子集注意:A?B有两种可能(1)A是B的一部分,;(2)A与B是同一集合。反之:集?B或B??A合A不包含于集合B,或集合B不包含集合A,记作A?
2.“相等”关系:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B
①任何一个集合是它本身的子集。即A?A
②如果A?B,且A?B那就说集合A是集合B的真子集,记作A B(或BA)
③如果A?B,B?C,那么A?C④如果A?B同时B?A那么A=B
3.不含任何元素的集合叫做空集,记为Φ
规定:空集是任何集合的子集,空集是任何非空集合的真子集。三、集合的运算
1.交集的定义:一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.
记作A∩B(读作"A交B"),即A∩B={x|x∈A,且x∈B}.
2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集。记作:A∪B(读作"A并B"),即A∪B={x|x∈A,或x∈B}.
3、交集与并集的性质:A∩A=A,A∩φ=φ,A∩B=B∩A,A∪A=A,
A∪φ=A,A∪B=B∪A.
4、全集与补集(1)补集:设S是一个集合,A是S的一个子集(即A?S),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)记作:CSA即CSA={x?x?S且x?A}
(2)全集:如果集合S含有我们所要研究的各个集合的.全部元素,看作一个全集。通常用xxx表示。
(3)性质:⑴CU(CUA)=A⑵(CUA)∩A=Φ⑶(CUA)∪A=U二、函数的有关概念
合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.
能使函数式有意义的实数x的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次xxx的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1.(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零(7)实际问题中的函数的定义域还要保证实际问题有意义.
2.构成函数的三要素:定义域、对应关系和值域
再注意:(1)由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)(2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。相同函数的判断方法:①表达式相同;xxx域一致(两点必须同时具备)
3.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示.4.映射一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A?B为从集合A到集合B的一个映射。记作“f:A?B”
给定一个集合A到B的映射,如果a∈A,b∈B.且元素a和元素b对应,那么,我们把元素b叫做元素a的象,元素a叫做元素b的原象
说明:函数是一种特殊的映射,映射是一种特殊的对应,①集合A、B及对应法则f是确定的;②对应法则有“方向性”,即强调从集合A到集合B的对应,它与从B到A的对应关系一般是不同的;③对于映射f:A→B来说,则应满足:(Ⅰ)集合A中的每一个元素,在集合B中都有象,并且象是唯一的;(Ⅱ)集合A中不同的元素,在集合B中对应的象可以是同一个;(Ⅲ)不要求集合B中的每一个元素在集合A中都有原象。
5.常用的函数表示法:解析法:图象法:列表法:
6.分段函数在定义域的不同部分上有不同的解析表达式的函数。(1)分段函数是一个函数,不要把它误认为是几个函数;
(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集.7.函数单调性(1).设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1 如果对于区间D上的任意两个自变量的值x1,x2,当x1 注意:函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质; (2)图象的特点如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.(3).函数单调区间与单调性的判定方法 (A)定义法:○1任取x1,x2∈D,且x1 8.函数的奇偶性 (1)一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数. (2).一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数. 注意:○1函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;函数可能没有奇偶性,也可能既是奇函数又是偶函数。 2由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,○ 则-x也一定是定义域内的一个自变量(即定义域关于原点对称).(3)具有奇偶性的函数的图象的特征 偶函数的图象关于y轴对称;奇函数的图象关于原点对称. 总结:利用定义判断函数奇偶性的格式步骤:○1首先确定函数的定义域,并判断其定义域是否关于原点对称;○2确定f(-x)与f(x)的关系;○3作出相应结论:若f(-x)=f(x)或f(-x)-f(x)=0,则f(x)是偶函数;若f(-x)=-f(x)或f(-x)+f(x)=0,则f(x)是奇函数.9、函数的解析表达式 (1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域. (2).求函数的解析式的主要方法有:待定系数法、换元法、消参法等,如果已知函数解析式的构造时,可用待定系数法;已知复合函数f[g(x)]的表达式时,可用换元法,这时要注意元的取值范围;当已知表达式较简单时,也可用凑配法;若已知抽象函数表达式,则常用解方程组消参的方法求出f(x)。 补充不等式的解法与二次函数(方程)的性质 等比数列公式性质知识点 1.等比数列的有关概念 (1)定义: 如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q表示,定义的表达式为an+1/an=q(n∈N_,q为非零常数). (2)等比中项: 如果a、G、xxx等比数列,那么G叫做a与b的等比中项.即:G是a与b的等比中项a,G,xxx等比数列G2=ab. 2.等比数列的有关公式 (1)通项公式:an=a1qn-1. 3.等比数列{an}的常用性质 (1)在等比数列{an}中,若m+n=p+q=2r(m,n,p,q,r∈N_),则am·an=ap·aq=a. 特别地,a1an=a2an-1=a3an-2=…. (2)在公比为q的等比数列{an}中,数列am,am+k,am+2k,am+3k,…仍是等比数列,公比为qk;数列Sm,S2m-Sm,S3m-S2m,…仍是等比数列(此时q≠-1);an=amqn-m. 4.等比数列的特征 (1)从等比数列的定义看,等比数列的任意项都是非零的',公比q也是非零常数. (2)由an+1=qan,q≠0并不能立即断言{an}为等比数列,还要验证a1≠0. 5.等比数列的前n项和Sn (1)等比数列的前n项和Sn是用错位相减法求得的,注意这种思想方法在数列求和中的运用. (2)在运用等比数列的前n项和公式时,必须注意对q=1与q≠1分类讨论,防止因忽略q=1这一特殊情形导致解题失误. 1.万能公式令tan(a/2)=tsina=2t/(1+t^2)cosa=(1-t^2)/(1+t^2)tana=2t/(1-t^2) 2.辅助角公式asint+bcost=(a^2+b^2)^(1/2)sin(t+r)cosr=a/[(a^2+b^2)^(1/2)]sinr=b/[(a^2+b^2)^(1/2)]tanr=b/a 3.三倍角公式sin(3a)=3sina-4(sina)^3cos(3a)=4(cosa)^3-3cosatan(3a)=[3tana-(tana)^3]/[1-3(tana^2)]sina_cosb=[sin(a+b)+sin(a-b)]/2cosa_sinb=[sin(a+b)-sin(a-b)]/2cosa_cosb=[cos(a+b)+cos(a-b)]/2sina_sinb=-[cos(a+b)-cos(a-b)]/2sina+sinb=2sin[(a+b)/2]cos[(a-b)/2]sina-sinb=2sin[(a-b)/2]cos[(a+b)/2]cosa+cosb=2cos[(a+b)/2]cos[(a-b)/2]cosa-cosb=-2sin[(a+b)/2]sin[(a-b)/2] 向量公式: 1.单位向量:单位向量a0=向量a/|向量a| (x,y)那么向量OP=x向量i+y向量j|向量OP|=根号(x平方+y平方) (x1,y1)P2(x2,y2)那么向量P1P2={x2-x1,y2-y1}|向量P1P2|=根号[(x2-x1)平方+(y2-y1)平方] 4.向量a={x1,x2}向量b={x2,y2}向量a_向量b=|向量a|_|向量b|_Cosα=x1x2+y1y2Cosα=向量a_向量b/|向量a|_|向量b|(x1x2+y1y2)根号(x1平方+y1平方)_根号(x2平方+y2平方) 5.空间向量:同上推论(提示:向量a={x,y,z}) 6.充要条件:如果向量a向量b那么向量a_向量b=0如果向量a//向量b那么向量a_向量b=|向量a|_|向量b|或者x1/x2=y1/y2 7.|向量a向量b|平方=|向量a|平方+|向量b|平方2向量a_向量b=(向量a向量b)平方 复数模的性质: 复数与实数、虚数、纯虚数及0的关系: 对于复数a+bi(a、b∈R),当且仅当b=0时,复数a+bi(a、b∈R)是实数a;当b≠0时,复数z=a+bi叫做虚数;当a=0且b≠0时,z=bi叫做纯虚数;当且仅当a=b=0时,z就是实数0。 集合中元素的特性 (1)确定性:设A是一个给定的集合,_是某一具体对象,则_或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。例如A={0,1,3,4},可知0∈A,6?A。 (2)互异性:“集合张的元素必须是互异的”,就是说“对于一个给定的集合,它的任何两个元素都是不同的”。 (3)无序性:集合与其中元素的排列次序无关,如集合{a,b,c}与集合{c,b,a}是同一个集合。 集合的分类 集合科根据他含有的元素个数的多少分为两类: 有限集:含有有限个元素的集合。如“方程3_+1=0”的解组成的集合”,由“2,4,6,8,组成的集合”,它们的元素个数是可数的,因此两个集合是有限集。 无限集:含有无限个元素的集合,如“到平面上两个定点的距离相等于所有点”“所有的xxx”,组成上述集合的元素不可数的,因此他们是无限集。 特别的,我们把不含有任何元素的集合叫做空集,记错F,如{|R|+1=0}。 三角恒等变换 这一章公式特别多,像差倍半角公式这类内容常会出现,所以必须要记牢。由于量比较大,记忆难度大,所以建议用纸写好后贴在桌子上,天天都要看。要提一点,就是三角恒等变换是有一定规律的,记忆的时候可以集合三角函数去记。 一、圆及圆的相关量的定义 1.平面上到定点的距离等于定长的所有点组成的图形叫做圆。定点称为圆心,定长称为半径。 2.圆上任意两点间的部分叫做圆弧,简称弧。大于xxx的弧称为优弧,小于xxx的弧称为劣弧。连接圆上任意两点的线段叫做弦。经过圆心的弦叫做直径。 3.顶点在圆心上的角叫做圆心角。顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。 4.过xxx的三个顶点的圆叫做xxx的外接圆,其圆心叫做xxx的外心。和xxx三边都相切的圆叫做这个xxx的内切圆,其圆心称为内心。 5.直线与圆有3种位置关系:无公共点为相离;有2个公共点为相交;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。 6.两圆之间有5种位置关系:无公共点的,一圆在另一圆之外叫外离,在之内叫内含;有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切;有2个公共点的叫相交。两圆圆心之间的距离叫做圆心距。 7.在圆上,由2条半径和一段弧围成的图形叫做扇形。圆锥侧面展开图是一个扇形。这个扇形的半径成为圆锥的母线。 二、有关圆的字母表示方法 圆--⊙ 半径—r 弧--⌒ 直径—d 扇形弧长/圆锥母线—l 周长—C 面积—S三、有关圆的基本性质与定理(27个) 1.点P与圆O的位置关系(设P是一点,则PO是点到圆心的距离): P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,PO 2.圆是轴对称图形,其对称轴是任意一条过圆心的直线。圆也是中心对称图形,其对称中心是圆心。 3.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。 4.在同圆或等圆中,如果2个圆心角,2个圆周角,2条弧,2条弦中有一组量相等,那么他们所对应的其余各组量都分别相等。 5.一条弧所对的圆周角等于它所对的圆心角的一半。 6.直径所对的圆周角是直角。90度的圆周角所对的弦是直径。 7.不在同一直线上的3个点确定一个圆。 8.一个xxx有唯一确定的外接圆和内切圆。外接圆圆心是xxx各边垂直平分线的交点,到xxx3个顶点距离相等;内切圆的圆心是xxx各内角平分线的交点,到xxx3边距离相等。 9.直线AB与圆O的位置关系(设OP⊥AB于P,则PO是AB到圆心的距离): AB与⊙O相离,PO>r;AB与⊙O相切,PO=r;AB与⊙O相交,PO 10.圆的切线垂直于过切点的直径;经过直径的一端,并且垂直于这条直径的直线,是这个圆的切线。 11.圆与圆的位置关系(设两圆的半径分别为R和r,且R≥r,圆心距为P): 外离P>R+r;外切P=R+r;相交R-r 三、有关圆的计算公式 1.圆的周长C=2πr=πd 2.圆的面积S=s=πr? 3.扇形弧长l=nπr/180 4.扇形面积S=nπr? /360=rl/2 5.圆锥侧面积S=πrl 四、圆的方程 1.圆的标准方程 在平面直角坐标系中,以点O(a,b)为圆心,以r为半径的圆的标准方程是(x-a)^2+(y-b)^2=r^2 2.圆的一般方程 把圆的标准方程展开,移项,合并同类项后,可得圆的一般方程是 x^2+y^2+Dx+Ey+F=0 和标准方程对比,其实D=-2a,E=-2b,F=a^2+b^2 相关知识:圆的离心率e=0.在圆上任意一点的曲率半径都是r. 五、圆与直线的位置关系判断 平面内,直线Ax+By+C=O与圆x^2+y^2+Dx+Ey+F=0的位置关系判断一般方法是 讨论如下2种情况: (1)由Ax+By+C=O可得y=(-C-Ax)/B,[其中B不等于0], 代入x^2+y^2+Dx+Ey+F=0,即成为一个关于x的一元二次方程f(x)=0. 利用判别式b^2-4ac的符号可确定圆与直线的位置关系如下: 如果b^2-4ac>0,则圆与直线有2交点,即圆与直线相交 如果b^2-4ac=0,则圆与直线有1交点,即圆与直线相切 如果b^2-4ac<0,则圆与直线有0交点,即圆与直线相离 (2)如果B=0即直线为Ax+C=0,即x=-C/A.它平行于y轴(或垂直于x轴) 将x^2+y^2+Dx+Ey+F=0化为(x-a)^2+(y-b)^2=r^2 令y=b,求出此时的两个x值x1,x2,并且我们规定x1 当x=-C/Ax2时,直线与圆相离 当x1 当x=-C/A=x1或x=-C/A=x2时,直线与圆相切 圆的定理: 1.不在同一直线上的三点确定一个圆。 2.垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧 1.①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧 ②弦的垂直平分线经过圆心,并且平分弦所对的两条弧 ③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 2.圆的两条平行弦所夹的弧相等 3.圆是以圆心为对称中心的中心对称图形 4.圆是定点的距离等于定长的点的集合 5.圆的内部可以看作是圆心的距离小于半径的点的'集合 6.圆的外部可以看作是圆心的距离大于半径的点的集合 7.同圆或等圆的半径相等 8.到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆 9.定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦 相等,所对的弦的弦心距相等 10.推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两 弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等 11.定理 圆的内接四边形的对角互补,并且任何一个外角都等于它 的内对角 12.①直线L和⊙O相交 d ②直线L和⊙O相切 d=r ③直线L和⊙O相离 d>r 13.切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线 14.切线的性质定理 圆的切线垂直于经过切点的半径 15.推论1 经过圆心且垂直于切线的直线必经过切点 16.推论2 经过切点且垂直于切线的直线必经过圆心 17.切线长定理 从圆外一点引圆的两条切线,它们的切线长相等, 圆心和这一点的连线平分两条切线的夹角 18.圆的外切四边形的两组对边的和相等 外角等于内对角 19.如果两个圆相切,那么切点一定在连心线上 20.①两圆外离 d>R+r ②两圆外切 d=R+r ③两圆相交 R-rr) ④两圆内切 d=R-r(R>r) ⑤两圆内含dr) 21.定理 相交两圆的连心线垂直平分两圆的公共弦 22.定理 把圆分成n(n≥3): (1)依次连结各分点所得的多边形是这个圆的内接正n边形 (2)经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形 23.定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆 24.正n边形的每个内角都等于(n-2)×180°/n 25.定理 正n边形的半径和边心距把正n边形分成2n个全等的直角xxx 26.正n边形的面积Sn=pnrn/2 p表示正n边形的周长 27.正xxx面积√3a/4 a表示边长 28.如果在一个顶点周围有k个正n边形的角,由于这些角的和应为 360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4 29.弧长计算公式:L=n兀R/180 30.扇形面积公式:S扇形=n兀R^2/360=LR/2 31.内公切线长= d-(R-r) 外公切线长= d-(R+r) 32.定理 一条弧所对的圆周角等于它所对的圆心角的一半 33.推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等 34.推论2 xxx(或直径)所对的圆周角是直角;90°的圆周角所 对的弦是直径 35.弧长公式 l=axr a是圆心角的弧度数r >0 扇形面积公式 s=1/2xlxr 高中数学知识点总结 有界性 设函数f(x)在区间X上有定义,如果存在M>0,对于一切属于区间X上的x,恒有|f(x)|≤M,则称f(x)在区间X上有界,否则称f(x)在区间上无界。 单调性 设函数f(x)的定义域为D,区间I包含于D。如果对于区间上任意两点x1及x2,当x1f(x2),则称函数f(x)在区间I上是单调递减的。单调递增和单调递减的函数统称为单调函数。 奇偶性 设为一个实变量实值函数,若有f(—x)=—f(x),则f(x)为奇函数。 几何上,一个奇函数关于原点对称,亦即其图像在绕原点做180度旋转后不会改变。 奇函数的例子有x、sin(x)、sinh(x)和erf(x)。 设f(x)为一实变量实值函数,若有f(x)=f(—x),则f(x)为偶函数。 几何上,一个偶函数关于y轴对称,亦即其图在对y轴映射后不会改变。 偶函数的例子有|x|、x2、cos(x)和cosh(x)。 偶函数不可能是个双射映射。 连续性 在数学中,连续是函数的一种属性。直观上来说,连续的函数就是当输入值的变化足够小的时候,输出的变化也会随之足够小的函数。如果输入值的某种微小的变化会产生输出值的一个突然的跳跃甚至无法定义,则这个函数被称为是不连续的函数(或者说具有不连续性)。 高中数学怎么学好 1.培养数学思维是学好数学的前提 数学最主要的就是思维方式,如果你懂了数学如何去思考,就能懂得命题人是如何出题的,知道怎么去分析一道题目,该如何入手去解一道题。数学思维能帮助我们理清解题思路,根据已知条件,一步步推出未知条件。 初中数学好不代表高中数学就一定好,所学的知识点不一样,接触的数学思维也不同,所以需要同学们高中也要重新去学习数学。高中数学每一章节知识点都要学会了才能在做题时拥有理性的数学思维。 2.要想提高数学成绩就要多做题 数学就是一个熟能生巧的过程,数学需要接触最多的就是计算,所以大家每学习一个公式都要通过大量的习题去巩固,直到把公式及推导公式都学会为止。 数学第一遍学习都是一些浅显的知识,综合复习时会把所学的公式融合在一起考查,所以大家复习是不要仅仅针对一个知识点去复习,要眼界开阔,融会贯通。 3.学好数学最好的方式就是琢磨 数学很多学的好的同学都不是靠上课听讲或是不会就看答案的,他们遇到不会的题目,首先要做的不是去问或者看答案,而是反复自己思考,有的一道难题甚至能琢磨好几天,在大脑中留下了深刻印象,实在是不会了再去问去看。 试想,经过这样的过程,什么样的难题会记不住,如果再遇到类似的题目还怎么能不会?如果是一遇的不会的就看答案,看了答案也没什么印象,下次考试出原题目还是不会,又有什么意义呢?还不如不看! 高中数学常用定理 1、过两点有且只有一条直线 2、两点之间线段最短 3、同角或等角的补角相等 4、同角或等角的余角相等 5、过一点有且只有一条直线和已知直线垂直 6、直线外一点与直线上各点连接的所有线段中,垂线段最短 7、平行公理经过直线外一点,有且只有一条直线与这条直线平行 8、如果两条直线都和第三条直线平行,这两条直线也互相平行 9、同位角相等,两直线平行 10、内错角相等,两直线平行 11、同旁内角互补,两直线平行 12、两直线平行,同位角相等 13、两直线平行,内错角相等 14、两直线平行,同旁内角互补 15、角形两边的和大于第三边 16、角形两边的差小于第三边 17、xxx内角和定理xxx三个内角的和等于180° 18、直角xxx的两个锐角互余 19、xxx的一个外角等于和它不相邻的两个内角的和 20、xxx的一个外角大于任何一个和它不相邻的内角 21、全等xxx的对应边、对应角相等 22、边角边公理(SAS)有两边和它们的夹角对应相等的两个xxx全等 23、角边角公理(ASA)有两角和它们的夹边对应相等的两个xxx全等 24、有两角和其中一角的对边对应相等的两个xxx全等 25、边边边公理(SSS)有三边对应相等的两个xxx全等 26、斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角xxx全等 27、在角的平分线上的点到这个角的两边的距离相等 28、到一个角的两边的距离相同的点,在这个角的平分线上 29、角的平分线是到角的两边距离相等的所有点的集合 30、等腰xxx的性质定理等腰xxx的两个底角相等(即等边对等角) 31、等腰xxx顶角的平分线平分底边并且垂直于底边 32、等腰xxx的顶角平分线、底边上的中线和底边上的高互相重合 33、等边xxx的各角都相等,并且每一个角都等于60° 34、等腰xxx的判定定理如果一个xxx有两个角相等,那么这两个角所对的边也相等(等角对等边) 35、三个角都相等的xxx是等边xxx 36、有一个角等于60°的等腰xxx是等边xxx 37、在直角xxx中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38、直角xxx斜边上的中线等于斜边上的一半 39、线段垂直平分线上的点和这条线段两个端点的距离相等 40、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42、关于某条直线对称的两个图形是全等形 43、如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44、两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 45、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称 46、勾股定理直角xxx两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2 47、勾股定理的逆定理如果xxx的三边长a、b、c有关系a^2+b^2=c^2,那么这个xxx是直角xxx 48、四边形的内角和等于360° 49、四边形的外角和等于360° 50、多边形内角和定理n边形的内角的和等于(n-2)×180° 51、任意多边的外角和等于360° 52、平行四边形的对角相等 53、平行四边形的对边相等 54、夹在两条平行线间的平行线段相等 55、平行四边形的对角线互相平分 56、两组对角分别相等的四边形是平行四边形 57、两组对边分别相等的四边形是平行四边形 58、对角线互相平分的四边形是平行四边形 59、一组对边平行相等的四边形是平行四边形 60、矩形的四个角都是直角 61、矩形的对角线相等 62、有三个角是直角的四边形是矩形 63、对角线相等的平行四边形是矩形 64、菱形的四条边都相等 65、菱形的对角线互相垂直,并且每一条对角线平分一组对角 66、菱形面积=对角线乘积的一半,即S=(a×b)÷2 67、四边都相等的四边形是菱形 68、对角线互相垂直的平行四边形是菱形 69、正方形的四个角都是直角,四条边都相等 70、正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角 71、关于中心对称的两个图形是全等的 72、关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分 73、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称 74、等腰梯形性质定理等腰梯形在同一底上的两个角相等 75、等腰梯形的两条对角线相等 76、等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形 空间几xxx表面积体积公式: 1、圆柱体:表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)。 2、圆锥体:表面积:πR2+πR[(h2+R2)的]体积:πR2h/3(r为圆锥体低圆半径,h为其高。 3、a—边长,S=6a2,V=a3。 4、长方体a—长,b—宽,c—高S=2(ab+ac+bc)V=abc。 5、棱柱S—h—高V=Sh。 6、棱锥S—h—高V=Sh/3。 7、S1和S2—上、下h—高V=h[S1+S2+(S1S2)^1/2]/3。 8、S1—上底面积,S2—下底面积,S0—中h—高,V=h(S1+S2+4S0)/6。 9、圆柱r—底半径,h—高,C—底面周长S底—底面积,S侧—,S表—表面积C=2πrS底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h。 10、空心圆柱R—外圆半径,r—内圆半径h—高V=πh(R^2—r^2)。 11、r—底半径h—高V=πr^2h/3。 12、r—上底半径,R—下底半径,h—高V=πh(R2+Rr+r2)/313、球r—半径d—直径V=4/3πr^3=πd^3/6。 14、球缺h—球缺高,r—球半径,a—球缺底半径V=πh(3a2+h2)/6=πh2(3r—h)/3。 15、球台r1和r2—球台上、下底半径h—高V=πh[3(r12+r22)+h2]/6。 16、圆环体R—环体半径D—环体直径r—环体截面半径d—环体截面直径V=2π2Rr2=π2Dd2/4。 17、桶状体D—桶腹直径d—桶底直径h—桶高V=πh(2D2+d2)/12,(母线是圆弧形,圆心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)。 简单随机抽样 (1)总体和样本 ①在统计学中,把研究对象的全体叫做总体。 ②把每个研究对象叫做个体。 ③把总体中个体的总数叫做总体容量。 ④为了研究总体的有关性质,一般从总体中随机抽取一部分:x1,x2,…,__研究,我们称它为样本。其中个体的个数称为样本容量。 (2)简单随机抽样,也叫纯随机抽样。就是从总体中不加任何分组、划类、排队等,完全随 机地抽取调查单位。特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。简单随机抽样是其它各种抽样形式的基础。通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。 (3)简单随机抽样常用的'方法: ①抽签法; ②随机数表法; ③计算机模拟法; ③使用统计软件直接抽取。 在简单随机抽样的样本容量设计中,主要考虑: ①总体变异情况; ②允许误差范围; ③概率保证程度。 (4)抽签法: ①给调查对象群体中的每一个对象编号; ②准备抽签的工具,实施抽签; ③对样本中的每一个个体进行测量或调查 (5)随机数表法 高中数学集合知识总结 高中数学集合知识总结如下: 一、集合间的关系 1.子集:如果集合A中所有元素都是集合B中的元素,则称集合A为集合B的子集。 2.真子集:如果集合AB,但存在元素a∈B,且a不属于A,则称集合A是集合B的真子集。 3.集合相等:集合A与集合B中元素相同那么就说集合A与集合B相等。 子集:一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,我们就说集合A包含于集合B,或集合B包含集合A,记作:AB(或BA),读作“A包含于B”(或“B包含A”),这时我们说集合是集合的子集,更多集合关系的知识点见集合间的基本关系 二、集合的运算 1.并集 并集:以属于A或属于B的元素为元素的集合称为A与B的并(集),记作A∪B(或B∪A),读作“A并B”(或“B并A”),即A∪B={x|x∈A,或x∈B} 2.交集 交集: 以属于A且属于B的元素为元素的集合称为A与B的交(集),记作A∩B(或B∩A),读作“A交B”(或“B交A”),即A∩B={x|x∈A,且x∈B} 3.补集 三、高中数学集合知识归纳: 1.集合的有关概念。 1)集合(集):某些指定的对象集在一起就成为一个集合(集).其中每一个对象叫元素 注意:①集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。 ②集合中的元素具有确定性(a?A和a?A,二者必居其一)、互异性(若a?A,b?A,则a≠b)和无序性({a,b}与{b,a}表示同一个集合)。 ③集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符号条件 2)集合的表示方法:常用的有列举法、描述法和图文法 3)集合的分类:有限集,无限集,空集。 4)常用数集:N,Z,Q,R,N* 2.子集、交集、并集、补集、空集、全集等概念。 1)子集:若对x∈A都有x∈B,则A B(或A B); 2)真子集:A B且存在x0∈B但x0 A;记为A B(或 ,且 ) 3)交集:A∩B={x| x∈A且x∈B} 4)并集:A∪B={x| x∈A或x∈B} 5)补集:CUA={x| x A但x∈U} 注意:①? A,若A≠?,则? A ; ②若 , ,则 ; ③若 且 ,则A=B(等集) 3.弄清集合与元素、集合与集合的关系,掌握有关的术语和符号,特别要注意以下的符号:(1) 与 、?的区别;(2) 与 的区别;(3) 与 的区别。 4.有关子集的几个等价关系 ①A∩B=A A B;②A∪B=B A B;③A B C uA C uB; ④A∩CuB = 空集 CuA B;⑤CuA∪B=I A B。 5.交、并集运算的性质 ①A∩A=A,A∩? = ?,A∩B=B∩A;②A∪A=A,A∪? =A,A∪B=B∪A; ③Cu (A∪B)= CuA∩CuB,Cu (A∩B)= CuA∪CuB; 6.有限子集的个数:设集合A的元素个数是n,则A有2n个子集,2n-1个非空子集,2n-2个非空真子集。 四、数学集合例题讲解: 【例1】已知集合M={x|x=m+ ,m∈Z},N={x|x= ,n∈Z},P={x|x= ,p∈Z},则M,N,P满足关系 A) M=N P B) M N=P C) M N P D) N P M 分析一:从判断元素的共性与区别入手。 解答一:对于集合M:{x|x= ,m∈Z};对于集合N:{x|x= ,n∈Z} 对于集合P:{x|x= ,p∈Z},由于3(n-1)+1和3p+1都表示被3除余1的数,而6m+1表示被6除余1的数,所以M N=P,故选B。 分析二:简单列举集合中的元素。 解答二:M={…, ,…},N={…, , , ,…},P={…, , ,…},这时不要急于判断三个集合间的关系,应分析各集合中不同的元素。 = ∈N, ∈N,∴M N,又 = M,∴M N, = P,∴N P 又 ∈N,∴P N,故P=N,所以选B。 点评:由于思路二只是停留在最初的归纳假设,没有从理论上解决问题,因此提倡思路一,但思路二易人手。 变式:设集合 , ,则( B ) N M D. 当 时,2k+1是奇数,k+2是整数,选B 【例2】定义集合A*B={x|x∈A且x B},若A={1,3,5,7},B={2,3,5},则A*B的子集个数为 A)1 B)2 C)3 D)4 分析:确定集合A*B子集的个数,首先要确定元素的个数,然后再利用公式:集合A={a1,a2,…,an}有子集2n个来求解。 解答:∵A*B={x|x∈A且x B}, ∴A*B={1,7},有两个元素,故A*B的'子集共有22个。选D。 变式1:已知非空集合M {1,2,3,4,5},且若a∈M,则6?a∈M,那么集合M的个数为 A)5个 B)6个 C)7个 D)8个 变式2:已知{a,b} A {a,b,c,d,e},求集合A. 解:由已知,集合中必须含有元素a,b. 集合A可能是{a,b},{a,b,c},{a,b,d},{a,b,e},{a,b,c,d},{a,b,c,e},{a,b,d,e}. 评析 本题集合A的个数实为集合{c,d,e}的真子集的个数,所以共有 个 . 【例3】已知集合A={x|x2+px+q=0},B={x|x2?4x+r=0},且A∩B={1},A∪B={?2,1,3},求实数p,q,r的值。 解答:∵A∩B={1} ∴1∈B ∴12?4×1+r=0,r=3. ∴B={x|x2?4x+r=0}={1,3}, ∵A∪B={?2,1,3},?2 B, ∴?2∈A ∵A∩B={1} ∴1∈A ∴方程x2+px+q=0的两根为-2和1, ∴ ∴ 变式:已知集合A={x|x2+bx+c=0},B={x|x2+mx+6=0},且A∩B={2},A∪B=B,求实数b,c,m的值. 解:∵A∩B={2} ∴1∈B ∴22+m?2+6=0,m=-5 ∴B={x|x2-5x+6=0}={2,3} ∵A∪B=B ∴ 又 ∵A∩B={2} ∴A={2} ∴b=-(2+2)=4,c=2×2=4 ∴b=-4,c=4,m=-5 【例4】已知集合A={x|(x-1)(x+1)(x+2)>0},集合B满足:A∪B={x|x>-2},且A∩B={x|1 分析:先化简集合A,然后由A∪B和A∩B分别确定数轴上哪些元素属于B,哪些元素不属于B。 解答:A={x|-21}。由A∩B={x|1-2}可知[-1,1] B,而(-∞,-2)∩B=ф。 综合以上各式有B={x|-1≤x≤5} 变式1:若A={x|x3+2x2-8x>0},B={x|x2+ax+b≤0},已知A∪B={x|x>-4},A∩B=Φ,求a,b。(答案:a=-2,b=0) 点评:在解有关不等式解集一类集合问题,应注意用数形结合的方法,作出数轴来解之。 变式2:设M={x|x2-2x-3=0},N={x|ax-1=0},若M∩N=N,求所有满足条件的a的集合。 解答:M={-1,3} , ∵M∩N=N, ∴N M ①当 时,ax-1=0无解,∴a=0 ② 综①②得:所求集合为{-1,0, } 【例5】已知集合 ,函数y=log2(ax2-2x+2)的定义域为Q,若P∩Q≠Φ,求实数a的取值范围。 分析:先将原问题转化为不等式ax2-2x+2>0在 有解,再利用参数分离求解。 解答:(1)若 , 在 内有有解 令 当 时, 所以a>-4,所以a的取值范围是 变式:若关于x的方程 有实根,求实数a的取值范围。 解答: 点评:解决含参数问题的题目,一般要进行分类讨论,但并不是所有的问题都要讨论,怎样可以避免讨论是我们思考此类问题的关键。 一次函数的定义 一次函数,也作线性函数,在x,y坐标轴中可以用一条直线表示,当一次函数中的一个变量的值确定时,可以用一元一次方程确定另一个变量的值。 函数的表示方法 列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。 解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。 图象法:形象直观,但只能近似地表达两个变量之间的`函数关系。 一次函数的性质 一般地,形如y=kx+b(k,b是常数,且k≠0),那么y叫做x的一次函数,当b=0时,y=kx+b即y=kx,所以说正比例函数是一种特殊的一次函数 注:一次函数一般形式y=kx+b(k不为0) a)k不为0 b)x的指数是1 c)b取任意实数 一次函数y=kx+b的图像是经过(0,b)和(—b/k,0)两点的一条直线,我们称它为直线y=kx+b,它可以看做直线y=kx平移|b|个单位长度得到。(当b>0时,向上平移;b<0时,向下平移) 1.多动脑思考 2.强化自己学习训练 要是想学好高中数学,必须做的一件事就是做大量的题,数学不一定好,因袭要提高解题的效率,做题的目的在于检查你学的知识,方法是否掌握得很好。如果你掌握得不准,甚至有偏差,那么多做题的结果,反而巩固了你的缺欠,因此,要在准确地把握住基本知识和方法的基础上做一定量的定式训练是必要的`。尽管复习时间紧张,但我们仍然要注意回归课本。要抓纲悟本,对着课本目录回忆和梳理知识,把重点放在掌握例题涵盖的知识及解题方法上,选择一些针对性极强的题目进行强化训练、复习才有实效。 3.养成良好的学习习惯 学习高三数学必须养成良好的审解题解题习惯,如仔细阅读题目,xxx数字,规范解题格式,做到审题要慢解题要快,注重过程,书写不规范,在正规考试中即使答案对了,由于过程不完整被扣分较多,导致“会而不对”,或是为了保证正确率,反复验算,浪费很多时间,影响整体得分。这些问题都很难在短时间得以解决,必须在平时下功夫努力改正。其实这是一种不良的学习习惯,必须在第一轮复习中逐步克服,否则,后患无穷。可结合平时解题中存在的具体问题,逐题找出原因,看其是行为习惯方面的原因,还是知识方面的缺陷,再有针对性加以解决。必要时作些记录,也就是错题本,每位学生必备的,以便以后查询。 空间两条直线只有三种位置关系:平行、相交、异面 按是否共面可分为两类: (1)共面:平行、相交 (2)异面: 异面直线的定义:不同在任何一个平面内的两条直线或既不平行也不相交。 异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。 两异面直线xxx的角:范围为(0°,90°)esp.空间向量法 两异面直线间距离:公垂线段(有且只有一条)esp.空间向量法 若从有无公共点的角度看可分为两类: (1)有且仅有一个公共点——相交直线; (2)没有公共点——平行或异面 直线和平面的位置关系: 直线和平面只有三种位置关系:在平面内、与平面相交、与平面平行 ①直线在平面内——有无数个公共点 ②直线和平面相交——有且只有一个公共点 直线与平面xxx的角:平面的一条斜线和它在这个平面内的射影xxx的锐角。 空间向量法(找平面的法向量) 规定: a、直线与平面垂直时,xxx的角为直角, b、直线与平面平行或在平面内,xxx的角为0°角 由此得直线和平面xxx角的取值范围为[0°,90°] 最小角定理:斜线与平面xxx的角是斜线与该平面内任一条直线xxx角中的最小角 三垂线定理及逆定理:如果平面内的一条直线,与这个平面的一条斜线的.射影垂直,那么它也与这条斜线垂直 直线和平面垂直 直线和平面垂直的定义:如果一条直线a和一个平面内的任意一条直线都垂直,我们就说直线a和平面互相垂直.直线a叫做平面的垂线,平面叫做直线a的垂面。 直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。 直线与平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。 ③直线和平面平行——没有公共点 直线和平面平行的定义:如果一条直线和一个平面没有公共点,那么我们就说这条直线和这个平面平行。 直线和平面平行的判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。 直线和平面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。 等比数列:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0)。 1:等比数列通项公式:an=a1_q^(n-1);推广式:an=am·q^(n-m); 2:等比数列求和公式:等比求和:Sn=a1+a2+a3+.......+an ①当q≠1时,Sn=a1(1-q^n)/(1-q)或Sn=(a1-an×q)÷(1-q) ②当q=1时,Sn=n×a1(q=1)记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1 3:等比中项:aq·ap=ar^2,ar则为ap,aq等比中项。 4:性质: ①若m、n、p、q∈N,且m+n=p+q,则am·an=ap_aq; ②在等比数列中,依次每k项之和xxx等比数列. 例题:设ak,al,am,an是等比数列中的第k、l、m、n项,若k+l=m+n,求证:ak_al=am_an 证明:设等比数列的首项为a1,公比为q,则ak=a1·q^(k-1),al=a1·q^(l-1),am=a1·q^(m-1),an=a1·q^(n-1) 所以:ak_al=a^2_q^(k+l-2),am_an=a^2_q(m+n-2),故:ak_al=am_an 说明:这个例题是等比数列的一个重要性质,它在解题中常常会用到。它说明等比数列中距离两端(首末两项)距离等远的两项的乘积等于首末两项的乘积,即:a(1+k)·a(n-k)=a1·an 对于等差数列,同样有:在等差数列中,距离两端等这的两项之和等于首末两项之和。即:a(1+k)+a(n-k)=a1+an 高考数学导数知识点 (一)导数第一定义 设函数y = f(x)在点x0的某个领域内有定义,当自变量x在x0处有增量△x(x0 + △x也在该邻域内)时,相应地函数取得增量△y = f(x0 + △x)— f(x0);如果△y与△x之比当△x→0时极限存在,则称函数y = f(x)在点x0处可导,并称这个极限值为函数y = f(x)在点x0处的导数记为f'(x0),即导数第一定义 (二)导数第二定义 设函数y = f(x)在点x0的某个领域内有定义,当自变量x在x0处有变化△x(x — x0也在该邻域内)时,相应地函数变化△y = f(x)— f(x0);如果△y与△x之比当△x→0时极限存在,则称函数y = f(x)在点x0处可导,并称这个极限值为函数y = f(x)在点x0处的导数记为f'(x0),即导数第二定义 (三)导函数与导数 如果函数y = f(x)在开区间I内每一点都可导,就称函数f(x)在区间I内可导。这时函数y = f(x)对于区间I内的每一个确定的x值,都对应着一个确定的导数,这就构成一个新的函数,称这个函数为原来函数y = f(x)的导函数,记作y',f'(x),dy/dx,df(x)/dx。导函数简称导数。 (四)单调性及其应用 1。利用导数研究多项式函数单调性的一般步骤 (1)求f¢(x) (2)确定f¢(x)在(a,b)内符号(3)若f¢(x)>0在(a,b)上xxx,则f(x)在(a,b)上是增函数;若f¢(x)<0在(a,b)上xxx,则f(x)在(a,b)上是减函数 2。用导数求多项式函数单调区间的一般步骤 (1)求f¢(x) (2)f¢(x)>0的解集与定义域的交集的对应区间为增区间;f¢(x)<0的解集与定义域的交集的对应区间为减区间 高中数学重难点知识点 高中数学包含5本必修、2本选修,(理)包含5本必修、3本选修,每学期学习两本书。 必修一:1、集合与函数的概念(这部分知识抽象,较难理解)2、基本的初等函数(指数函数、对数函数)3、函数的性质及应用(比较抽象,较难理解) 必修二:1、立体几何(1)、证明:垂直(多考查面面垂直)、平行(2)、求解:主要是夹角问题,包括线面角和面面角 这部分知识是高一学生的难点,比如:一个角实际上是一个锐角,但是在图中显示的钝角等等一些问题,需要学生的立体意识较强。这部分知识高考占22———27分 2、直线方程:高考时不单独命题,易和圆锥曲线结合命题 3、圆方程: 必修三:1、算法初步:高考必考内容,5分(选择或填空)2、统计:3、概率:高考必考内容,09年理科占到15分,文科数学占到5分 必修四:1、三角函数:(图像、性质、高中重难点,)必考大题:15———20分,并且经常和其他函数混合起来考查 2、平面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。09年理科占到5分,xxx到13分 必修五:1、解xxx:(正、xxx定理、三角恒等变换)高考中理科占到22分左右,文科数学占到13分左右2、数列:高考必考,17———22分3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。高考必考5分)不等式不单独命题,一般和函数结合求最值、解集。 高中数学知识点大全 一、集合与简易逻辑 1、集合的元素具有确定性、无序性和互异性。 2、对集合,时,必须注意到“极端”情况:或;求集合的子集时是否注意到是任何集合的子集、是任何非空集合的真子集。 3、判断命题的真假关键是“抓住关联字词”;注意:“不‘或’即‘且’,不‘且’即‘或’”。 4、“或命题”的真假特点是“一真即真,要假全假”;“且命题”的真假特点是“一假即假,要真全真”;“非命题”的真假特点是“一真一假”。 5、四种命题中“‘逆’者‘交换’也”、“‘否’者‘否定’也”。 原命题等价于逆否命题,但原命题与逆命题、否命题都不等价。反证法分为三步:假设、推矛、得果。 6、充要条件 二、函数 1、指数式、对数式, 2、(1)映射是“‘全部射出’加‘一箭一雕’”;映射中第一个集合中的元素必有像,但第二个集合中的元素不一定有原像(中元素的像有且仅有下一个,但中元素的原像可能没有,也可任意个);函数是“非空数集上的映射”,其中“值域是映射中像集的子集”。 (2)函数图像与轴垂线至多一个公共点,但与轴垂线的公共点可能没有,也可任意个。 (3)函数图像一定是坐标系中的曲线,但坐标系中的曲线不一定能成为函数图像。 3、单调性和奇偶性 (1)奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同。 偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相反。 (2)复合函数的单调性特点是:“同性得增,增必同性;异性得减,减必异性”。 复合函数的奇偶性特点是:“内偶则偶,xxx同外”。复合函数要考虑定义域的变化。(即复合有意义) 4、对称性与周期性(以下结论要消化吸收,不可强记) (1)函数与函数的图像关于直线(轴)对称。 推广一:如果函数对于一切,都有成立,那么的图像关于直线(由“和的一半确定”)对称。 推广二:函数,的图像关于直线对称。 (2)函数与函数的图像关于直线(轴)对称。 (3)函数与函数的图像关于坐标原点中心对称。 三、数列 1、数列的通项、数列项的项数,递推公式与递推数列,数列的通项与数列的前项和公式的关系 2、等差数列中 (1)等差数列公差的取值与等差数列的单调性。 (2)也成等差数列。 (3)两等差数列对应项和(差)组成的新数列xxx等差数列。 (4)xxx等差数列。 (5)“首正”的递等差数列中,前项和的最大值是所有非负项之和;“首负”的递增等差数列中,前项和的最小值是所有非正项之和; (6)有限等差数列中,奇数项和与偶数项和的存在必然联系,由数列的总项数是偶数还是奇数决定。若总项数为偶数,则“偶数项和“奇数项和=总项数的一半与其公差的积;若总项数为奇数,则“奇数项和—偶数项和”=此数列的中项。 (7)两数的等差中项惟一存在。在遇到三数或四数成等差数列时,常考虑选用“中项关系”转化求解。 (8)判定数列是否是等差数列的主要方法有:定义法、中项法、通项法、和式法、图像法(也就是说数列是等差数列的充要条件主要有这五种形式)。 3、等比数列中: (1)等比数列的符号特征(全正或全负或一正一负),等比数列的首项、公比与等比数列的单调性。 (2)两等比数列对应项积(商)组成的新数列xxx等比数列。 (3)“首大于1”的正值递减等比数列中,前项积的最大值是所有大于或等于1的项的积;“首小于1”的正值递增等比数列中,前项积的最小值是所有小于或等于1的项的积; (4)有限等比数列中,奇数项和与偶数项和的存在必然联系,由数列的总项数是偶数还是奇数决定。若总项数为偶数,则“偶数项和”=“奇数项和”与“公比”的积;若总项数为奇数,则“奇数项和“首项”加上“公比”与“偶数项和”积的和。 (5)并非任何两数总有等比中项。仅当实数同号时,实数存在等比中项。对同号两实数的等比中项不仅存在,而且有一对。也就是说,两实数要么没有等比中项(非同号时),如果有,必有一对(同号时)。在遇到三数或四数成等差数列时,常优先考虑选用“中项关系”转化求解。 (6)判定数列是否是等比数列的方法主要有:定义法、中项法、通项法、和式法(也就是说数列是等比数列的充要条件主要有这四种形式)。 4、等差数列与等比数列的联系 (1)如果数列成等差数列,那么数列(总有意义)xxx等比数列。 (2)如果数列成等比数列,那么数列xxx等差数列。 (3)如果数列xxx等差数列又成等比数列,那么数列是非零常数数列;但数列是常数数列仅是数列xxx等差数列又成等比数列的必要非充分条件。 (4)如果两等差数列有公共项,那么由他们的公共项顺次组成的新数列也是等差数列,且新等差数列的公差是原两等差数列公差的最小公倍数。 如果一个等差数列与一个等比数列有公共项顺次组成新数列,那么常选用“由特殊到一般的方法”进行研讨,且以其等比数列的项为主,探求等比数列中那些项是他们的公共项,并构成新的数列。 5、数列求和的常用方法: (1)公式法:①等差数列求和公式(三种形式), ②等比数列求和公式(三种形式), (2)分组求和法:在直接运用公式法求和有困难时,常将“和式”中“同类项”先合并在一起,再运用公式法求和。 (3)倒序相加法:在数列求和中,若和式中到首尾距离相等的两项和有其共性或数列的通项与组合数相关联,则常可考虑选用倒序相加法,发挥其共性的作用求和(这也是等差数列前和公式的推导方法)。 (4)错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构成,那么常选用错位相减法,将其和转化为“一个新的的等比数列的和”求解(注意:一般错位相减后,其中“新等比数列的项数是原数列的项数减一的差”!)(这也是等比数列前和公式的推导方法之一)。 (5)裂项相消法:如果数列的通项可“分裂成两项差”的形式,且相邻项分裂后相关联,那么常选用裂项相消法求和 (6)通项转换法。 四、三角函数 1、终边与终边相同(的终边在终边所在射线上)。 终边与终边共线(的终边在终边所在直线上)。 终边与终边关于轴对称 终边与终边关于轴对称 终边与终边关于原点对称 一般地:终边与终边关于角的终边对称。 与的终边关系由“两等分各象限、一二三四”确定。 2、弧长公式:,扇形面积公式:1弧度(1rad)。 3、三角函数符号特征是:一是全正、二正弦正、三是切正、四xxx正。 4、三角函数线的特征是:正弦线“站在轴上(起点在轴上)”、xxx线“躺在轴上(起点是原点)”、正切线“站在点处(起点是)”。务必重视“三角函数值的大小与单位圆上相应点的坐标之间的关系,‘正弦’‘纵坐标’、‘xxx’‘横坐标’、‘正切’‘纵坐标除以横坐标之商’”;务必记住:单位圆中角终边的变化与值的大小变化的关系为锐角 5、三角函数同角关系中,平方关系的运用中,务必重视“根据已知角的范围和三角函数的取值,精确确定角的范围,并进行定号”; 6、三角函数诱导公式的本质是:奇变偶不变,符号看象限。 7、三角函数变换主要是:角、函数名、次数、系数(常值)的变换,其核心是“角的变换”! 角的变换主要有:已知角与特殊角的变换、已知角与目标角的变换、角与其倍角的变换、两角与其和差角的变换。 8、三角函数性质、图像及其变换: (1)三角函数的定义域、值域、单调性、奇偶性、有界性和周期性 注意:正切函数、余切函数的定义域;绝对值对三角函数周期性的影响:一般说来,某一周期函数解析式加绝对值或平方,其周期性是:弦减半、切不变。既为周期函数又是偶函数的函数自变量加绝对值,其周期性不变;其他不定。如的周期都是,但的周期为,y=|tanx|的周期不变,问函数y=cos|x|,,y=cos|x|是周期函数吗? (2)三角函数图像及其几何性质: (3)三角函数图像的变换:两轴方向的平移、伸缩及其向量的平移变换。 (4)三角函数图像的作法:三角函数线法、五点法(五点横坐标成等差数列)和变换法。 9、xxx中的三角函数: (1)内角和定理:xxx三角和为,任意两角和与第三个角总互补,任意两半角和与第三个角的半角总互余。锐角xxx三内角都是锐角三内角的xxx值为正值任两角和都是钝角任意两边的平方和大于第三边的平方。 (2)正弦定理:(R为xxx外接圆的半径)。 (3)xxx定理:常选用xxx定理鉴定xxx的类型。 五、向量 1、向量运算的几何形式和坐标形式,请注意:向量运算中向量起点、终点及其坐标的特征。 2、几个概念:零向量、单位向量(与共线的单位向量是,平行(共线)向量(无传递性,是因为有)、相等向量(有传递性)、相反向量、向量垂直、以及一个向量在另一向量方向上的投影(在上的投影是)。 3、两非零向量平行(共线)的充要条件 4、平面向量的基本定理:如果e1和e2是同一平面内的两个不共线向量,那么对该平面内的任一向量a,有且只有一对实数,使a= e1+ e2。 5、三点共线; 6、向量的数量积: 六、不等式 1、(1)解不等式是求不等式的解集,最后务必有集合的形式表示;不等式解集的端点值往往是不等式对应方程的根或不等式有意义范围的端点值。 (2)解分式不等式的一般解题思路是什么?(移项通分,分子分母分解因式,x的系数变为正值,标根及奇穿过偶弹回); (3)含有两个绝对值的不等式如何去绝对值?(一般是根据定义分类讨论、平方转化或换元转化); (4)解含参不等式常分类等价转化,必要时需分类讨论。注意:按参数讨论,最后按参数取值分别说明其解集,但若按未知数讨论,最后应求并集。 2、利用重要不等式以及变式等求函数的最值时,务必注意a,b(或a,b非负),且“等号成立”时的条件是积ab或和a+b其中之一应是定值(一正二定三等四同时)。 3、常用不等式有:(根据目标不等式左右的运算结构选用) a、b、c R,(当且仅当时,取等号) 4、比较大小的方法和证明不等式的方法主要有:差比较法、商比较法、函数性质法、综合法、分析法 5、含绝对值不等式的性质: 6、不等式的xxx,能成立,恰成立等问题 (1)xxx问题 若不等式在区间上xxx,则等价于在区间上 若不等式在区间上xxx,则等价于在区间上 (2)能成立问题 (3)恰成立问题 若不等式在区间上恰成立,则等价于不等式的解集为。 若不等式在区间上恰成立,则等价于不等式的解集为, 七、直线和圆 1、直线倾斜角与斜率的存在性及其取值范围;直线方向向量的意义(或)及其直线方程的向量式((为直线的方向向量))。应用直线方程的点斜式、斜截式设直线方程时,一般可设直线的斜率为k,但你是否注意到直线垂直于x轴时,即斜率k不存在的情况? 2、知直线纵截距,常设其方程为或;知直线横截距,常设其方程为(直线斜率k存在时,为k的倒数)或知直线过点,常设其方程为。 (2)直线在坐标轴上的截距可正、可负、也可为0。直线两截距相等直线的斜率为—1或直线过原点;直线两截距互为相反数直线的斜率为1或直线过原点;直线两截距绝对值相等直线的斜率为或直线过原点。 (3)在解析几何中,研究两条直线的位置关系时,有可能这两条直线重合,而在立体几何中一般提到的`两条直线可以理解为它们不重合。 3、相交两直线的夹角和两直线间的到角是两个不同的概念:夹角特指相交两直线xxx的较小角,范围是。而其到角是带有方向的角,范围是 4、线性规划中几个概念:约束条件、可行解、可行域、目标函数、最优解。 5、圆的方程:最简方程;标准方程; 6、解决直线与圆的关系问题有“函数方程思想”和“数形结合思想”两种思路,等价转化求解,重要的是发挥“圆的平面几何性质(如半径、半弦长、弦心距构成直角xxx,切线长定理、割线定理、弦切角定理等等)的作用!” (1)过圆上一点圆的切线方程 过圆上一点圆的切线方程 过圆上一点圆的切线方程 如果点在圆外,那么上述直线方程表示过点两切线上两切点的“切点弦”方程。 如果点在圆内,那么上述直线方程表示与圆相离且垂直于(为圆心)的直线方程,(为圆心到直线的距离)。 7、曲线与的交点坐标方程组的解; 过两圆交点的圆(公共弦)系为,当且仅当无平方项时,为两圆公共弦所在直线方程。 八、圆锥曲线 1、圆锥曲线的两个定义,及其“括号”内的限制条件,在圆锥曲线问题中,如果涉及到其两焦点(两相异定点),那么将优先选用圆锥曲线第一定义;如果涉及到其焦点、准线(一定点和不过该点的一定直线)或离心率,那么将优先选用圆锥曲线第二定义;涉及到焦点xxx的问题,也要重视焦半径和xxx中正xxx定理等几何性质的应用。 (1)注意:①圆锥曲线第一定义与配方法的综合运用; ②圆锥曲线第二定义是:“点点距为分子、点线距为分母”,椭圆点点距除以点线距商是小于1的正数,双曲线点点距除以点线距商是大于1的正数,抛物线点点距除以点线距商是等于1。 2、圆锥曲线的几何性质:圆锥曲线的对称性、圆锥曲线的范围、圆锥曲线的特殊点线、圆锥曲线的变化趋势。其中,xxx、双曲线中。 重视“特征直角xxx、焦半径的最值、焦点弦的最值及其‘顶点、焦点、准线等相互之间与坐标系无关的几何性质’”,尤其是双曲线中焦半径最值、焦点弦最值的特点。 3、在直线与圆锥曲线的位置关系问题中,有“函数方程思想”和“数形结合思想”两种思路,等价转化求解。特别是: ①直线与圆锥曲线相交的必要条件是他们构成的方程组有实数解,当出现一元二次方程时,务必“判别式≥0”,尤其是在应用韦达定理解决问题时,必须先有“判别式≥0”。 ②直线与抛物线(相交不一定交于两点)、双曲线位置关系(相交的四种情况)的特殊性,应谨慎处理。 ③在直线与圆锥曲线的位置关系问题中,常与“弦”相关,“平行弦”问题的关键是“斜率”、“中点弦”问题关键是“韦达定理”或“小小直角xxx”或“点差法”、“长度(弦长)”问题关键是长度(弦长)公式 ④如果在一条直线上出现“三个或三个以上的点”,那么可选择应用“斜率”为桥梁转化。 4、要重视常见的寻求曲线方程的方法(待定系数法、定义法、直译法、代点法、参数法、交轨法、向量法等),以及如何利用曲线的方程讨论曲线的几何性质(定义法、几何法、代数法、方程函数思想、数形结合思想、分类讨论思想和等价转化思想等),这是解析几何的两类基本问题,也是解析几何的基本出发点。 注意:①如果问题中涉及到平面向量知识,那么应从已知向量的特点出发,考虑选择向量的几何形式进行“摘帽子或脱靴子”转化,还是选择向量的代数形式进行“摘帽子或脱靴子”转化。 ②曲线与曲线方程、轨迹与轨迹方程是两个不同的概念,寻求轨迹或轨迹方程时应注意轨迹上特殊点对轨迹的“完备性与纯粹性”的影响。 ③在与圆锥曲线相关的综合题中,常借助于“平面几何性质”数形结合(如角平分线的双重身份)、“方程与函数性质”化解析几何问题为代数问题、“分类讨论思想”化整为零分化处理、“求值构造等式、求变量范围构造不等关系”等等。 九、直线、平面、简单多面体 1、计算异面直线xxx角的关键是平移(补形)转化为两直线的夹角计算 2、计算直线与平面xxx的角关键是作面的垂线找射影,或向量法(直线上向量与平面法向量夹角的余角),三xxx公式(最小角定理),或先运用等积法求点到直线的距离,后虚拟直角xxx求解。注:一斜线与平面上以斜足为顶点的角的两边xxx角相等斜线在平面上射影为角的平分线。 3、空间平行垂直关系的证明,主要依据相关定义、公理、定理和空间向量进行,请重视线面平行关系、线面垂直关系(三垂线定理及其逆定理)的桥梁作用。注意:书写证明过程需规范。 4、直棱柱、正棱柱、平行六面体、长方体、正方体、正四面体、棱锥、正棱锥关于侧棱、侧面、对角面、平行于底的截面的几xxx性质。 如长方体中:对角线长,棱长总和为,全(表)面积为,(结合可得关于他们的等量关系,结合基本不等式还可建立关于他们的不等xxx), 如三棱锥中:侧棱长相等(侧棱与底面xxx角相等)顶点在底上射影为底面外心,侧棱两两垂直(两对对棱垂直)顶点在底上射影为底面垂心,斜高长相等(侧面与底面xxx相等)且顶点在底上在底面内顶点在底上射影为底面内心。 5、求几xxx体积的常规方法是:公式法、割补法、等积(转换)法、比例(性质转换)法等。注意:补形:三棱锥三棱柱平行六面体 6、多面体是由若干个多边形围成的几xxx。棱柱和棱锥是特殊的多面体。 正多面体的每个面都是相同边数的正多边形,以每个顶点为其一端都有相同数目的棱,这样的多面体只有五种,即正四面体、正六面体、正八面体、正十二面体、正二十面体。 7、球体积公式。球表面积公式,是两个关于球的几何度量公式。它们都是球半径及的函数。 十、导数 1、导数的意义:曲线在该点处的切线的斜率(几何意义)、瞬时速度、边际成本(成本为因变量、产量为自变量的函数的导数,C为常数) 2、多项式函数的导数与函数的单调性 在一个区间上(个别点取等号)在此区间上为增函数。 在一个区间上(个别点取等号)在此区间上为减函数。 3、导数与极值、导数与最值: (1)函数处有且“左正右负”在处取极大值; 函数在处有且左负右正”在处取极小值。 注意:①在处有是函数在处取极值的必要非充分条件。 ②求函数极值的方法:先找定义域,再求导,找出定义域的分界点,列表求出极值。特别是给出函数极大(小)值的条件,一定要既考虑,又要考虑验“左正右负”(“左负右正”)的转化,否则条件没有用完,这一点一定要切记。 ③单调性与最值(极值)的研究要注意列表! (2)函数在一闭区间上的最大值是此函数在此区间上的极大值与其端点值中的“最大值” 函数在一闭区间上的最小值是此函数在此区间上的极小值与其端点值中的“最小值”; 注意:利用导数求最值的步骤:先找定义域再求出导数为0及导数不存在的的点,然后比较定义域的端点值和导数为0的点对应函数值的大小,其中最大的就是最大值,最小就为最小。高中数学所有知识点总结 第23篇
高中数学所有知识点总结 第24篇
高中数学所有知识点总结 第25篇
高中数学所有知识点总结 第26篇
高中数学所有知识点总结 第27篇
高中数学所有知识点总结 第28篇
高中数学所有知识点总结 第29篇
高中数学所有知识点总结 第30篇
高中数学所有知识点总结 第31篇
高中数学所有知识点总结 第32篇
高中数学所有知识点总结 第33篇
高中数学所有知识点总结 第34篇