高一数学向量知识点总结 第1篇
(1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。
(2)指数函数的值域为大于0的实数集合。
(3)函数图形都是下凹的。
(4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。
(5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能xxx于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。
(6)函数总是在某一个方向上无限趋向于X轴,永不相交。
(7)函数总是通过(0,1)这点。
(8)显然指数函数无界。
奇偶性
一般地,对于函数f(x)
(1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。
(2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。
(3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。
(4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。
对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:
首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。当指数n是负整数时,设a=-k,则x=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:
排除了为0与负数两种可能,即对于x>0,则a可以是任意实数;
排除了为0这种可能,即对于x<0和x>0的所有实数,q不能是偶数;
排除了为负数这种可能,即对于x为大于且xxx于0的所有实数,a就不能是负数。
总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;
如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不xxx于0的所有实数。
在x大于0时,函数的值域总是大于0的实数。
在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。
而只有a为正数,0才进入函数的值域。
由于x大于0是对a的任意取值都有意义的,因此下面给出幂函数在第一象限的各自情况.
可以看到:
(1)所有的图形都通过(1,1)这点。
(2)当a大于0时,幂函数为单调递增的,而a小于0时,幂函数为单调递减函数。
(3)当a大于1时,幂函数图形下凹;当a小于1大于0时,幂函数图形上凸。
(4)当a小于0时,a越小,图形倾斜程度越大。
(5)a大于0,函数过(0,0);a小于0,函数不过(0,0)点。
(6)显然幂函数无界。
定义:
x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。
范围:
倾斜角的取值范围是0°≤α<180°。
理解:
(1)注意“两个方向”:直线向上的方向、x轴的正方向;
(2)规定当直线和x轴平行或重合时,它的倾斜角为0度。
意义:
①直线的倾斜角,体现了直线对x轴正向的倾斜程度;
②在平面直角坐标系中,每一条直线都有一个确定的倾斜角;
③倾斜角相同,未必表示同一条直线。
公式:
k=tanα
k>0时α∈(0°,90°)
k<0时α∈(90°,180°)
k=0时α=0°
当α=90°时k不存在
ax+by+c=0(a≠0)倾斜角为A,
则tanA=-a/b,
A=arctan(-a/b)
当a≠0时,
倾斜角为90度,即与X轴垂直
高一数学向量知识点总结 第2篇
四心向量式
ps:没错,很全,记忆得话就想象成向量带一个屁股
例设H是\triangle ABC的垂心,且3\vec{HA}+4\vec{HB}+5\vec{HC}=\vec{0},则cos\angle BHC的值为
解:由垂心性质可得\vec{HA}\cdot\vec{HB}=\vec{HB}\cdot\vec{HC}=\vec{HC}\cdot\vec{HA},\\不妨设\vec{HA}\cdot\vec{HB}=\vec{HB}\cdot\vec{HC}=\vec{HC}\cdot\vec{HA}=x\\有3\vec{HA}+4\vec{HB}+5\vec{HC}=\vec{0}\\所以3\vec{HA}\cdot\vec{HB}+4\vec{HB}^2+5\vec{HB}\cdot\vec{HC}=0\\|\vec{HB}|=\sqrt{-2x},同理可得|\vec{HC}|=\sqrt{-\frac{7x}{5}}\\所以cos\angle BHC=\frac{\vec{HB}\cdot\vec{HC}}{|\vec{HB}||\vec{HC|}}=-\frac{\sqrt{70}}{14}
习题已知\triangle ABC外接圆的圆心为O,且\angle A=\frac{\pi}{3},若\vec{AO}=\alpha\vec{AB}+\beta\vec{AC},则实数\alpha+\beta的最大值为
例\triangle ABC中P满足\vec{PA}+2\vec{PB}+3\vec{PC}=\vec{0},则在\triangle ABC内洒黄豆,落在\triangle PBC的概率为
解:由奔驰定理可得S_{A}:S_B:S_C=1:2:3\\于是\frac{S_A}{S_总}=\frac{1}{6}
ps:水题一道
例是\triangle ABC所在平面内一点,动点P满足\vec{OP}=\vec{OA}+\lambda(\frac{\vec{AB}}{|\vec{AB}|sinB}+\frac{\vec{AC}}{|\vec{AC}|sinC})(\lambda\in(0,+\infty)),\\则动点P一定通过\triangle ABC的
解:作AD\bot BC,由于|\vec{AB}|sinB=|\vec{AC}|sinC=AD,所以\\\vec{OA}+\lambda(\frac{\vec{AB}}{|\vec{AB}|sinB}+\frac{\vec{AC}}{|\vec{AC}|sinC})=\vec{OA}+\frac{\lambda}{|AD|}(\vec{AB}+\vec{AC}),\\由向量加法法则可知P一定在三角形中线上,所以经过重心
ps:此外还有很多关于三心的题目各位大佬可自行寻找
高一数学向量知识点总结 第3篇
例已知|\vec{a}|=2,|\vec{b}|=3,|\vec{e}|=1,且\vec{a}\cdot\vec b-(\vec a+\vec b)\cdot \vec e+3=0,则 \vec a \cdot \vec b的取值范围是
解:(\vec a+\vec b-\vec e)^2=\vec a^2+\vec b^2+\vec e^2+2\vec a\cdot\vec b-2\vec a\cdot\vec e-2\vec b\cdot \vec e\\则\vec a\cdot\vec b-\vec a\cdot\vec e-\vec b\cdot \vec e=\frac{(\vec a+\vec b-\vec e)^2-14}{2},由题意可得\\\frac{(\vec a+\vec b-\vec e)^2-14}{2}+3=0,则(\vec a+\vec b-\vec e)=8,|\vec a+\vec b-\vec e|\\=2\sqrt{2},由绝对值三角不xxx式可得|\vec a+\vec b|-|\vec{e}|\leq|\vec a+\vec b-\vec e|\leq|\vec a+\vec b|+|\vec{e}|\\因此2\sqrt{2}-1\leq|\vec a+\vec b|\leq2\sqrt{2}+1,从而9-4\sqrt{2}\leq13+2\vec a\cdot\vec b\leq9+4\sqrt{2}\\故\vec a\cdot\vec b\in[-2\sqrt{2}-2,2\sqrt{2-2}]
例设圆O,圆O_{1}半径都为1,且相外切,其切点为P,\\点A,B分别在圆O,圆O_{1}上,且\vec{PA}\cdot\vec{PB}的最大值为
解:平移到如图所示
因此\vec{PA}\cdot\vec {PB}=\vec{PA}\cdot\vec {B_{1}P}=(\vec{OA}-\vec{OP})(\vec{OP}-\vec{OB_{1}})\\=\vec{OA}\cdot\vec {OP}-\vec{OA}\cdot\vec {OB_1}-\vec{OP}^2+\vec{OP}\cdot\vec {OB_{1}}\\=-\vec{OA}\cdot\vec {OP}-\vec{OA}\cdot\vec {OB_1}+\vec{OP}\cdot\vec {OB_{1}}-1
三数平方(\vec{OA}+\vec{OB_{1}}-\vec{OP})^2=\vec{OA}^2+\vec{OB_{1}}^2+\vec{OP}^2+2(-\vec{OA}\cdot\vec {OP}+\vec{OA}\cdot\vec {OB_1}-\vec{OP}\cdot\vec {OB_{1}})\\于是-\vec{OA}\cdot\vec {OP}+\vec{OA}\cdot\vec {OB_1}-\vec{OP}\cdot\vec {OB_{1}}=\frac{(\vec{OA}+\vec{OB_{1}}-\vec{OP})^2-3}{2}\\因此-\vec{OA}\cdot\vec {OP}+\vec{OA}\cdot\vec {OB_1}-\vec{PA}\cdot\vec {B_{1}P}=\frac{3-(\vec{OA}+\vec{OB_{1}}-\vec{OP})^2}{2}-1\leq\frac{3}{2}-1=\frac{1}{2}\\当\vec{OA}+\vec{OB_1}-\vec{OP}=\vec 0时取得xxx号
习题圆O是半径为1的圆,\vec{OA}=\frac{1}{2},设B,C为圆上任意两点,则\vec{AC}\cdot\vec{BC}的取值范围是
(答案为 [-\frac{1}{8},3] )
习题若向量\vec{a},\vec{b},\vec{c},满足|\vec{a}|=1,|\vec{b}|=|\vec{c}|=2,则(\vec{c}-\vec{a})(\vec{c}-\vec{b})的取值范围是
(答案为 [-\frac{1}{2},12] )
高一数学向量知识点总结 第4篇
向量公式:
1.单位向量:单位向量a0=向量a/|向量a|
(x,y)那么向量OP=x向量i+y向量j
|向量OP|=根号(x平方+y平方)
(x1,y1)P2(x2,y2)
那么向量P1P2={x2-x1,y2-y1}
|向量P1P2|=根号[(x2-x1)平方+(y2-y1)平方]
4.向量a={x1,x2}向量b={x2,y2}
向量a*向量b=|向量a|*|向量b|*Cosα=x1x2+y1y2
Cosα=向量a*向量b/|向量a|*|向量b|
(x1x2+y1y2)
=————————————————————
根号(x1平方+y1平方)*根号(x2平方+y2平方)
5.空间向量:同上推论
(提示:向量a={x,y,z})
6.充要条件:
如果向量a⊥向量b
那么向量a*向量b=0
如果向量a//向量b
那么向量a*向量b=±|向量a|*|向量b|
或者x1/x2=y1/y2
7.|向量a±向量b|平方
=|向量a|平方+|向量b|平方±2向量a*向量b
=(向量a±向量b)平方
数乘向量
实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣∣a∣。
当λ>0时,λa与a同方向;
当λ<0时,λa与a反方向;
当λ=0时,λa=0,方向任意。
当a=0时,对于任意实数λ,都有λa=0。
注:按定义知,如果λa=0,那么λ=0或a=0。
实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。
当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍;
当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。
数与向量的乘法满足下面的运算律
结合律:(λa)b=λ(ab)=(aλb)。
向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.
数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.
数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b。② 如果a≠0且λa=μa,那么λ=μ。
向量的加法
向量的加法满足平行四边形法则和三角形法则。
AB+BC=AC。
a+b=(x+x',y+y')。
a+0=0+a=a。
向量加法的运算律:
交换律:a+b=b+a;
结合律:(a+b)+c=a+(b+c)。
向量的减法如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0 AB-AC=CB. 即“共同起点,指向被减” a=(x,y) b=(x',y') 则 a-b=(x-x',y-y').
高一数学向量知识点总结 第5篇
向量:既有大小,又有方向的量.
数量:只有大小,没有方向的量.
有向线段的三要素:起点、方向、长度.
零向量:长度为的向量.
单位向量:长度xxx于个单位的向量.
相xxx向量:长度相xxx且方向相同的向量
&向量的运算
加法运算
AB+BC=AC,这种计算法则叫做向量加法的三角形法则。
已知两个从同一点O出发的两个向量OA、OB,以OA、OB为邻边作平行四边形OACB,则以O为起点的对角线OC就是向量OA、OB的和,这种计算法则叫做向量加法的平行四边形法则。
对于零向量和任意向量a,有:0+a=a+0=a。
|a+b|≤|a|+|b|。
向量的加法满足所有的加法运算定律。
减法运算
与a长度相xxx,方向相反的向量,叫做a的相反向量,-(-a)=a,零向量的相反向量仍然是零向量。
(1)a+(-a)=(-a)+a=0(2)a-b=a+(-b)。
数乘运算
实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa,|λa|=|λ||a|,当λ >0时,λa的方向和a的方向相同,当λ< 0时,λa的方向和a的方向相反,当λ = 0时,λa = 0。
设λ、μ是实数,那么:(1)(λμ)a = λ(μa)(2)(λμ)a = λa μa(3)λ(a ± b) = λa ±λb(4)(-λ)a =-(λa) = λ(-a)。
向量的加法运算、减法运算、数乘运算统称线性运算。
向量的数量积
已知两个非零向量a、b,那么|a||b|cos θ叫做a与b的数量积或内积,记作a?b,θ是a与b的夹角,|a|cos θ(|b|cos θ)叫做向量a在b方向上(b在a方向上)的投影。零向量与任意向量的数量积为0。
的几何意义:数量积xxx于a的长度|a|与b在a的方向上的投影|b|cosθ的乘积。
两个向量的数量积xxx于它们对应坐标的乘积的和。
<<<返回目录
高一数学向量知识点总结 第6篇
例在矩形ABCD中,AB=1,AD=2,动点P在以点C为圆心且与BD相切的圆上,\\若\vec AP=\lambda\vec{AB}+\mu{\vec AD}则\lambda+\mu的最大值为
解:根据xxx和线可知当 \lambda+\mu 最大时,其xxx和弦在圆的另一端且与其相切,即可快速找出P点位置,如图
在根据比例即可算出 \lambda+\mu=\frac{A到xxx和线所在的距离}{A到BD的距离} ,故最大值为3
(原被改放为)例已知矩形ABCD中,AB=4,AD=3,动点M、N分别在射线CB,\\CD上运动,且满足\frac{1}{CM^2}+\frac{1}{CN^2}=1对角线AC交MN于点P,\\设\vec{AP}=x\vec{AB}+y\vec{AD},则x+y的最大值是
解:由\frac{1}{CM^2}+\frac{1}{CN^2}=1,可知CM^{2}+CN^{2}=CM^{2}\cdot CN^{2}\\即|MN|=|CM|\cdot|CN|,2S_{\triangle MCN}=|CM||CN|=|MN|d,则点C到MN\\的距离为1,则|CP|\geq1,故|AP|\leq4,则由xxx和线可知x+y=\frac{|AP|}{|AE|}=\\\frac{|AP|}{}\leq\frac{8}{5}
习题已知点G为\triangle ABC的重心,过G点作直线与AB,AC两边交于M,N两点\\且\vec{AM}=x\vec{AB},\vec{AN}=y\vec AC,D为边AB的中点,求\frac{1}{x} +\frac{1}{y}的值
ps:此外还有xxx差线,xxx积线,xxx商线如感兴趣可自行查找
高一数学向量知识点总结 第7篇
函数图象知识归纳
(1)定义:在平面直角坐标系中,以函数y=f(x),(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的函数C,叫做函数y=f(x),(x∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上.
(2)画法
A、描点法:
B、图象变换法
常用变换方法有三种
1)平移变换
2)伸缩变换
3)对称变换
4.高中数学函数区间的概念
(1)函数区间的分类:开区间、闭区间、半开半闭区间
(2)无穷区间
5.映射
一般地,设A、B是两个非空的函数,如果按某一个确定的对应法则f,使对于函数A中的任意一个元素x,在函数B中都有确定的元素y与之对应,那么就称对应f:AB为从函数A到函数B的一个映射。记作“f(对应关系):A(原象)B(象)”
对于映射f:A→B来说,则应满足:
(1)函数A中的每一个元素,在函数B中都有象,并且象是的;
(2)函数A中不同的元素,在函数B中对应的象可以是同一个;
(3)不要求函数B中的每一个元素在函数A中都有原象。
6.高中数学函数之分段函数
(1)在定义域的不同部分上有不同的解析表达式的函数。
(2)各部分的自变量的取值情况.
(3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集.
补充:复合函数
如果y=f(u)(u∈M),u=g(x)(x∈A),则y=f[g(x)]=F(x)(x∈A)称为f、g的复合函数。
高一数学向量知识点总结 第8篇
高二数学平面向量知识点总结
平面向量是在二维平面内既有方向又有大小的量,物理学中叫也称作矢量,与之相对的是只有大小、没有方向的数量。高二数学平面向量知识点总结,我们来看看下文。
1.有向线段的定义
线段的端点A为始点,端点B为终点,这时线段AB具有射线AB的xxx像这样,具有方向的线段叫做有向线段.记作:.
2.有向线段的三要素:有向线段包含三个要素:始点、方向和长度.
3.向量的定义:(1)具有大小和方向的量叫做向量.向量有两个要素:大小和xxx
(2)向量的表示方法:①用两个大写的英文字母及前头表示,有向线段来表示向量时,也称其为向量.书写时,则用带箭头的小写字母,,,来表示.
4.向量的长度(模):如果向量=,那么有向线段的长度表示向量的大小,叫做向量的长度(或模),记作||.
5.相xxx向量:如果两个向量和的方向相同且长度相xxx,则称和相xxx,记作:=.
6.相反向量:与向量xxx长且方向相反的向量叫做的相反向量,记作:-.
7.向量平行(共线):如果两个向量方向相同或相反,则称这两个向量平行,向量平行也称向量共线.向量平行于向量,记作//.规定: //.
8.零向量:长度xxx于零的向量叫做零向量,记作:.零向量的方向是不确定的,是任意的.由于零向量方向的特殊性,解答问题时,一定要看清题目中是零向量还是非零向量.
9.单位向量:长度xxx于1的向量叫做单位向量.
10.向量的加法运算:
(1)向量加法的三角形法则
11.向量的减法运算
12、两向量的和差的模与两向量模的和差之间的关系
对于任意两个向量,,都有|||-|||||+||.
13.数乘向量的定义:
实数和向量的乘积是一个向量,这种运算叫做数乘向量,记作.
向量的长度与方向规定为:(1)||=|
(2)当0时,与方向相同;当0时,与方向相反.
(3)当=0时,当=时,=.
14.数乘向量的运算律:(1))= (结合律)
(2)(+) =+(第一分配律)(3)(+)=+.(第二分配律)
15.平行向量基本定理
如果向量,则//的充分必要条件是,存在唯一的实数,使得=.
如果与不共线,若m=n,则m=n=0.
16.非零向量的单位向量:非零向量的单位向量是指与同向的.单位向量,通常记作.
=||,即==(,)
17.线段中点的向量表达式
点M是线段AB的中点,O是平面内任意一点,则=(+).
18.平面向量的直角坐标运算:如果=(a1,a2),=(b1,b2),则
+=(a1+b1,a2+b2);-=(a1-b1,a2-b2);=(a1,a2).
19.利用两点表示向量:如果A(x1,y1),B(x2,y2),则=(x2-x1,y2-y1).
20.两向量相xxx和平行的条件:若=(a1,a2),=(b1,b2) ,则
=a1=b1且a2=b2.
//a1b2-a2b1=0.特别地,如果b10,b20,则// =.
21.向量的长度公式:若=(a1,a2),则||=.
22.平面上两点间的距离公式:若A(x1,y1),B(x2,y2),则||=.
23.中点公式
若点A(x1,y1),点B(x2,y2),点M(x,y)是线段AB的中点,则x=,y= .
24.重心公式
在△ABC中,若A(x1,y1),B(x2,y2),A(x3,y3),,△ABC的重心为G(x,y),则
x=,y=
25.(1)两个向量夹角的取值范围是[0,p],即0,p.
当=0时,与同向;当=p时,与反向
当= 时,与垂直,记作.
(3)向量的内积定义:=||||cos.
其中,||cos叫做向量在向量方向上的正射影的数量.规定=0.
(4)内积的几何意义
与的内积的几何意义是的模与在方向上的正射影的数量,或的模与在 方向上的正射影数量的乘积
当0,90时,0;=90时,
90时,0.
26.向量内积的运算律:
(1)交换率
(2)数乘结合律
(3)分配律
(4)不满足组合律
27.向量内积满足乘法公式
29.向量内积的应用:
高一数学向量知识点总结 第9篇
1、柱、锥、台、球的结构特征
(1)棱柱:
定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。
分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱xxx。
表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱。
几何特征:两底面是对应边平行的全xxx多边形;侧面、对角面都是平行四边形;侧棱平行且相xxx;平行于底面的截面是与底面全xxx的多边形。
(2)棱锥
定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体。
分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥xxx
表示:用各顶点字母,如五棱锥
几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比xxx于顶点到截面距离与高的比的平方。
(3)棱台:
定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分。
分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台xxx
表示:用各顶点字母,如五棱台
几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点
(4)圆柱:
定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体。
几何特征:①底面是全xxx的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。
(5)圆锥:
定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体。
几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。
(6)圆台:
定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分
几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。
(7)球体:
定义:以半圆的直径所在直线为旋转轴,半圆面旋转一xxx的几何体
几何特征:①球的截面是圆;②球面上任意一点到球心的距离xxx于半径。
2、空间几何体的三视图
定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)
注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;
俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;
侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。
3、空间几何体的直观图——斜二测画法
斜二测画法特点:
①原来与x轴平行的线段仍然与x平行且长度不变;
②原来与y轴平行的线段仍然与y平行,长度为原来的一半。
<<<返回目录
高一数学向量知识点总结 第10篇
向量的向量积
定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b。若a、b不共线,则a×b的模是:∣a×b∣=|a||b|sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系。若a、b共线,则a×b=0。
向量的向量积性质:
∣a×b∣是以a和b为边的平行四边形面积。
a×a=0。
a‖b〈=〉a×b=0。
向量的向量积运算律
a×b=-b×a;
(λa)×b=λ(a×b)=a×(λb);
(a+b)×c=a×c+b×c.
注:向量没有除法,“向量AB/向量CD”是没有意义的。
向量的的数量积
定义:已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b的.夹角,记作〈a,b〉并规定0≤〈a,b〉≤π
定义:两个向量的数量积(内积、点积)是一个数量,记作ab。若a、b不共线,则ab=|a||b|cos〈a,b〉;若a、b共线,则ab=+-∣a∣∣b∣。
向量的数量积的坐标表示:ab=xx'+yy'。
向量的数量积的运算律
ab=ba(交换律);
(λa)b=λ(ab)(关于数乘法的结合律);
(a+b)c=ac+bc(分配律);
向量的数量积的性质
aa=|a|的平方。
a⊥b 〈=〉ab=0。
|ab|≤|a||b|。
向量的数量积与实数运算的主要不同点
1、向量的数量积不满足结合律,即:(ab)c≠a(bc);例如:(ab)^2≠a^2b^2。
2、向量的数量积不满足消去律,即:由 ab=ac (a≠0),推不出 b=c。
3、|ab|≠|a||b|
4、由 |a|=|b| ,推不出 a=b或a=-b。
高一数学向量知识点总结 第11篇
高中数学平面向量知识点归纳和测试题
必修四 第二章平面向量
1.在△ABC中,AB?c,AC?b.若点D满足BD?2DC,则AD?( ) A.
21b?c 33
B.c?
32b 3
21b?c 33
D.b?
32c 3
2.在平行四边形ABCD中,AC为一条对角线,若AB?(2,4),AC?(1,3),则BD?( ) A. (-2,-4)
B.(-3,-5) C.(3,5)
D.(2,4)
3设D、E、F分别是△ABC的三边BC、CA、AB上的点,且DC?2BD,CE?2EA,AF?2FB,则
AD?BE?CF与BC( )
A.反向平行
.同向平行
C.互相垂直
D.既不平行也不垂直
4.关于平面向量a,b,c.有下列三个命题:
,k),b?(?2,6),a∥b,则k??3. ①若ab=ac,则b?c.②若a?(1
③非零向量a和b满足|a|?|b|?|a?b|,则a与a?b的夹角为60. 其中真命题的序号为 .(写出所有真命题的序号)
?的值为() 5.若过两点P1(-1,2),P2(5,6)的直线与x轴相交于点P,则点P分有向线段PP12所成的比
A -
B -
1 5
1 5
1 3
( )
D.2
( )
→→→
6.已知正方形ABCD的边长为1,AB=a,BC=b,AC=c,则a+b+c的模xxx于
A.0
B.22
7.已知|a|=5,|b|=3,且a・b=-12,则向量a在向量b上的投影xxx于
A.-4
B.4
125
( )
8.若向量a=(1,1),b=(1,-1),c=(-1,2),则cxxx于
13A.-+22
13-b 22
-b 22
31D.-a
( )
9.与向量a=(13)的夹角为30°的单位向量是
A.(,或(1,3)
B.(
) C.(0,1) 22
D.(0,1)或
3122( )
10.设向量a=(1,0),b=(),则下列结论中正确的是
A.|a|=|b|
B.a・b=
C.a-b与b垂直 D.a∥b
11.已知三个力f1=(-2,-1),f2=(-3,2),f3=(4,-3)同时作用于某物
现加上一个力f4,则f4xxx于 A.(-1,-2)
( ) D.(1,2)
B.(1,-2) C.(-1,2)
12.已知a,b是平面内两个互相垂直的单位向量,若向量c满足(a?c)?(b?c)?0,则c的最大值( )
D.
b?a・b= . 13.若向量a、b满足a?b?1,a与b的夹角为120°,则a・
14.如图,平面内有三个向量OA、、,其中OA与的夹角为120°,OA与的夹角为30°,且|OA|=||=1,||=2,若=λOA+μλ,μ∈R),则λ+μ的值为.
?aa?
c=a-bab?0a??b,则向量a与c的夹角为( ) 15.若向量与不共线,,且
ab??
A.0
π 3
π 2
16.若函数y?f(x)的图象按向量a平移后,得到函数y?f(x?1)?2的图象,则向量a=( )
,?2) A.(?1,?2) B.(1,2) C.(?1,2) D.(1
3),a在b
上的投影为17.设a?(4,
,b在x轴上的投影为2,且|b|≤14,则b为( ) 2
C.??2?
14) A.(2,
B.?2,?
?2?? 7???2?7?
8) D.(2,
18.设两个向量a?(??2,?2?cos2?)和b??m?sin??,其中?,m,?为实数.若a?2b,则
8] 的取值范围是( ) A.[-6,1] B.[4,
C.(-6,1] D.[-1,6]
19.直角坐标系xOy中,i,j分别是与x,y轴正方向同向的单位向量.在直角三角形ABC中,若
????
AB?2i?j,AC?3i?kj,则k的可能值个数是()
A.1 B.2 C.3
D.4
20.向量BA=(4,-3),向量BC=(2,-4),则△ABC的形状为
A.xxx腰非直角三角形 C.直角非xxx腰三角形
B.xxx边三角形
( )
D.xxx腰直角三角形
( )
21.若a=(λ,2),b=(-3,5),且a与b的夹角是钝角,则λ的`取值范围是
,+∞? A.??3?
? B.??3?
-∞, C.?3?
-∞, D.?3?
22.已知向量a=(2,-1),b=(-1,m),c=(-1,2),若(a+b)∥c,则m=________.
23.已知向量a和向量b的夹角为30°,|a|=2,|b|=,则向量a和向量b的数量积a・b=________. 24.已知非零向量a,b,若|a|=|b|=1,且a⊥b,又知(2a+3b)⊥(ka-4b),则实数k的值为________. 25.已知a=(1,2),b=(-2,3),且ka+b与a-kb垂直,则k=( ) (A) ?1?2(B)
2?1(C) 2?3(D) 3?2
课堂小测
1.在平行四边形ABCD中,AC与BD交于点O,E是线段OD的中点,AE的延长线与CD交于点
F.若AC?a,BD?b,则AF?( )
11a?b 42
a?b 33
a?b 24
D.a?
32b 3
2.已知O,A,B是平面上的三个点,直线AB上有一点C,满足2AC?CB?0,则OC?( ) A.2OA?OB
B.?OA?2OB
OA?OB 33
D.?OA?
OB 3
?xπ??π?
?2?平移,则平移后所得图象的解析式为() 3.将y?2cos???的图象按向量a????36??4??xπ??xπ?
A.y?2cos????2 B.y?2cos????2
?34??34??xπ?
C.y?2cos????2
?312?
?xπ?
D.y?2cos????2
?312?
CD?4.在△ABC中,已知D是AB边上一点,若AD?2DB,
CA??CB,则??( ) 3
2 3
1 3
C.?
1 3
D.?
2 3
5.若向量a=(1,1),b=(2,5),c=(3,x),满足条件(8a-b)・c=30,则xxxx于
A.6
( )
B.5 C.4 D.3
6.已知a,b,c在同一平面内,且a=(1,2).
(1)若|c|=25,且c∥a,求c; (2)若|b|=
7.已知|a|=2,|b|=3,a与b的夹角为60°,c=5a+3b,d=3a+kb,当实数k为何值时:
(1)c∥d;(2)c⊥d.
8.在平面直角坐标系xOy中,已知点A(-1,-2),B(2,3),C(-2,-1).
(1)求以线段AB、AC为邻边的平行四边形的两条对角线的长; →→→
(2)设实数t满足(AB-tOC)・OC=0,求t的值.
,且(a+2b)⊥(2a-b),求a与b的夹角. 2
→→→→→→→→→
9.已知向量OP1、OP2、OP3满足条件OP1+OP2+OP3=0,|OP1|=|OP2|=|OP3|=1.
求证:△P1P2P3是正三角形.
10.已知正方形ABCD,E、F分别是CD、AD的中点,BE、CF交于点P.求证:
(1)BE⊥CF;(2)AP=AB.
解7 由题意得a・b=|a||b|cos 60°=2×3×=3.
(1)当c∥d,c=λd,则5a+3b=λ(3a+kb). ∴3λ=5,且kλ=3,∴k5
(2)当c⊥d时,c・d=0,则(5a+3b)・(3a+kb)=0. ∴15a2+3kb2+(9+5k)a・b=0,∴k=-.
14→→→→→→
解8 (1)AB=(3,5),AC=(-1,1),求两条对角线的长即求|AB+AC|与|AB-AC|的大小. →→→→→→→→
由AB+AC=(2,6),得|AB+AC|=210, 由AB-AC=(4,4),得|AB-AC|=42. →→→→→→→(2)OC=(-2,-1), ∵(AB-tOC)・OC=AB・OC-tOC2, 11→→→→→→易求AB・OC=-11,OC2=5, ∴由(AB-tOC)・OC=0得t=-.
→→→→→→→→→
证明9 ∵OP1+OP2+OP3=0,∴OP1+OP2=-OP3,∴(OP1+OP2)2=(-OP3)2,
1OP・OP1→2→2→→→2→→
∴|OP1|+|OP2|+2OP1・OP2=|OP3|, ∴OP1・OP2=-,cos∠P1OP2=,
22→→
|OP1|・|OP2|→→→
∴∠P1OP2=120°.∴|P1P2|=|OP2-OP1|=
?OP2-OP1?2=
→→→→OP12+OP22-2OP1・OP2=3.
同理可得|P2P3|=|P3P1|=故△P1P2P3是xxx边三角形.
证明10 如图建立直角坐标系xOy,其中A为原点,不妨设AB=2, 则A(0,0),B(2,0),C(2,2),E(1,2),F(0,1). →→→
(1)BE=OE-OB=(1,2)-(2,0)=(-1,2), →→→
CF=OF-OC=(0,1)-(2,2)=(-2,-1), →→∵BE・CF=-1×(-2)+2×(-1)=0, →→
∴BE⊥CF,即BE⊥CF.
(2)设P(x,y),则FP=(x,y-1),CF=(-2,-1),
→→→→
∵FP∥CF,∴-x=-2(y-1),即x=2y-2.同理由BP∥BE,得y=-2x+4,代入x=2y-2. 686868→→→→
. ∴AP2=??2+??2=4=AB2,∴|AP|=|AB|,即AP=AB. 解得x=,∴y=,即P??55?5??5?55
高一数学向量知识点总结 第12篇
什么是向量
在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小(magnitude)和方向的量。
它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。
与向量对应的量叫做数量(物理学中称标量),数量(或标量)只有大小,没有方向。
向量垂直公式
a,b是两个向量
a=(a1,a2) b=(b1,b2)
a//b:a1/b1=a2/b2或a1b1=a2b2或a=λb,λ是一个常数
a垂直b:a1b1+a2b2=0
证明:
①几何角度:
向量A (x1,y1),长度 L1 =√(x1²+y1²)
向量B (x2,y2),长度 L2 =√(x2²+y2²)
(x1,y1)到(x2,y2)的距离:D=√[(x1 - x2)² + (y1 - y2)²]
两个向量垂直,根据勾股定理:L1² + L2² = D²
∴ (x1²+y1²) + (x2²+y2²) = (x1 - x2)² + (y1 - y2)²
∴ x1² + y1² + x2² + y2² = x1² -2x1x2 + x2² + y1² - 2y1y2 + y2²
∴ 0 = -2x1x2 - 2y1y2
∴ x1x2 + y1y2 = 0
②扩展到三维角度:
x1x2 + y1y2 + z1z2 = 0,
那么向量(x1,y1,z1)和(x2,y2,z2)垂直
综述,对任意维度的两个向量L1,L2垂直的充分必要条件是:L1×L2=0 成立。
平面向量加法公式
已知向量AB、BC,再作向量AC,则向量AC叫做AB、BC的和,记作AB+BC
即有:AB+BC=AC。
用坐标表示时,显然有:AB+BC=(x2-x1,y2-y1)+(x3-x2,y3-y2)=(x2-x1+x3-x2,y2-y1+y3-y2)=(x3-x1,y3-y1)=AC。
这就是说,两个向量和与差的坐标分别xxx于这两个向量相应坐标的和与差
三角形法则:AB+BC=AC,这种计算法则叫做向量加法的三角形法则,xxx为:首尾相连、连接首尾、指向终点。
四边形法则:已知两个从同一点A出发的两个向量AC、AB,以AC、AB为邻边作平行四边形ACDB,则以A为起点的对角线AD就是向量AC、AB的和,这种计算法则叫做向量加法的平行四边形法则,xxx为:共起点 对角连。
对于零向量和任意向量a,有:0+a=a+0=a。
向量的加法满足所有的加法运算定律,如:交换律、结合律。
平面向量减法公式
AB-AC=CB,这种计算法则叫做向量减法的三角形法则
xxx为:共起点、连中点、指被减。
-(-a)=a;a+(-a)=(-a)+a=0;a-b=a+(-b)。
平面向量数乘公式
实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa。
当λ>0时,λa的方向和a的方向相同,
当λ<0时,λa的方向和a的方向相反,
当λ = 0时,λa=0。
用坐标表示的情况下有:λAB=λ(x2-x1,y2-y1)=(λx2-λx1,λy2-λy1)
设λ、μ是实数,那么满足如下运算性质:
(λμ)a= λ(μa)
(λ + μ)a= λa+ μa
λ(a±b) = λa± λb
(-λ)a=-(λa) = λ(-a)
|λa|=|λ||a|
平面向量数量积公式
已知两个非零向量a、b,那么a·b=|a||b|cosθ(θ是a与b的夹角)叫做a与b的数量积或内积,记作a·b。
零向量与任意向量的数量积为0。数量积a·b的几何意义是:a的长度|a|与b在a的方向上的投影|b|cos θ的乘积。
两个向量的数量积xxx于它们对应坐标的乘积的和。即:若a=(x1,y1),b=(x2,y2),则a·b=x1·x2+y1·y2
高一数学向量知识点总结 第13篇
圆的方程定义:
圆的标准方程(x—a)2+(y—b)2=r2中,有三个参数a、b、r,即圆心坐标为(a,b),只要求出a、b、r,这时圆的方程就被确定,因此确定圆方程,须三个独立条件,其中圆心坐标是圆的定位条件,半径是圆的定形条件。
直线和圆的位置关系:
1、直线和圆位置关系的判定方法一是方程的观点,即把圆的方程和直线的`方程联立成方程组,利用判别式Δ来讨论位置关系。
①Δ>0,直线和圆相交、②Δ=0,直线和圆相切、③Δ<0,直线和圆相离。
方法二是几何的观点,即把圆心到直线的距离d和半径R的大小加以比较。
①dR,直线和圆相离、
2、直线和圆相切,这类问题主要是求圆的切线方程、求圆的切线方程主要可分为已知斜率k或已知直线上一点两种情况,而已知直线上一点又可分为已知圆上一点和圆外一点两种情况。
3、直线和圆相交,这类问题主要是求弦长以及弦的中点问题。
切线的性质
⑴圆心到切线的距离xxx于圆的半径;
⑵过切点的半径垂直于切线;
⑶经过圆心,与切线垂直的直线必经过切点;
⑷经过切点,与切线垂直的直线必经过圆心;
当一条直线满足
(1)过圆心;
(2)过切点;
(3)垂直于切线三个性质中的两个时,第三个性质也满足。
切线的判定定理
经过半径的外端点并且垂直于这条半径的直线是圆的切线。
切线长定理
从圆外一点作圆的两条切线,两切线长相xxx,圆心与这一点的连线平分两条切线的夹角。
高一数学向量知识点总结 第14篇
ps:我摊牌了,它既适用于平面也适用于空间!
平面
例6 .1平面向量\vec{a},\vec{b},\vec{c},\vec{d}满足|\vec{a}-\vec{b}|=2,|\vec{b}-\vec{c}|=3,|\vec{c}-\vec{d}|=4,\\|\vec{d}-\vec{a}|=5,则(\vec{a}-\vec{c})(\vec{b}-\vec{d})=
解:如图
\vec{AC}\cdot\vec{BD}=\frac{(|AD|^2+|BC|^2)-(|AB|^2+|CD|^2)}{2}=\frac{5^2+3^2-2^2-4^2}{2}=7
空间
例如图,在三棱锥D-ABC中,已知AB=2,\vec{AC}\cdot\vec{BD}=-3,\\设AD=a,BC=b,CD=c,则\frac{c^2}{ab+1}的最小值为
解:由对角线向量定理可得\vec{AC}\cdot\vec{BD}=-3\Rightarrow\\\frac{AD^{2}+BC^{2}-(AB^{2}+CD^{2})}{2}=-3,代入得a^{2}+b^{2}-4-c^{2}=-6 \\c^{2}=a^{2}+b^{2}+2\geq2ab+2,再代入原式即\geq2
高一数学向量知识点总结 第15篇
数学必修四知识点总结平面向量
1、向量的加法
向量的加法满足平行四边形法则和三角形法则。
AB+BC=AC。
a+b=(_+_',y+y')。
a+0=0+a=a。
向量加法的运算律:
交换律:a+b=b+a;
结合律:(a+b)+c=a+(b+c)。
2、向量的减法
如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0
AB-AC=CB. 即“共同起点,指向被减”
a=(_,y) b=(_',y') 则 a-b=(_-_',y-y').
3、数乘向量
实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣•∣a∣。
当λ>0时,λa与a同方向;
当λ<0时,λa与a反方向;
当λ=0时,λa=0,方向任意。
当a=0时,对于任意实数λ,都有λa=0。
注:按定义知,如果λa=0,那么λ=0或a=0。
实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。
当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍;
当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。
数与向量的乘法满足下面的运算律
结合律:(λa)•b=λ(a•b)=(a•λb)。
向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.
数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.
数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b。② 如果a≠0且λa=μa,那么λ=μ。
4、向量的的数量积
定义:已知两个非零向量a,b.作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π
定义:两个向量的数量积(内积、点积)是一个数量,记作a•b.若a、b不共线,则a•b=|a|•|b|•cos〈a,b〉;若a、b共线,则a•b=+-∣a∣∣b∣.
向量的数量积的坐标表示:a•b=_•_'+y•y'.
向量的数量积的运算律
a•b=b•a(交换律);
(λa)•b=λ(a•b)(关于数乘法的结合律);
(a+b)•c=a•c+b•c(分配律);
向量的数量积的性质
a•a=|a|的平方.
a⊥b 〈=〉a•b=0.
|a•b|≤|a|•|b|.
向量的数量积与实数运算的主要不同点
1、向量的数量积不满足结合律,即:(a•b)•c≠a•(b•c);例如:(a•b)^2≠a^2•b^2.
2、向量的数量积不满足消去律,即:由 a•b=a•c (a≠0),推不出 b=c.
3、|a•b|≠|a|•|b|
4、由 |a|=|b| ,推不出 a=b或a=-b.
5、向量的向量积
定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b.若a、b不共线,则a×b的模是:∣a×b∣=|a|•|b|•sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系.若a、b共线,则a×b=0.
向量的向量积性质:
∣a×b∣是以a和b为边的平行四边形面积.
a×a=0.
a‖b〈=〉a×b=0.
向量的向量积运算律
a×b=-b×a;
(λa)×b=λ(a×b)=a×(λb);
(a+b)×c=a×c+b×c.
注:向量没有除法,“向量AB/向量CD”是没有意义的.
6、向量的三角形不xxx式
1、∣∣a∣-∣b∣∣≤∣a+b∣≤∣a∣+∣b∣;
① 当且仅当a、b反向时,左边取xxx号;
② 当且仅当a、b同向时,右边取xxx号.
2、∣∣a∣-∣b∣∣≤∣a-b∣≤∣a∣+∣b∣.
① 当且仅当a、b同向时,左边取xxx号;
② 当且仅当a、b反向时,右边取xxx号.
7、定比分点
定比分点公式(向量P1P=λ•向量PP2)
设P1、P2是直线上的两点,P是l上不同于P1、P2的任意一点.则存在一个实数 λ,使 向量P1P=λ•向量PP2,λ叫做点P分有向线段P1P2所成的比.
若P1(_1,y1),P2(_2,y2),P(_,y),则有
OP=(OP1+λOP2)(1+λ);(定比分点向量公式)
_=(_1+λ_2)/(1+λ),
y=(y1+λy2)/(1+λ).(定比分点坐标公式)
我们把上面的式子叫做有向线段P1P2的定比分点公式
8、三点共线定理
若OC=λOA+μOB,且λ+μ=1 ,则A、B、C三点共线
三角形重心判断式
在△ABC中,若GA+GB+GC=O,则G为△ABC的重心