榆树范文网

高一数学向量知识点总结(通用15篇)

122

高一数学向量知识点总结 第1篇

(1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。

(2)指数函数的值域为大于0的实数集合。

(3)函数图形都是下凹的。

(4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。

(5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能xxx于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。

(6)函数总是在某一个方向上无限趋向于X轴,永不相交。

(7)函数总是通过(0,1)这点。

(8)显然指数函数无界。

奇偶性

一般地,对于函数f(x)

(1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。

(2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。

(3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。

(4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。

对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:

首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。当指数n是负整数时,设a=-k,则x=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:

排除了为0与负数两种可能,即对于x>0,则a可以是任意实数;

排除了为0这种可能,即对于x<0和x>0的所有实数,q不能是偶数;

排除了为负数这种可能,即对于x为大于且xxx于0的所有实数,a就不能是负数。

总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;

如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不xxx于0的所有实数。

在x大于0时,函数的值域总是大于0的实数。

在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。

而只有a为正数,0才进入函数的值域。

由于x大于0是对a的任意取值都有意义的,因此下面给出幂函数在第一象限的各自情况.

可以看到:

(1)所有的图形都通过(1,1)这点。

(2)当a大于0时,幂函数为单调递增的,而a小于0时,幂函数为单调递减函数。

(3)当a大于1时,幂函数图形下凹;当a小于1大于0时,幂函数图形上凸。

(4)当a小于0时,a越小,图形倾斜程度越大。

(5)a大于0,函数过(0,0);a小于0,函数不过(0,0)点。

(6)显然幂函数无界。

定义:

x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。

范围:

倾斜角的取值范围是0°≤α<180°。

理解:

(1)注意“两个方向”:直线向上的方向、x轴的正方向;

(2)规定当直线和x轴平行或重合时,它的倾斜角为0度。

意义:

①直线的倾斜角,体现了直线对x轴正向的倾斜程度;

②在平面直角坐标系中,每一条直线都有一个确定的倾斜角;

③倾斜角相同,未必表示同一条直线。

公式:

k=tanα

k>0时α∈(0°,90°)

k<0时α∈(90°,180°)

k=0时α=0°

当α=90°时k不存在

ax+by+c=0(a≠0)倾斜角为A,

则tanA=-a/b,

A=arctan(-a/b)

当a≠0时,

倾斜角为90度,即与X轴垂直

高一数学向量知识点总结 第2篇

四心向量式

ps:没错,很全,记忆得话就想象成向量带一个屁股

例设H是\triangle ABC的垂心,且3\vec{HA}+4\vec{HB}+5\vec{HC}=\vec{0},则cos\angle BHC的值为

解:由垂心性质可得\vec{HA}\cdot\vec{HB}=\vec{HB}\cdot\vec{HC}=\vec{HC}\cdot\vec{HA},\\不妨设\vec{HA}\cdot\vec{HB}=\vec{HB}\cdot\vec{HC}=\vec{HC}\cdot\vec{HA}=x\\有3\vec{HA}+4\vec{HB}+5\vec{HC}=\vec{0}\\所以3\vec{HA}\cdot\vec{HB}+4\vec{HB}^2+5\vec{HB}\cdot\vec{HC}=0\\|\vec{HB}|=\sqrt{-2x},同理可得|\vec{HC}|=\sqrt{-\frac{7x}{5}}\\所以cos\angle BHC=\frac{\vec{HB}\cdot\vec{HC}}{|\vec{HB}||\vec{HC|}}=-\frac{\sqrt{70}}{14}

习题已知\triangle ABC外接圆的圆心为O,且\angle A=\frac{\pi}{3},若\vec{AO}=\alpha\vec{AB}+\beta\vec{AC},则实数\alpha+\beta的最大值为

例\triangle ABC中P满足\vec{PA}+2\vec{PB}+3\vec{PC}=\vec{0},则在\triangle ABC内洒黄豆,落在\triangle PBC的概率为

解:由奔驰定理可得S_{A}:S_B:S_C=1:2:3\\于是\frac{S_A}{S_总}=\frac{1}{6}

ps:水题一道

例是\triangle ABC所在平面内一点,动点P满足\vec{OP}=\vec{OA}+\lambda(\frac{\vec{AB}}{|\vec{AB}|sinB}+\frac{\vec{AC}}{|\vec{AC}|sinC})(\lambda\in(0,+\infty)),\\则动点P一定通过\triangle ABC的

解:作AD\bot BC,由于|\vec{AB}|sinB=|\vec{AC}|sinC=AD,所以\\\vec{OA}+\lambda(\frac{\vec{AB}}{|\vec{AB}|sinB}+\frac{\vec{AC}}{|\vec{AC}|sinC})=\vec{OA}+\frac{\lambda}{|AD|}(\vec{AB}+\vec{AC}),\\由向量加法法则可知P一定在三角形中线上,所以经过重心

ps:此外还有很多关于三心的题目各位大佬可自行寻找

高一数学向量知识点总结 第3篇

例已知|\vec{a}|=2,|\vec{b}|=3,|\vec{e}|=1,且\vec{a}\cdot\vec b-(\vec a+\vec b)\cdot \vec e+3=0,则 \vec a \cdot \vec b的取值范围是

解:(\vec a+\vec b-\vec e)^2=\vec a^2+\vec b^2+\vec e^2+2\vec a\cdot\vec b-2\vec a\cdot\vec e-2\vec b\cdot \vec e\\则\vec a\cdot\vec b-\vec a\cdot\vec e-\vec b\cdot \vec e=\frac{(\vec a+\vec b-\vec e)^2-14}{2},由题意可得\\\frac{(\vec a+\vec b-\vec e)^2-14}{2}+3=0,则(\vec a+\vec b-\vec e)=8,|\vec a+\vec b-\vec e|\\=2\sqrt{2},由绝对值三角不xxx式可得|\vec a+\vec b|-|\vec{e}|\leq|\vec a+\vec b-\vec e|\leq|\vec a+\vec b|+|\vec{e}|\\因此2\sqrt{2}-1\leq|\vec a+\vec b|\leq2\sqrt{2}+1,从而9-4\sqrt{2}\leq13+2\vec a\cdot\vec b\leq9+4\sqrt{2}\\故\vec a\cdot\vec b\in[-2\sqrt{2}-2,2\sqrt{2-2}]

例设圆O,圆O_{1}半径都为1,且相外切,其切点为P,\\点A,B分别在圆O,圆O_{1}上,且\vec{PA}\cdot\vec{PB}的最大值为

解:平移到如图所示

因此\vec{PA}\cdot\vec {PB}=\vec{PA}\cdot\vec {B_{1}P}=(\vec{OA}-\vec{OP})(\vec{OP}-\vec{OB_{1}})\\=\vec{OA}\cdot\vec {OP}-\vec{OA}\cdot\vec {OB_1}-\vec{OP}^2+\vec{OP}\cdot\vec {OB_{1}}\\=-\vec{OA}\cdot\vec {OP}-\vec{OA}\cdot\vec {OB_1}+\vec{OP}\cdot\vec {OB_{1}}-1

三数平方(\vec{OA}+\vec{OB_{1}}-\vec{OP})^2=\vec{OA}^2+\vec{OB_{1}}^2+\vec{OP}^2+2(-\vec{OA}\cdot\vec {OP}+\vec{OA}\cdot\vec {OB_1}-\vec{OP}\cdot\vec {OB_{1}})\\于是-\vec{OA}\cdot\vec {OP}+\vec{OA}\cdot\vec {OB_1}-\vec{OP}\cdot\vec {OB_{1}}=\frac{(\vec{OA}+\vec{OB_{1}}-\vec{OP})^2-3}{2}\\因此-\vec{OA}\cdot\vec {OP}+\vec{OA}\cdot\vec {OB_1}-\vec{PA}\cdot\vec {B_{1}P}=\frac{3-(\vec{OA}+\vec{OB_{1}}-\vec{OP})^2}{2}-1\leq\frac{3}{2}-1=\frac{1}{2}\\当\vec{OA}+\vec{OB_1}-\vec{OP}=\vec 0时取得xxx号

习题圆O是半径为1的圆,\vec{OA}=\frac{1}{2},设B,C为圆上任意两点,则\vec{AC}\cdot\vec{BC}的取值范围是

(答案为 [-\frac{1}{8},3] )

习题若向量\vec{a},\vec{b},\vec{c},满足|\vec{a}|=1,|\vec{b}|=|\vec{c}|=2,则(\vec{c}-\vec{a})(\vec{c}-\vec{b})的取值范围是

(答案为 [-\frac{1}{2},12] )

高一数学向量知识点总结 第4篇

向量公式:

1.单位向量:单位向量a0=向量a/|向量a|

(x,y)那么向量OP=x向量i+y向量j

|向量OP|=根号(x平方+y平方)

(x1,y1)P2(x2,y2)

那么向量P1P2={x2-x1,y2-y1}

|向量P1P2|=根号[(x2-x1)平方+(y2-y1)平方]

4.向量a={x1,x2}向量b={x2,y2}

向量a*向量b=|向量a|*|向量b|*Cosα=x1x2+y1y2

Cosα=向量a*向量b/|向量a|*|向量b|

(x1x2+y1y2)

=————————————————————

根号(x1平方+y1平方)*根号(x2平方+y2平方)

5.空间向量:同上推论

(提示:向量a={x,y,z})

6.充要条件:

如果向量a⊥向量b

那么向量a*向量b=0

如果向量a//向量b

那么向量a*向量b=±|向量a|*|向量b|

或者x1/x2=y1/y2

7.|向量a±向量b|平方

=|向量a|平方+|向量b|平方±2向量a*向量b

=(向量a±向量b)平方

数乘向量

实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣∣a∣。

当λ>0时,λa与a同方向;

当λ<0时,λa与a反方向;

当λ=0时,λa=0,方向任意。

当a=0时,对于任意实数λ,都有λa=0。

注:按定义知,如果λa=0,那么λ=0或a=0。

实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。

当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍;

当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。

数与向量的乘法满足下面的运算律

结合律:(λa)b=λ(ab)=(aλb)。

向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.

数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.

数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b。② 如果a≠0且λa=μa,那么λ=μ。

向量的加法

向量的加法满足平行四边形法则和三角形法则。

AB+BC=AC。

a+b=(x+x',y+y')。

a+0=0+a=a。

向量加法的运算律:

交换律:a+b=b+a;

结合律:(a+b)+c=a+(b+c)。

向量的减法如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0 AB-AC=CB. 即“共同起点,指向被减” a=(x,y) b=(x',y') 则 a-b=(x-x',y-y').

高一数学向量知识点总结 第5篇

向量:既有大小,又有方向的量.

数量:只有大小,没有方向的量.

有向线段的三要素:起点、方向、长度.

零向量:长度为的向量.

单位向量:长度xxx于个单位的向量.

相xxx向量:长度相xxx且方向相同的向量

&向量的运算

加法运算

AB+BC=AC,这种计算法则叫做向量加法的三角形法则。

已知两个从同一点O出发的两个向量OA、OB,以OA、OB为邻边作平行四边形OACB,则以O为起点的对角线OC就是向量OA、OB的和,这种计算法则叫做向量加法的平行四边形法则。

对于零向量和任意向量a,有:0+a=a+0=a。

|a+b|≤|a|+|b|。

向量的加法满足所有的加法运算定律。

减法运算

与a长度相xxx,方向相反的向量,叫做a的相反向量,-(-a)=a,零向量的相反向量仍然是零向量。

(1)a+(-a)=(-a)+a=0(2)a-b=a+(-b)。

数乘运算

实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa,|λa|=|λ||a|,当λ >0时,λa的方向和a的方向相同,当λ< 0时,λa的方向和a的方向相反,当λ = 0时,λa = 0。

设λ、μ是实数,那么:(1)(λμ)a = λ(μa)(2)(λμ)a = λa μa(3)λ(a ± b) = λa ±λb(4)(-λ)a =-(λa) = λ(-a)。

向量的加法运算、减法运算、数乘运算统称线性运算。

向量的数量积

已知两个非零向量a、b,那么|a||b|cos θ叫做a与b的数量积或内积,记作a?b,θ是a与b的夹角,|a|cos θ(|b|cos θ)叫做向量a在b方向上(b在a方向上)的投影。零向量与任意向量的数量积为0。

的几何意义:数量积xxx于a的长度|a|与b在a的方向上的投影|b|cosθ的乘积。

两个向量的数量积xxx于它们对应坐标的乘积的和。

<<<返回目录

高一数学向量知识点总结 第6篇

例在矩形ABCD中,AB=1,AD=2,动点P在以点C为圆心且与BD相切的圆上,\\若\vec AP=\lambda\vec{AB}+\mu{\vec AD}则\lambda+\mu的最大值为

解:根据xxx和线可知当 \lambda+\mu 最大时,其xxx和弦在圆的另一端且与其相切,即可快速找出P点位置,如图

在根据比例即可算出 \lambda+\mu=\frac{A到xxx和线所在的距离}{A到BD的距离} ,故最大值为3

(原被改放为)例已知矩形ABCD中,AB=4,AD=3,动点M、N分别在射线CB,\\CD上运动,且满足\frac{1}{CM^2}+\frac{1}{CN^2}=1对角线AC交MN于点P,\\设\vec{AP}=x\vec{AB}+y\vec{AD},则x+y的最大值是

解:由\frac{1}{CM^2}+\frac{1}{CN^2}=1,可知CM^{2}+CN^{2}=CM^{2}\cdot CN^{2}\\即|MN|=|CM|\cdot|CN|,2S_{\triangle MCN}=|CM||CN|=|MN|d,则点C到MN\\的距离为1,则|CP|\geq1,故|AP|\leq4,则由xxx和线可知x+y=\frac{|AP|}{|AE|}=\\\frac{|AP|}{}\leq\frac{8}{5}

习题已知点G为\triangle ABC的重心,过G点作直线与AB,AC两边交于M,N两点\\且\vec{AM}=x\vec{AB},\vec{AN}=y\vec AC,D为边AB的中点,求\frac{1}{x} +\frac{1}{y}的值

ps:此外还有xxx差线,xxx积线,xxx商线如感兴趣可自行查找

高一数学向量知识点总结 第7篇

函数图象知识归纳

(1)定义:在平面直角坐标系中,以函数y=f(x),(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的函数C,叫做函数y=f(x),(x∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上.

(2)画法

A、描点法:

B、图象变换法

常用变换方法有三种

1)平移变换

2)伸缩变换

3)对称变换

4.高中数学函数区间的概念

(1)函数区间的分类:开区间、闭区间、半开半闭区间

(2)无穷区间

5.映射

一般地,设A、B是两个非空的函数,如果按某一个确定的对应法则f,使对于函数A中的任意一个元素x,在函数B中都有确定的元素y与之对应,那么就称对应f:AB为从函数A到函数B的一个映射。记作“f(对应关系):A(原象)B(象)”

对于映射f:A→B来说,则应满足:

(1)函数A中的每一个元素,在函数B中都有象,并且象是的;

(2)函数A中不同的元素,在函数B中对应的象可以是同一个;

(3)不要求函数B中的每一个元素在函数A中都有原象。

6.高中数学函数之分段函数

(1)在定义域的不同部分上有不同的解析表达式的函数。

(2)各部分的自变量的取值情况.

(3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集.

补充:复合函数

如果y=f(u)(u∈M),u=g(x)(x∈A),则y=f[g(x)]=F(x)(x∈A)称为f、g的复合函数。

高一数学向量知识点总结 第8篇

高二数学平面向量知识点总结

平面向量是在二维平面内既有方向又有大小的量,物理学中叫也称作矢量,与之相对的是只有大小、没有方向的数量。高二数学平面向量知识点总结,我们来看看下文。

1.有向线段的定义

线段的端点A为始点,端点B为终点,这时线段AB具有射线AB的xxx像这样,具有方向的线段叫做有向线段.记作:.

2.有向线段的三要素:有向线段包含三个要素:始点、方向和长度.

3.向量的定义:(1)具有大小和方向的量叫做向量.向量有两个要素:大小和xxx

(2)向量的表示方法:①用两个大写的英文字母及前头表示,有向线段来表示向量时,也称其为向量.书写时,则用带箭头的小写字母,,,来表示.

4.向量的长度(模):如果向量=,那么有向线段的长度表示向量的大小,叫做向量的长度(或模),记作||.

5.相xxx向量:如果两个向量和的方向相同且长度相xxx,则称和相xxx,记作:=.

6.相反向量:与向量xxx长且方向相反的向量叫做的相反向量,记作:-.

7.向量平行(共线):如果两个向量方向相同或相反,则称这两个向量平行,向量平行也称向量共线.向量平行于向量,记作//.规定: //.

8.零向量:长度xxx于零的向量叫做零向量,记作:.零向量的方向是不确定的,是任意的.由于零向量方向的特殊性,解答问题时,一定要看清题目中是零向量还是非零向量.

9.单位向量:长度xxx于1的向量叫做单位向量.

10.向量的加法运算:

(1)向量加法的三角形法则

11.向量的减法运算

12、两向量的和差的模与两向量模的和差之间的关系

对于任意两个向量,,都有|||-|||||+||.

13.数乘向量的定义:

实数和向量的乘积是一个向量,这种运算叫做数乘向量,记作.

向量的长度与方向规定为:(1)||=|

(2)当0时,与方向相同;当0时,与方向相反.

(3)当=0时,当=时,=.

14.数乘向量的运算律:(1))= (结合律)

(2)(+) =+(第一分配律)(3)(+)=+.(第二分配律)

15.平行向量基本定理

如果向量,则//的充分必要条件是,存在唯一的实数,使得=.

如果与不共线,若m=n,则m=n=0.

16.非零向量的单位向量:非零向量的单位向量是指与同向的.单位向量,通常记作.

=||,即==(,)

17.线段中点的向量表达式

点M是线段AB的中点,O是平面内任意一点,则=(+).

18.平面向量的直角坐标运算:如果=(a1,a2),=(b1,b2),则

+=(a1+b1,a2+b2);-=(a1-b1,a2-b2);=(a1,a2).

19.利用两点表示向量:如果A(x1,y1),B(x2,y2),则=(x2-x1,y2-y1).

20.两向量相xxx和平行的条件:若=(a1,a2),=(b1,b2) ,则

=a1=b1且a2=b2.

//a1b2-a2b1=0.特别地,如果b10,b20,则// =.

21.向量的长度公式:若=(a1,a2),则||=.

22.平面上两点间的距离公式:若A(x1,y1),B(x2,y2),则||=.

23.中点公式

若点A(x1,y1),点B(x2,y2),点M(x,y)是线段AB的中点,则x=,y= .

24.重心公式

在△ABC中,若A(x1,y1),B(x2,y2),A(x3,y3),,△ABC的重心为G(x,y),则

x=,y=

25.(1)两个向量夹角的取值范围是[0,p],即0,p.

当=0时,与同向;当=p时,与反向

当= 时,与垂直,记作.

(3)向量的内积定义:=||||cos.

其中,||cos叫做向量在向量方向上的正射影的数量.规定=0.

(4)内积的几何意义

与的内积的几何意义是的模与在方向上的正射影的数量,或的模与在 方向上的正射影数量的乘积

当0,90时,0;=90时,

90时,0.

26.向量内积的运算律:

(1)交换率

(2)数乘结合律

(3)分配律

(4)不满足组合律

27.向量内积满足乘法公式

29.向量内积的应用:

高一数学向量知识点总结 第9篇

1、柱、锥、台、球的结构特征

(1)棱柱:

定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱xxx。

表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱。

几何特征:两底面是对应边平行的全xxx多边形;侧面、对角面都是平行四边形;侧棱平行且相xxx;平行于底面的截面是与底面全xxx的多边形。

(2)棱锥

定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥xxx

表示:用各顶点字母,如五棱锥

几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比xxx于顶点到截面距离与高的比的平方。

(3)棱台:

定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分。

分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台xxx

表示:用各顶点字母,如五棱台

几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点

(4)圆柱:

定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体。

几何特征:①底面是全xxx的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

(5)圆锥:

定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体。

几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

(6)圆台:

定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分

几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

(7)球体:

定义:以半圆的直径所在直线为旋转轴,半圆面旋转一xxx的几何体

几何特征:①球的截面是圆;②球面上任意一点到球心的距离xxx于半径。

2、空间几何体的三视图

定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)

注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;

俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;

侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。

3、空间几何体的直观图——斜二测画法

斜二测画法特点:

①原来与x轴平行的线段仍然与x平行且长度不变;

②原来与y轴平行的线段仍然与y平行,长度为原来的一半。

<<<返回目录

高一数学向量知识点总结 第10篇

向量的向量积

定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b。若a、b不共线,则a×b的模是:∣a×b∣=|a||b|sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系。若a、b共线,则a×b=0。

向量的向量积性质:

∣a×b∣是以a和b为边的平行四边形面积。

a×a=0。

a‖b〈=〉a×b=0。

向量的向量积运算律

a×b=-b×a;

(λa)×b=λ(a×b)=a×(λb);

(a+b)×c=a×c+b×c.

注:向量没有除法,“向量AB/向量CD”是没有意义的。

向量的的数量积

定义:已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b的.夹角,记作〈a,b〉并规定0≤〈a,b〉≤π

定义:两个向量的数量积(内积、点积)是一个数量,记作ab。若a、b不共线,则ab=|a||b|cos〈a,b〉;若a、b共线,则ab=+-∣a∣∣b∣。

向量的数量积的坐标表示:ab=xx'+yy'。

向量的数量积的运算律

ab=ba(交换律);

(λa)b=λ(ab)(关于数乘法的结合律);

(a+b)c=ac+bc(分配律);

向量的数量积的性质

aa=|a|的平方。

a⊥b 〈=〉ab=0。

|ab|≤|a||b|。

向量的数量积与实数运算的主要不同点

1、向量的数量积不满足结合律,即:(ab)c≠a(bc);例如:(ab)^2≠a^2b^2。

2、向量的数量积不满足消去律,即:由 ab=ac (a≠0),推不出 b=c。

3、|ab|≠|a||b|

4、由 |a|=|b| ,推不出 a=b或a=-b。

高一数学向量知识点总结 第11篇

高中数学平面向量知识点归纳和测试题

必修四 第二章平面向量

1.在△ABC中,AB?c,AC?b.若点D满足BD?2DC,则AD?( ) A.

21b?c 33

B.c?

32b 3

21b?c 33

D.b?

32c 3

2.在平行四边形ABCD中,AC为一条对角线,若AB?(2,4),AC?(1,3),则BD?( ) A. (-2,-4)

B.(-3,-5) C.(3,5)

D.(2,4)

3设D、E、F分别是△ABC的三边BC、CA、AB上的点,且DC?2BD,CE?2EA,AF?2FB,则

AD?BE?CF与BC( )

A.反向平行

.同向平行

C.互相垂直

D.既不平行也不垂直

4.关于平面向量a,b,c.有下列三个命题:

,k),b?(?2,6),a∥b,则k??3. ①若ab=ac,则b?c.②若a?(1

③非零向量a和b满足|a|?|b|?|a?b|,则a与a?b的夹角为60. 其中真命题的序号为 .(写出所有真命题的序号)

?的值为() 5.若过两点P1(-1,2),P2(5,6)的直线与x轴相交于点P,则点P分有向线段PP12所成的比

A -

B -

1 5

1 5

1 3

( )

D.2

( )

→→→

6.已知正方形ABCD的边长为1,AB=a,BC=b,AC=c,则a+b+c的模xxx于

A.0

B.22

7.已知|a|=5,|b|=3,且a・b=-12,则向量a在向量b上的投影xxx于

A.-4

B.4

125

( )

8.若向量a=(1,1),b=(1,-1),c=(-1,2),则cxxx于

13A.-+22

13-b 22

-b 22

31D.-a

( )

9.与向量a=(13)的夹角为30°的单位向量是

A.(,或(1,3)

B.(

) C.(0,1) 22

D.(0,1)或

3122( )

10.设向量a=(1,0),b=(),则下列结论中正确的是

A.|a|=|b|

B.a・b=

C.a-b与b垂直 D.a∥b

11.已知三个力f1=(-2,-1),f2=(-3,2),f3=(4,-3)同时作用于某物

现加上一个力f4,则f4xxx于 A.(-1,-2)

( ) D.(1,2)

B.(1,-2) C.(-1,2)

12.已知a,b是平面内两个互相垂直的单位向量,若向量c满足(a?c)?(b?c)?0,则c的最大值( )

D.

b?a・b= . 13.若向量a、b满足a?b?1,a与b的夹角为120°,则a・

14.如图,平面内有三个向量OA、、,其中OA与的夹角为120°,OA与的夹角为30°,且|OA|=||=1,||=2,若=λOA+μλ,μ∈R),则λ+μ的值为.

?aa?

c=a-bab?0a??b,则向量a与c的夹角为( ) 15.若向量与不共线,,且

ab??

A.0

π 3

π 2

16.若函数y?f(x)的图象按向量a平移后,得到函数y?f(x?1)?2的图象,则向量a=( )

,?2) A.(?1,?2) B.(1,2) C.(?1,2) D.(1

3),a在b

上的投影为17.设a?(4,

,b在x轴上的投影为2,且|b|≤14,则b为( ) 2

C.??2?

14) A.(2,

B.?2,?

?2?? 7???2?7?

8) D.(2,

18.设两个向量a?(??2,?2?cos2?)和b??m?sin??,其中?,m,?为实数.若a?2b,则

8] 的取值范围是( ) A.[-6,1] B.[4,

C.(-6,1] D.[-1,6]

19.直角坐标系xOy中,i,j分别是与x,y轴正方向同向的单位向量.在直角三角形ABC中,若

????

AB?2i?j,AC?3i?kj,则k的可能值个数是()

A.1 B.2 C.3

D.4

20.向量BA=(4,-3),向量BC=(2,-4),则△ABC的形状为

A.xxx腰非直角三角形 C.直角非xxx腰三角形

B.xxx边三角形

( )

D.xxx腰直角三角形

( )

21.若a=(λ,2),b=(-3,5),且a与b的夹角是钝角,则λ的`取值范围是

,+∞? A.??3?

? B.??3?

-∞, C.?3?

-∞, D.?3?

22.已知向量a=(2,-1),b=(-1,m),c=(-1,2),若(a+b)∥c,则m=________.

23.已知向量a和向量b的夹角为30°,|a|=2,|b|=,则向量a和向量b的数量积a・b=________. 24.已知非零向量a,b,若|a|=|b|=1,且a⊥b,又知(2a+3b)⊥(ka-4b),则实数k的值为________. 25.已知a=(1,2),b=(-2,3),且ka+b与a-kb垂直,则k=( ) (A) ?1?2(B)

2?1(C) 2?3(D) 3?2

课堂小测

1.在平行四边形ABCD中,AC与BD交于点O,E是线段OD的中点,AE的延长线与CD交于点

F.若AC?a,BD?b,则AF?( )

11a?b 42

a?b 33

a?b 24

D.a?

32b 3

2.已知O,A,B是平面上的三个点,直线AB上有一点C,满足2AC?CB?0,则OC?( ) A.2OA?OB

B.?OA?2OB

OA?OB 33

D.?OA?

OB 3

?xπ??π?

?2?平移,则平移后所得图象的解析式为() 3.将y?2cos???的图象按向量a????36??4??xπ??xπ?

A.y?2cos????2 B.y?2cos????2

?34??34??xπ?

C.y?2cos????2

?312?

?xπ?

D.y?2cos????2

?312?

CD?4.在△ABC中,已知D是AB边上一点,若AD?2DB,

CA??CB,则??( ) 3

2 3

1 3

C.?

1 3

D.?

2 3

5.若向量a=(1,1),b=(2,5),c=(3,x),满足条件(8a-b)・c=30,则xxxx于

A.6

( )

B.5 C.4 D.3

6.已知a,b,c在同一平面内,且a=(1,2).

(1)若|c|=25,且c∥a,求c; (2)若|b|=

7.已知|a|=2,|b|=3,a与b的夹角为60°,c=5a+3b,d=3a+kb,当实数k为何值时:

(1)c∥d;(2)c⊥d.

8.在平面直角坐标系xOy中,已知点A(-1,-2),B(2,3),C(-2,-1).

(1)求以线段AB、AC为邻边的平行四边形的两条对角线的长; →→→

(2)设实数t满足(AB-tOC)・OC=0,求t的值.

,且(a+2b)⊥(2a-b),求a与b的夹角. 2

→→→→→→→→→

9.已知向量OP1、OP2、OP3满足条件OP1+OP2+OP3=0,|OP1|=|OP2|=|OP3|=1.

求证:△P1P2P3是正三角形.

10.已知正方形ABCD,E、F分别是CD、AD的中点,BE、CF交于点P.求证:

(1)BE⊥CF;(2)AP=AB.

解7 由题意得a・b=|a||b|cos 60°=2×3×=3.

(1)当c∥d,c=λd,则5a+3b=λ(3a+kb). ∴3λ=5,且kλ=3,∴k5

(2)当c⊥d时,c・d=0,则(5a+3b)・(3a+kb)=0. ∴15a2+3kb2+(9+5k)a・b=0,∴k=-.

14→→→→→→

解8 (1)AB=(3,5),AC=(-1,1),求两条对角线的长即求|AB+AC|与|AB-AC|的大小. →→→→→→→→

由AB+AC=(2,6),得|AB+AC|=210, 由AB-AC=(4,4),得|AB-AC|=42. →→→→→→→(2)OC=(-2,-1), ∵(AB-tOC)・OC=AB・OC-tOC2, 11→→→→→→易求AB・OC=-11,OC2=5, ∴由(AB-tOC)・OC=0得t=-.

→→→→→→→→→

证明9 ∵OP1+OP2+OP3=0,∴OP1+OP2=-OP3,∴(OP1+OP2)2=(-OP3)2,

1OP・OP1→2→2→→→2→→

∴|OP1|+|OP2|+2OP1・OP2=|OP3|, ∴OP1・OP2=-,cos∠P1OP2=,

22→→

|OP1|・|OP2|→→→

∴∠P1OP2=120°.∴|P1P2|=|OP2-OP1|=

?OP2-OP1?2=

→→→→OP12+OP22-2OP1・OP2=3.

同理可得|P2P3|=|P3P1|=故△P1P2P3是xxx边三角形.

证明10 如图建立直角坐标系xOy,其中A为原点,不妨设AB=2, 则A(0,0),B(2,0),C(2,2),E(1,2),F(0,1). →→→

(1)BE=OE-OB=(1,2)-(2,0)=(-1,2), →→→

CF=OF-OC=(0,1)-(2,2)=(-2,-1), →→∵BE・CF=-1×(-2)+2×(-1)=0, →→

∴BE⊥CF,即BE⊥CF.

(2)设P(x,y),则FP=(x,y-1),CF=(-2,-1),

→→→→

∵FP∥CF,∴-x=-2(y-1),即x=2y-2.同理由BP∥BE,得y=-2x+4,代入x=2y-2. 686868→→→→

. ∴AP2=??2+??2=4=AB2,∴|AP|=|AB|,即AP=AB. 解得x=,∴y=,即P??55?5??5?55

高一数学向量知识点总结 第12篇

什么是向量

在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小(magnitude)和方向的量。

它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。

与向量对应的量叫做数量(物理学中称标量),数量(或标量)只有大小,没有方向。

向量垂直公式

a,b是两个向量

a=(a1,a2) b=(b1,b2)

a//b:a1/b1=a2/b2或a1b1=a2b2或a=λb,λ是一个常数

a垂直b:a1b1+a2b2=0

证明:

①几何角度:

向量A (x1,y1),长度 L1 =√(x1²+y1²)

向量B (x2,y2),长度 L2 =√(x2²+y2²)

(x1,y1)到(x2,y2)的距离:D=√[(x1 - x2)² + (y1 - y2)²]

两个向量垂直,根据勾股定理:L1² + L2² = D²

∴ (x1²+y1²) + (x2²+y2²) = (x1 - x2)² + (y1 - y2)²

∴ x1² + y1² + x2² + y2² = x1² -2x1x2 + x2² + y1² - 2y1y2 + y2²

∴ 0 = -2x1x2 - 2y1y2

∴ x1x2 + y1y2 = 0

②扩展到三维角度:

x1x2 + y1y2 + z1z2 = 0,

那么向量(x1,y1,z1)和(x2,y2,z2)垂直

综述,对任意维度的两个向量L1,L2垂直的充分必要条件是:L1×L2=0 成立。

平面向量加法公式

已知向量AB、BC,再作向量AC,则向量AC叫做AB、BC的和,记作AB+BC

即有:AB+BC=AC。

用坐标表示时,显然有:AB+BC=(x2-x1,y2-y1)+(x3-x2,y3-y2)=(x2-x1+x3-x2,y2-y1+y3-y2)=(x3-x1,y3-y1)=AC。

这就是说,两个向量和与差的坐标分别xxx于这两个向量相应坐标的和与差

三角形法则:AB+BC=AC,这种计算法则叫做向量加法的三角形法则,xxx为:首尾相连、连接首尾、指向终点。

四边形法则:已知两个从同一点A出发的两个向量AC、AB,以AC、AB为邻边作平行四边形ACDB,则以A为起点的对角线AD就是向量AC、AB的和,这种计算法则叫做向量加法的平行四边形法则,xxx为:共起点 对角连。

对于零向量和任意向量a,有:0+a=a+0=a。

向量的加法满足所有的加法运算定律,如:交换律、结合律。

平面向量减法公式

AB-AC=CB,这种计算法则叫做向量减法的三角形法则

xxx为:共起点、连中点、指被减。

-(-a)=a;a+(-a)=(-a)+a=0;a-b=a+(-b)。

平面向量数乘公式

实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa。

当λ>0时,λa的方向和a的方向相同,

当λ<0时,λa的方向和a的方向相反,

当λ = 0时,λa=0。

用坐标表示的情况下有:λAB=λ(x2-x1,y2-y1)=(λx2-λx1,λy2-λy1)

设λ、μ是实数,那么满足如下运算性质:

(λμ)a= λ(μa)

(λ + μ)a= λa+ μa

λ(a±b) = λa± λb

(-λ)a=-(λa) = λ(-a)

|λa|=|λ||a|

平面向量数量积公式

已知两个非零向量a、b,那么a·b=|a||b|cosθ(θ是a与b的夹角)叫做a与b的数量积或内积,记作a·b。

零向量与任意向量的数量积为0。数量积a·b的几何意义是:a的长度|a|与b在a的方向上的投影|b|cos θ的乘积。

两个向量的数量积xxx于它们对应坐标的乘积的和。即:若a=(x1,y1),b=(x2,y2),则a·b=x1·x2+y1·y2

高一数学向量知识点总结 第13篇

圆的方程定义:

圆的标准方程(x—a)2+(y—b)2=r2中,有三个参数a、b、r,即圆心坐标为(a,b),只要求出a、b、r,这时圆的方程就被确定,因此确定圆方程,须三个独立条件,其中圆心坐标是圆的定位条件,半径是圆的定形条件。

直线和圆的位置关系:

1、直线和圆位置关系的判定方法一是方程的观点,即把圆的方程和直线的`方程联立成方程组,利用判别式Δ来讨论位置关系。

①Δ>0,直线和圆相交、②Δ=0,直线和圆相切、③Δ<0,直线和圆相离。

方法二是几何的观点,即把圆心到直线的距离d和半径R的大小加以比较。

①dR,直线和圆相离、

2、直线和圆相切,这类问题主要是求圆的切线方程、求圆的切线方程主要可分为已知斜率k或已知直线上一点两种情况,而已知直线上一点又可分为已知圆上一点和圆外一点两种情况。

3、直线和圆相交,这类问题主要是求弦长以及弦的中点问题。

切线的性质

⑴圆心到切线的距离xxx于圆的半径;

⑵过切点的半径垂直于切线;

⑶经过圆心,与切线垂直的直线必经过切点;

⑷经过切点,与切线垂直的直线必经过圆心;

当一条直线满足

(1)过圆心;

(2)过切点;

(3)垂直于切线三个性质中的两个时,第三个性质也满足。

切线的判定定理

经过半径的外端点并且垂直于这条半径的直线是圆的切线。

切线长定理

从圆外一点作圆的两条切线,两切线长相xxx,圆心与这一点的连线平分两条切线的夹角。

高一数学向量知识点总结 第14篇

ps:我摊牌了,它既适用于平面也适用于空间!

平面

例6 .1平面向量\vec{a},\vec{b},\vec{c},\vec{d}满足|\vec{a}-\vec{b}|=2,|\vec{b}-\vec{c}|=3,|\vec{c}-\vec{d}|=4,\\|\vec{d}-\vec{a}|=5,则(\vec{a}-\vec{c})(\vec{b}-\vec{d})=

解:如图

\vec{AC}\cdot\vec{BD}=\frac{(|AD|^2+|BC|^2)-(|AB|^2+|CD|^2)}{2}=\frac{5^2+3^2-2^2-4^2}{2}=7

空间

例如图,在三棱锥D-ABC中,已知AB=2,\vec{AC}\cdot\vec{BD}=-3,\\设AD=a,BC=b,CD=c,则\frac{c^2}{ab+1}的最小值为

解:由对角线向量定理可得\vec{AC}\cdot\vec{BD}=-3\Rightarrow\\\frac{AD^{2}+BC^{2}-(AB^{2}+CD^{2})}{2}=-3,代入得a^{2}+b^{2}-4-c^{2}=-6 \\c^{2}=a^{2}+b^{2}+2\geq2ab+2,再代入原式即\geq2

高一数学向量知识点总结 第15篇

数学必修四知识点总结平面向量

1、向量的加法

向量的加法满足平行四边形法则和三角形法则。

AB+BC=AC。

a+b=(_+_',y+y')。

a+0=0+a=a。

向量加法的运算律:

交换律:a+b=b+a;

结合律:(a+b)+c=a+(b+c)。

2、向量的减法

如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0

AB-AC=CB. 即“共同起点,指向被减”

a=(_,y) b=(_',y') 则 a-b=(_-_',y-y').

3、数乘向量

实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣•∣a∣。

当λ>0时,λa与a同方向;

当λ<0时,λa与a反方向;

当λ=0时,λa=0,方向任意。

当a=0时,对于任意实数λ,都有λa=0。

注:按定义知,如果λa=0,那么λ=0或a=0。

实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。

当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍;

当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。

数与向量的乘法满足下面的运算律

结合律:(λa)•b=λ(a•b)=(a•λb)。

向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.

数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.

数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b。② 如果a≠0且λa=μa,那么λ=μ。

4、向量的的数量积

定义:已知两个非零向量a,b.作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π

定义:两个向量的数量积(内积、点积)是一个数量,记作a•b.若a、b不共线,则a•b=|a|•|b|•cos〈a,b〉;若a、b共线,则a•b=+-∣a∣∣b∣.

向量的数量积的坐标表示:a•b=_•_'+y•y'.

向量的数量积的运算律

a•b=b•a(交换律);

(λa)•b=λ(a•b)(关于数乘法的结合律);

(a+b)•c=a•c+b•c(分配律);

向量的数量积的性质

a•a=|a|的平方.

a⊥b 〈=〉a•b=0.

|a•b|≤|a|•|b|.

向量的数量积与实数运算的主要不同点

1、向量的数量积不满足结合律,即:(a•b)•c≠a•(b•c);例如:(a•b)^2≠a^2•b^2.

2、向量的数量积不满足消去律,即:由 a•b=a•c (a≠0),推不出 b=c.

3、|a•b|≠|a|•|b|

4、由 |a|=|b| ,推不出 a=b或a=-b.

5、向量的向量积

定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b.若a、b不共线,则a×b的模是:∣a×b∣=|a|•|b|•sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系.若a、b共线,则a×b=0.

向量的向量积性质:

∣a×b∣是以a和b为边的平行四边形面积.

a×a=0.

a‖b〈=〉a×b=0.

向量的向量积运算律

a×b=-b×a;

(λa)×b=λ(a×b)=a×(λb);

(a+b)×c=a×c+b×c.

注:向量没有除法,“向量AB/向量CD”是没有意义的.

6、向量的三角形不xxx式

1、∣∣a∣-∣b∣∣≤∣a+b∣≤∣a∣+∣b∣;

① 当且仅当a、b反向时,左边取xxx号;

② 当且仅当a、b同向时,右边取xxx号.

2、∣∣a∣-∣b∣∣≤∣a-b∣≤∣a∣+∣b∣.

① 当且仅当a、b同向时,左边取xxx号;

② 当且仅当a、b反向时,右边取xxx号.

7、定比分点

定比分点公式(向量P1P=λ•向量PP2)

设P1、P2是直线上的两点,P是l上不同于P1、P2的任意一点.则存在一个实数 λ,使 向量P1P=λ•向量PP2,λ叫做点P分有向线段P1P2所成的比.

若P1(_1,y1),P2(_2,y2),P(_,y),则有

OP=(OP1+λOP2)(1+λ);(定比分点向量公式)

_=(_1+λ_2)/(1+λ),

y=(y1+λy2)/(1+λ).(定比分点坐标公式)

我们把上面的式子叫做有向线段P1P2的定比分点公式

8、三点共线定理

若OC=λOA+μOB,且λ+μ=1 ,则A、B、C三点共线

三角形重心判断式

在△ABC中,若GA+GB+GC=O,则G为△ABC的重心