榆树范文网

数学必修二总结(必备40篇)

98

数学必修二总结 第1篇

数学必修二第四章知识点

1.并集

(1)并集的定义

由所有属于集合A或属于集合B的元素所组成的集合称为集合A与B的并集,记作A∪B(读作”A并B“);

(2)并集的符号表示

A∪B={x|x∈A或x∈B}.

并集定义的数学表达式中”或“字的意义应引起注意,用它连接的并列成分之间不一定是互相排斥的.

x∈A,或x∈B包括如下三种情况:

①x∈A,但xB;②x∈B,但xA;③x∈A,且x∈B.

由集合A中元素的互异性知,A与B的公共元素在A∪B中只出现一次,因此,A∪B是由所有至少属于A、B两者之一的元素组成的集合.

例如,设A={3,5,6,8},B={4,5,7,8},则A∪B={3,4,5,6,7,8},而不是{3,5,6,8,4,5,7,8}.

2.交集

利用下图类比并集的概念引出交集的概念.

(1)交集的定义

由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集,记作A∩B(读作”A交B_).

(2)交集的符号表示

A∩B={x|x∈A且x∈B}.

1.函数的奇偶性

(1)若f(x)是偶函数,那么f(x)=f(-x);

(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);

(3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0);

(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;

(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;

2.复合函数的有关问题

(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。

(2)复合函数的单调性由“同增异减”判定;

3.函数图像(或方程曲线的对称性)

(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;

(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;

(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);

(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;

(5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称,高中数学;

(6)函数y=f(x-a)与y=f(b-x)的图像关于直线x=对称;

数学必修二学习方法

养成良好的课前和课后学习习惯:在当前高中数学学习中,培养正确的学习习惯是一项重要的学习技能。虽然有一种刻板印象的猜疑,但在高中数学学习真的是反复尝试和错误的。学生们不得不预习课本。我准备的数学教科书不是简单的阅读,而是一个例子,至少十分钟的思考。在使用前不能通过学习知识解决问题的情况下,可以在教学内容中找到答案,然后在教材中考察问题的解决过程,掌握解决问题的思路。同时,在课堂上安排笔记也是必要的。在高中数学研究中,建议采用两种形式的笔记,一种是课堂速记,另一种是课后笔记。这不仅提高了课堂记忆的吸收能力,而且有助于对笔记内容的查询。

数学必修二学习技巧

回顾和把握平时的困难,注意检查错误,填补空白,合理解决问题。

在实践中,我们要抓住一个难题。我省高考数学考试的难度在左右,如果命题的方向不偏颇,大多数学生都能减少当前问题的难度。对于优等生,要提高难度,灵活运用知识,深入分析问题,提高解决问题的能力。在平时,练习的次数应该适度控制,以前做过的问题应该被发现,特别是容易出错的知识点。我们应该再看一遍,把概念搞清楚,这样才能减少类似问题再犯错误的可能性。有两个重要的问题,一个是战略,另一个是技能。高考就像战争一样,在战略上要轻视敌人,在战术上要重视敌人。在策略上,学生应该建立信心。毕竟复习时间已经够长了,应该掌握知识,这样答案才能立于不败之地。就技巧而言,回答问题比回答问题容易。在试卷中,难度一般是分散的:选择题的难度在后面,填空的难度也是一样的。大问题一般可以在前面或两个做,在后面的大问题中,一两个小问题是比较容易解决的。当你回答一个问题时,你必须先解决这些问题。当你遇到麻烦时,不要花太多时间。只要放弃,做一些简单的事情,专注于突破。考试时间比较紧,要分配合理的答题时间。当然,这会因人而异。中产阶层应该把重心往前移动,在前面选择,填的时间越多,问题越大,有的由前面的问题比较简单,就能拿到积分来把握。优等生要在掌握问题速度的前提下,在适当的重心转移的前提下解决问题。

数学必修二总结 第2篇

解三角形

(1)正弦定理和余弦定理

掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.

(2)应用

能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.

(1)数列的概念和简单表示法

①了解数列的概念和几种简单的表示方法(列表、图象、通项公式).

②了解数列是自变量为正整数的一类函数.

(2)等差数列、等比数列

①理解等差数列、等比数列的概念.

②掌握等差数列、等比数列的通项公式与前项和公式.

③能在具体的问题情境中,识别数列的等差关系或等比关系,并能用有关知识解决相应的问题.

④了解等差数列与一次函数、等比数列与指数函数的关系.

高中数学必修二知识点总结:不等式

数学必修二总结 第3篇

空间两条直线只有三种位置关系:平行、相交、异面

1、按是否共面可分为两类:

(1)共面:平行、相交

(2)异面:

异面直线的定义:不同在任何一个平面内的两条直线或既不平行也不相交。

异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。

两异面直线xxx的角:范围为(0°,90°)esp.空间向量法

两异面直线间距离:公垂线段(有且只有一条)esp.空间向量法

2、若从有无公共点的角度看可分为两类:

(1)有且仅有一个公共点——相交直线;

(2)没有公共点——平行或异面

直线和平面的位置关系:

直线和平面只有三种位置关系:在平面内、与平面相交、与平面平行

①直线在平面内——有无数个公共点

②直线和平面相交——有且只有一个公共点

直线与平面xxx的角:平面的一条斜线和它在这个平面内的射影xxx的锐角。

高中学数学的技巧

1.重视课堂的学习效率

新知识的接受和数学能力的培养,主要是在课堂上进行,所以要特别重视课堂的学习效率,上课时要紧跟老师的思路,积极开展思维,预测下面的步骤,比较自己的解题思路与老师所讲的有哪些不同。课后要及时复习,不留疑点,对不懂的地方要及时请教老师或同学,切忌不懂将懂,或将不懂的地方跳过。课后还要注重基础知识的学习和基本技能的培养,要多记公式、定理,因为它们是学好数学的关键和必备条件。

2.多做习题,养成良好的解题习惯

要想学好数学,多做题是不可避免的。当然,多做题并不等于搞题海战术。做的题目要有代表性,不能胡子眉毛一把抓,碰到哪道题就做哪道题。有些题适合我们做,而有些题却超出了我们的能力范围,做这些题目只能是浪费我们宝贵的时间,不会达到任何效果。做的题要难易适中,通过做些有代表的题目,要力争能举一反三。数学是一门逻辑性很强的学科,需要缜密的思维,解题要有条理,在做题的过程中学会熟练运用正确的解题方法,掌握一些基本题型的解题规律。只有平时大量的训练,见多了、做多了,自然就熟能生巧,考试的时候就会应付自如,不至于乱了阵脚。

数学必修二总结 第4篇

排列组合

排列P------和顺序有关

组合C-------不牵涉到顺序的问题

排列分顺序,组合不分

例如把5本不同的书分给3个人,有几种分法._排列_

把5本书分给3个人,有几种分法_组合_

1.排列及计算公式

从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用xxx(n,m)表示.

p(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!(规定0!=1).

2.组合及计算公式

从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号

c(n,m)表示.

c(n,m)=p(n,m)/m!=n!/((n-m)!_!);c(n,m)=c(n,n-m);

3.其他排列与组合公式

从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!.

n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为

n!/(n1!_2!_.._k!).

k类元素,每类的`个数无限,从中取出m个元素的组合数为c(m+k-1,m).

排列(Pnm(n为下标,m为上标))

Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标)=n!;0!=1;Pn1(n为下标1为上标)=n

组合(Cnm(n为下标,m为上标))

Cnm=Pnm/Pmm;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标)=1;Cn1(n为下标1为上标)=n;Cnm=Cnn-m

20xx-07-0813:30

公式P是指排列,从N个元素取R个进行排列。公式C是指组合,从N个元素取R个,不进行排列。N-元素的总个数R参与选择的元素个数!-阶乘,如9!=9________

从N倒数r个,表达式应该为n_n-1)_n-2)..(n-r+1);

因为从n到(n-r+1)个数为n-(n-r+1)=r

数学必修二总结 第5篇

1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径.

2、圆的方程

(1)标准方程,圆心,半径为r;

(2)一般方程

当时,方程表示圆,此时圆心为,半径为

当时,表示一个点;当时,方程不表示任何图形.

(3)求圆方程的方法:

一般都采用待定系数法:先设后求.确定一个圆需要三个独立条件,若利用圆的标准方程,

需求出a,b,r;若利用一般方程,需要求出D,E,F;

另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置.

3、高中数学必修二知识点总结:直线与圆的位置关系:

直线与圆的位置关系有相离,相切,相交三种情况:

(1)设直线,圆,圆心到l的距离为,则有;;

(2)过圆外一点的切线:k不存在,验证是否成立k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程【一定两解】

(3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2

4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.

设圆,

两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.

当时两圆外离,此时有公切线四条;

当时两圆外切,连心线过切点,有外公切线两条,内公切线一条;

当时两圆相交,连心线垂直平分公共弦,有两条外公切线;

当时,两圆内切,连心线经过切点,只有一条公切线;

当时,两圆内含;当时,为同心圆.

注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线

5、空间点、直线、平面的位置关系

公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内.

应用:判断直线是否在平面内

用符号语言表示公理1:

公理2:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线

符号:平面α和β相交,交线是a,记作α∩β=a.

符号语言:

公理2的作用:

它是判定两个平面相交的方法.

它说明两个平面的交线与两个平面公共点之间的关系:交线必过公共点.

它可以判断点在直线上,即证若干个点共线的重要依据.

公理3:经过不在同一条直线上的三点,有且只有一个平面.

推论:一直线和直线外一点确定一平面;两相交直线确定一平面;两平行直线确定一平面.

公理3及其推论作用:它是空间内确定平面的依据它是证明平面重合的依据

公理4:平行于同一条直线的两条直线互相平行

高中数学必修二知识点总结:空间直线与直线之间的位置关系

异面直线定义:不同在任何一个平面内的两条直线

异面直线性质:既不平行,又不相交.

异面直线判定:过平面外一点与平面内一点的直线与平面内不过该店的直线是异面直线

异面直线xxx角:作平行,令两线相交,所得锐角或直角,即xxx角.两条异面直线xxx角的范围是(0°,90°],若两条异面直线xxx的角是直角,我们就说这两条异面直线互相垂直.

求异面直线xxx角步骤:

A、利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选在特殊的位置上.B、证明作出的角即为所求角C、利用三角形来求角

(7)等角定理:如果一个角的两边和另一个角的两边分别平行,那么这两角相等或互补.

(8)空间直线与平面之间的位置关系

直线在平面内——有无数个公共点.

三种位置关系的符号表示:aαa∩α=Aaα

(9)平面与平面之间的位置关系:平行——没有公共点;αβ

相交——有一条公共直线.α∩β=b

2、空间中的平行问题

(1)直线与平面平行的判定及其性质

线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行.

线线平行线面平行

线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,

那么这条直线和交线平行.线面平行线线平行

(2)平面与平面平行的判定及其性质

两个平面平行的判定定理

(1)如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行

(线面平行→面面平行),

(2)如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行.

(线线平行→面面平行),

(3)垂直于同一条直线的两个平面平行,

两个平面平行的性质定理

(1)如果两个平面平行,那么某一个平面内的直线与另一个平面平行.(面面平行→线面平行)

(2)如果两个平行平面都和第三个平面相交,那么它们的交线平行.(面面平行→线线平行)

3、空间中的垂直问题

(1)线线、面面、线面垂直的定义

两条异面直线的垂直:如果两条异面直线xxx的角是直角,就说这两条异面直线互相垂直.

线面垂直:如果一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直.

平面和平面垂直:如果两个平面相交,xxx的二面角(从一条直线出发的两个半平面所组成的图形)是xxx面角(平面角是直角),就说这两个平面垂直.

(2)垂直关系的判定和性质定理

线面垂直判定定理和性质定理

判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面.

性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行.

面面垂直的判定定理和性质定理

判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.

性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面.

4、空间角问题

(1)直线与直线xxx的角

两平行直线xxx的角:规定为.

两条相交直线xxx的角:两条直线相交其中不大于直角的角,叫这两条直线xxx的角.

两条异面直线xxx的角:过空间任意一点O,分别作与两条异面直线a,b平行的直线,形成两条相交直线,这两条相交直线xxx的不大于直角的角叫做两条异面直线xxx的角.

(2)直线和平面xxx的角

平面的平行线与平面xxx的角:规定为.平面的垂线与平面xxx的角:规定为.

平面的斜线与平面xxx的角:平面的一条斜线和它在平面内的射影xxx的锐角,叫做这条直线和这个平面xxx的角.

求斜线与平面xxx角的思路类似于求异面直线xxx角:“一作,二证,三计算”.

在“作角”时依定义关键作射影,由射影定义知关键在于斜线上一点到面的垂线,

在解题时,注意挖掘题设中两个主要信息:(1)斜线上一点到面的垂线;(2)过斜线上的一点或过斜线的平面与已知面垂直,由面面垂直性质易得垂线.

(3)二面角和二面角的平面角

二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面.

二面角的平面角:以二面角的棱上任意一点为顶点,在两个面内分别作垂直于棱的两条射线,这两条射线xxx的角叫二面角的平面角.

xxx面角:平面角是直角的二面角叫xxx面角.

两相交平面如果所组成的二面角是xxx面角,那么这两个平面垂直;反过来,如果两个平面垂直,那么xxx的二面角为xxx面角

求二面角的方法

定义法:在棱上选择有关点,过这个点分别在两个面内作垂直于棱的射线得到平面角

垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个面的交线xxx的角为二面角的平面角

必修二知识点总结:解三角形

(1)正弦定理和余弦定理

掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.

(2)应用

能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.

数学必修二总结 第6篇

圆的标准方程

1、圆的标准方程:(xa)2(yb)2r2

圆心为A(a,b),半径为r的圆的方程

2、点M(x0,y0)与圆(xa)(1)(x0(3)(x02(yb)2r2的关系的判断方法:

a)2(y0b)2>r2,点在圆外(2)(x0a)2(y0b)2=r2,点在圆上a)2(y0b)2归海木心QQ:634102564

(4)当l|r1r2|时,圆C1与圆C2内切;(5)当l|r1r2|时,圆C1与圆C2内含;

直线与圆的方程的应用

1、利用平面直角坐标系解决直线与圆的位置关系;2、过程与方法

用坐标法解决几何问题的步骤:

第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中的几何元素,将平面几何问题转化为代数问题;第二步:通过代数运算,解决代数问题;第三步:将代数运算结果“翻译”成几何结论.

空间直角坐标系

1、点M对应着唯一确定的有序实数组(x,y,z),x、上的坐标

2、有序实数组(x,y,z),对应着空间直角坐标系中的一点

y、z分别是P、Q、R在x、y、z轴

xOPQM_y3、空间中任意点M的坐标都可以用有序实数组(x,y,z)来表示,该数组叫做点M在此空间直角坐标系中的坐标,记M(x,y,z),x叫做点M的横坐标,坐标。y叫做点M的纵坐标,z叫做点M的竖

空间两点间的距离公式1、空间中任意一点P1(x1,y1,z1)到点P2(x2,y2,z2)之间的距离公式P1P2P1P2(x1x2)(y1y2)(z1z2)222N1xOM1MM2HN2yN

数学必修二总结 第7篇

基本概念

公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有的点都在这个平面内。

公理2:如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线。

公理3:过不在同一条直线上的三个点,有且只有一个平面。

推论1:经过一条直线和这条直线外一点,有且只有一个平面。

推论2:经过两条相交直线,有且只有一个平面。

推论3:经过两条平行直线,有且只有一个平面。

公理4:平行于同一条直线的两条直线互相平行。

等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。

空间两直线的位置关系:

空间两条直线只有三种位置关系:平行、相交、异面

1、按是否共面可分为两类:

(1)共面:平行、相交

(2)异面:

异面直线的定义:不同在任何一个平面内的两条直线或既不平行也不相交。

异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。

2、若从有无公共点的角度看可分为两类:

(1)有且仅有一个公共点——相交直线;(2)没有公共点——平行或异面

【二】

1三视图:

正视图:从前往后侧视图:从左往右俯视图:从上往下

2画三视图的原则:

长对齐、高对齐、宽相等

3直观图:斜二测画法

4斜二测画法的步骤:

(1).平行于坐标轴的线依然平行于坐标轴;

(2).平行于y轴的线长度变半,平行于x,z轴的线长度不变;

(3).画法要写好。

5用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图

数学必修二总结 第8篇

空间两条直线只有三种位置关系:平行、相交、异面

1、按是否共面可分为两类:

(1)共面:平行、相交

(2)异面:

异面直线的定义:不同在任何一个平面内的两条直线或既不平行也不相交。

异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。

两异面直线xxx的角:范围为(0°,90°)esp.空间向量法

两异面直线间距离:公垂线段(有且只有一条)esp.空间向量法

2、若从有无公共点的角度看可分为两类:

(1)有且仅有一个公共点——相交直线;(2)没有公共点——平行或异面

直线和平面的位置关系:

直线和平面只有三种位置关系:在平面内、与平面相交、与平面平行

①直线在平面内——有无数个公共点

②直线和平面相交——有且只有一个公共点

直线与平面xxx的角:平面的一条斜线和它在这个平面内的射影xxx的锐角。

数学必修二总结 第9篇

一、集合有关概念

1.集合的含义

2.集合的中元素的三个特性:

(1)元素的确定性

(2)元素的互异性

(3)元素的无序性

3.集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}

(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}

(2)集合的表示方法:列举法与描述法。

注意:常用数集及其记法:

非负整数集(即自然数集)记作:N

正整数集:N_或N+

整数集:Z

有理数集:Q

实数集:R

1)列举法:{a,b,c……}

2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合{xÎR|x-3>2},{x|x-3>2}

3)语言描述法:例:{不是直角三角形的三角形}

4)Venn图:

4、集合的分类:

(1)有限集含有有限个元素的集合

(2)无限集含有无限个元素的集合

(3)空集不含任何元素的集合例:{x|x2=-5}

二、集合间的基本关系

1.“包含”关系—子集

注意:有两种可能

(1)A是B的一部分;

(2)A与B是同一集合。

反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA。

2.不含任何元素的集合叫做空集,记为Φ

规定:空集是任何集合的子集,空集是任何非空集合的真子集。

3.子集个数:

有n个元素的集合,含有2n个子集,2n-1个真子集,含有2n-1个非空子集,含有2n-1个非空真子集

三、集合的运算

由所有属于A且属于B的元素所组成的集合,叫做A,B的交集,记作A∩B(读作‘A交B’),即A∩B={x|x∈A,且x∈B}

由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集,记作:A∪B(读作‘A并B’),即A∪B={x|x∈A,或x∈B})

数学必修二总结 第10篇

了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景.

(2)一元二次不等式

会从实际情境中抽象出一元二次不等式模型.

通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系.

会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.

(3)二元一次不等式组与简单线性规划问题

会从实际情境中抽象出二元一次不等式组.

了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.

会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.

数学必修二总结 第11篇

(1)数列的概念和简单表示法

①了解数列的概念和几种简单的表示方法(列表、图象、通项公式).

②了解数列是自变量为正整数的一类函数.

(2)等差数列、等比数列

①理解等差数列、等比数列的概念.

②掌握等差数列、等比数列的通项公式与前项和公式.

③能在具体的问题情境中,识别数列的等差关系或等比关系,并能用有关知识解决相应的问题.

④了解等差数列与一次函数、等比数列与指数函数的关系.

高中数学必修二知识点总结:不等式

7高中数学必修二知识点总结:不等关系

了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景.

(2)一元二次不等式

①会从实际情境中抽象出一元二次不等式模型.

②通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系.

③会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.

(3)二元一次不等式组与简单线性规划问题

①会从实际情境中抽象出二元一次不等式组.

②了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.

③会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.

(4)基本不等式:

①了解基本不等式的证明过程.

②会用基本不等式解决简单的最大(小)值问题圆的辅助线一般为连圆心与切线或者连圆心与弦中点

数学必修二总结 第12篇

直线与平面有几种位置关系

直线与平面的关系有3种:直线在平面上,直线与平面相交,直线与平面平行。其中直线与平面相交,又分为直线与平面斜交和直线与平面垂直两个子类。

直线在平面内——有无数个公共点;直线与平面相交——有且只有一个公共点;直线与平面平行——没有公共点。直线与平面相交和平行统称为直线在平面外。

直线与平面垂直的判定:如果直线L与平面α内的任意一直线都垂直,我们就说直线L与平面α互相垂直,记作L⊥α,直线L叫做平面α的垂线,平面α叫做直线L的垂面。

线面平行:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。平面外一条直线与此平面的垂线垂直,则这条直线与此平面平行。

直线与平面的夹角范围

[0,90°]或者说是[0,π/2]这个范围。

当两条直线非垂直的相交的时候,形成了4个角,这4个角分成两组对顶角。两个锐角,两个钝角。按照规定,选择锐角的那一对对顶角作为直线和直线的夹角。

直线的方向向量m=(2,0,1),平面的法向量为n=(-1,1,2),m,n夹角为θ,cosθ=(m_n)/|m||n|,结果等于0.也就是说,l和平面法向量垂直,那么l平行于平面。l和平面夹角就为0°

提高数学成绩的技巧是什么

课内重视听讲,课后及时复习

接受一种新的知识,主要实在课堂上进行的,所以要重视课堂上的学习效率,找到适合自己的学习方法,上课时要跟住老师的思路,积极思考。下课之后要及时复习,遇到不懂的地方要及时去问,在做作业的时候,先把老师课堂上讲解的内容回想一遍,还要牢牢的掌握公式及推理过程,尽量不要去翻书。尽量自己思考,不要急于翻看答案。还要经常性的总结和复习,把知识点结合起来,变成自己的知识体系。

多做题,养成良好的解题习惯

要想学好数学,大量做题是必可避免的,熟练地掌握各种题型,这样才能有效的提高数学成绩。刚开始做题的时候先以书上习题为主,答好基础,然后逐渐增加难度,开拓思路,练习各种类型的解题思路,对于容易出现错误的题型,应该记录下来,反复加以联系。在做题的时候应该养成良好的解题习惯,集中注意力,这样才能进入最佳的状态,形成习惯,这样在考试的时候才能运用自如。

数学三角函数知识点

1.终边与终边相同(的终边在终边所在射线上).

终边与终边共线(的终边在终边所在直线上).

终边与终边关于轴对称

终边与终边关于轴对称

终边与终边关于原点对称

一般地:终边与终边关于角的终边对称.

与的终边关系由“两等分各象限、一二三四”确定.

2.弧长公式:,扇形面积公式:1弧度(1rad).

3.三角函数符号特征是:一是全正、二正弦正、三是切正、四余弦正.

4.三角函数线的特征是:正弦线“站在轴上(起点在轴上)”、余弦线“躺在轴上(起点是原点)”、正切线“站在点处(起点是)”.务必重视“三角函数值的大小与单位圆上相应点的坐标之间的关系,‘正弦’‘纵坐标’、‘余弦’‘横坐标’、‘正切’‘纵坐标除以横坐标之商’”;务必记住:单位圆中角终边的变化与值的大小变化的关系为锐角

5.三角函数同角关系中,平方关系的运用中,务必重视“根据已知角的范围和三角函数的取值,精确确定角的范围,并进行定号”;

6.三角函数诱导公式的本质是:奇变偶不变,符号看象限.

7.三角函数变换主要是:角、函数名、次数、系数(常值)的变换,其核心是“角的变换”!

角的变换主要有:已知角与特殊角的变换、已知角与目标角的变换、角与其倍角的变换、两角与其和差角的变换.

8.三角函数性质、图像及其变换:

(1)三角函数的定义域、值域、单调性、奇偶性、有界性和周期性

注意:正切函数、余切函数的定义域;绝对值对三角函数周期性的影响:一般说来,某一周期函数解析式加绝对值或平方,其周期性是:弦减半、切不变.既为周期函数又是偶函数的函数自变量加绝对值,其周期性不变;其他不定.如的周期都是,但的周期为,y=|tanx|的周期不变,问函数y=cos|x|,,y=cos|x|是周期函数吗?

(2)三角函数图像及其几何性质:

(3)三角函数图像的变换:两轴方向的平移、伸缩及其向量的平移变换.

(4)三角函数图像的作法:三角函数线法、五点法(五点横坐标成等差数列)和变换法.

9.三角形中的三角函数:

(1)内角和定理:三角形三角和为,任意两角和与第三个角总互补,任意两半角和与第三个角的半角总互余.锐角三角形三内角都是锐角三内角的余弦值为正值任两角和都是钝角任意两边的平方和大于第三边的平方.

(2)正弦定理:(R为三角形外接圆的半径).

(3)余弦定理:常选用余弦定理鉴定三角形的类型.

数学必修二总结 第13篇

圆锥曲线方程:

1、椭圆:①方程(a>b>0)注意还有一个;②定义:|PF1|+|PF2|=2a>2c;③e=④长轴长为2a,短轴长为2b,焦距为2c;a2=b2+c2;

2、双曲线:①方程(a,b>0)注意还有一个;②定义:||PF1|—|PF2||=2a<2c;③e=;④实轴长为2a,虚轴长为2b,焦距为2c;渐进线或c2=a2+b2

3、抛物线:①方程y2=2px注意还有三个,能区别开口方向;②定义:|PF|=d焦点F(,0),准线x=—;③焦半径;焦点弦=x1+x2+p;

4、直线被圆锥曲线截得的弦长公式:

直线、平面、简单几xxx:

1、学会三视图的分析:

2、斜二测画法应注意的地方:

(1)在已知图形中取互相垂直的轴Ox、Oy。画直观图时,把它画成对应轴o'x'、o'y'、使∠x'o'y'=45°(或135°)。

(2)平行于x轴的线段长不变,平行于y轴的线段长减半。

(3)直观图中的45度原图中就是90度,直观图中的90度原图一定不是90度。

3、表(侧)面积与体积公式:

⑴柱体:①表面积:S=S侧+2S底;②侧面积:S侧=;③体积:V=S底h

⑵锥体:①表面积:S=S侧+S底;②侧面积:S侧=;③体积:V=S底h:

⑶台体:①表面积:S=S侧+S上底S下底②侧面积:S侧=

⑷球体:①表面积:S=;②体积:V=

4、位置关系的证明(主要方法):注意立体几何证明的书写

(1)直线与平面平行:①线线平行线面平行;②面面平行线面平行。

(2)平面与平面平行:①线面平行面面平行。

(3)垂直问题:线线垂直线面垂直面面垂直。核心是线面垂直:垂直平面内的两条相交直线。

5、求角:(步骤:Ⅰ、找或作角;Ⅱ、求角)

⑴异面直线xxx角的求法:平移法:平移直线,构造三角形。

⑵直线与平面xxx的角:直线与射影xxx的角。

数学必修二总结 第14篇

1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径.

2、圆的方程

(1)标准方程,圆心,半径为r;

(2)一般方程

当时,方程表示圆,此时圆心为,半径为

当时,表示一个点;当时,方程不表示任何图形.

(3)求圆方程的方法:

一般都采用待定系数法:先设后求.确定一个圆需要三个独立条件,若利用圆的标准方程,

需求出a,b,r;若利用一般方程,需要求出D,E,F;

另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置.

高中数学必修二知识点总结:直线与圆的位置关系:

直线与圆的位置关系有相离,相切,相交三种情况:

(1)设直线,圆,圆心到l的距离为,则有;;

(2)过圆外一点的切线:①k不存在,验证是否成立②k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程【一定两解】

(3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2

4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.

设圆,

两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.

当时两圆外离,此时有公切线四条;

当时两圆外切,连心线过切点,有外公切线两条,内公切线一条;

当时两圆相交,连心线垂直平分公共弦,有两条外公切线;

当时,两圆内切,连心线经过切点,只有一条公切线;

当时,两圆内含;当时,为同心圆.

注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线

4、空间点、直线、平面的位置关系

公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内.

应用:判断直线是否在平面内

用符号语言表示公理1:

公理2:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线

符号:平面α和β相交,交线是a,记作α∩β=a.

符号语言:

公理2的作用:

①它是判定两个平面相交的方法.

②它说明两个平面的交线与两个平面公共点之间的关系:交线必过公共点.

③它可以判断点在直线上,即证若干个点共线的重要依据.

公理3:经过不在同一条直线上的三点,有且只有一个平面.

推论:一直线和直线外一点确定一平面;两相交直线确定一平面;两平行直线确定一平面.

公理3及其推论作用:①它是空间内确定平面的依据②它是证明平面重合的依据

公理4:平行于同一条直线的两条直线互相平行

数学必修二总结 第15篇

1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。

2、集合的中元素的三个特性:

1.元素的确定性;

2.元素的互异性;

3.元素的无序性

说明:

(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。

(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。

(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。

(4)集合元素的三个特性使集合本身具有了确定性和整体性。

3、集合的表示:{…}如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}

1.用拉丁字母表示集合:A={我校的'篮球队员},B={1,2,3,4,5}

2.集合的表示方法:列举法与描述法。

注意啊:常用数集及其记法:

非负整数集(即自然数集)记作:N

正整数集N_或N+整数集Z有理数集Q实数集R

关于“属于”的概念

集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A记作a∈A,相反,a不属于集合A记作a?A

列举法:把集合中的元素一一列举出来,然后用一个大括号括上。

描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表示某些对象是否属于这个集合的方法。

①语言描述法:例:{不是直角三角形的三角形}

②数学式子描述法:例:不等式x-3>2的'解集是{x?Rx-3>2}或{xx-3>2}

4、集合的分类:

1.有限集含有有限个元素的集合

2.无限集含有无限个元素的集合

3.空集不含任何元素的集合例:{xx2=-5}

二、集合间的基本关系

1.“包含”关系—子集

注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA

2.“相等”关系(5≥5,且5≤5,则5=5)

实例:设A={xx2-1=0}B={-1,1}“元素相同”

结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B

①任何一个集合是它本身的子集。AíA

②真子集:如果AíB,且A1B那就说集合A是集合B的真子集,记作AB(或BA)

③如果AíB,BíC,那么AíC

④如果AíB同时BíA那么A=B

3.不含任何元素的集合叫做空集,记为Φ

数学必修二总结 第16篇

一、直线与方程

(1)直线的倾斜角

定义:x轴正向与直线向上方向之间xxx的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180°(2)直线的斜率

①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率xxx表示。即ktan。斜率反映直线与轴的倾斜程度。

当0,90时,k0;当90,180时,k0;当90时,k不存在。

yy1(x1x2)②过两点的直线的斜率公式:k2x2x1注意下面四点:(1)当x1x2时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;

(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。(3)直线方程

①点斜式:yy1k(xx1)直线斜率k,且过点x1,y1

注意:当直线的斜率为0°时,k=0,直线的方程是y=y1。

当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。

②斜截式:ykxb,直线斜率为k,直线在y轴上的截距为b③两点式:④截矩式:

yy1y2y1xayxx1x2x1(x1x2,y1y2)直线两点x1,y1,x2,y2

1b其中直线l与x轴交于点(a,0),与y轴交于点(0,b),即l与x轴、y轴的截距分别为a,b。

⑤一般式:AxByC0(A,B不全为0)

1各式的适用范围○2特殊的方程如:注意:○

平行于x轴的直线:yb(b为常数);平行于y轴的直线:xa(a为常数);(5)直线系方程:即具有某一共同性质的直线(一)平行直线系

平行于已知直线A0xB0yC00(A0,B0是不全为0的常数)的直线系:

A0xB0yC0(C为常数)

(二)过定点的直线系

斜率为k的直线系:yy0kxx0,直线过定点x0,y0;

()过两条直线l1:A1xB1yC10,l2:A2xB2yC20的交点的直线系方程为

,其中直线l2不在直线系中。A1xB1yC1A2xB2yC20(为参数)(6)两直线平行与垂直

当l1:yk1xb1,l2:yk2xb2时,l1//l2k1k2,b1b2;l1l2k1k21

注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。(7)两条直线的交点

l1:A1xB1yC10l2:A2xB2yC20相交交点坐标即方程组A1xB1yC10的一组解。

A2xB2yC20方程组无解l1//l2;方程组有无数解l1与l2重合(8)两点间距离公式:设A(x1,y1),B是平面直角坐标系中的两个点,(x2,y2)则|AB|(x2x1)2(y2y1)2

(9)点到直线距离公式:一点Px0,y0到直线l1:AxByC0的距离d(10)两平行直线距离公式

在任一直线上任取一点,再转化为点到直线的距离进行求解。

Ax0By0CAB22

二、圆的方程

1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的

半径。

2、圆的方程

(1)标准方程xaybr2,圆心a,b,半径为r;

22(2)一般方程x2y2DxEyF0当DE2224F0时,方程表示圆,此时圆心为22D2,1E,半径为r22D2E24F

当DE4F0时,表示一个点;当DE4F0时,方程不表示任何图

(3)求圆方程的方法:一般都采用待定系数法:先设后求。确定一个圆需要三个独立条件,若利用圆的标准方程,需求出a,b,r;若利用一般方程,需要求出D,E,F;

另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。3、直线与圆的位置关系:

直线与圆的位置关系有相离,相切,相交三种情况,基本上由下列两种方法判断:

(1)设直线l:AxByC0,圆C:xa2yb2r2,圆心Ca,b到l的距离为

dAaBbCAB222,则有drl与C相离;drl与C相切;drl与C相交

22(2)设直线l:AxByC0,圆C:xaybr2,先将方程联立消元,得到一个一元二次方程之后,令其中的判别式为,则有

0l与C相离;0l与C相切;0l与C相交

2注:如果圆心的位置在原点,可使用公式xx0yy0r去解直线与圆相切的问题,其中x0,y0表示切点坐标,r表示半径。

(3)过圆上一点的切线方程:

①圆x2+y2=r,圆上一点为(x0,y0),则过此点的切线方程为xx0yy0r(课本命题).

2222

②圆(x-a)+(y-b)=r,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r(课本命题的推广).

4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。设圆C1:xa12yb12r2,C2:xa22yb22R2两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。当dRr时两圆外离,此时有公切线四条;

当dRr时两圆外切,连心线过切点,有外公切线两条,内公切线一条;当RrdRr时两圆相交,连心线垂直平分公共弦,有两条外公切线;当dRr时,两圆内切,连心线经过切点,只有一条公切线;当dRr时,两圆内含;当d0时,为同心圆。

三、立体几何初步

1、柱、锥、台、球的结构特征

(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共

边都互相平行,由这些面所围成的几xxx。

分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

表示:用各顶点字母,如五棱柱ABCDEA“B”C“D”E“或用对角线的端点字母,如五棱柱

”AD

几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且

相等;平行于底面的截面是与底面全等的多边形。

(2)棱锥

定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几xxx

分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等

表示:用各顶点字母,如五棱锥PABCDE

几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到

截面距离与高的比的平方。

(3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等

“”“”“表示:用各顶点字母,如五棱台PABCDE

几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转xxx的曲面所围成的几xxx

几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图

是一个矩形。

(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周xxx的曲面所围成的几何

几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。(6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一xxx的几xxx几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。2、空间几xxx的三视图

定义三视图:正视图(光线从几xxx的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)

注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;

侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。

3、空间几xxx的直观图斜二测画法

斜二测画法特点:①原来与x轴平行的线段仍然与x平行且长度不变;

②原来与y轴平行的线段仍然与y平行,长度为原来的一半。

4、柱体、锥体、台体的表面积与体积

(1)几xxx的表面积为几xxx各个面的面积的和。

(2)特殊几xxx表面积公式(c为底面周长,h为高,h为斜高,l为母线)

S直棱柱侧面积S正棱台侧面积12chS圆柱侧2rhS正棱锥侧面积(c1c2)h”S圆台侧面积(rR)l

12ch“S圆锥侧面积rl

S圆柱表2rrlS圆锥表rrlS圆台表r2rlRlR2

(3)柱体、锥体、台体的体积公式V柱ShV圆柱ShV台13(S”“21rhV锥ShV圆锥1r2h

33SSS)hV圆台13(S”SSS)h“13(rrRR)h

(4)球体的表面积和体积公式:V球4、空间点、直线、平面的位置关系

球面=4R2

(1)平面

①平面的概念:A.描述性说明;B.平面是无限伸展的;

②平面的表示:通常用xxx母α、β、γ表示,如平面α(通常写在一个锐角内);

也可以用两个相对顶点的字母来表示,如平面BC。

③点与平面的关系:点A在平面内,记作A;点A不在平面内,记作A点与直线的关系:点A的直线l上,记作:A∈l;点A在直线l外,记作Al;

直线与平面的关系:直线l在平面α内,记作lα;直线l不在平面α内,记作lα。(2)公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内。

(即直线在平面内,或者平面经过直线)

应用:检验桌面xxx;判断直线是否在平面内

用符号语言表示公理1:Al,Bl,A,Bl(3)公理2:经过不在同一条直线上的三点,有且只有一个平面。

推论:一直线和直线外一点确定一平面;两相交直线确定一平面;两平行直线确定一平面。

公理2及其推论作用:①它是空间内确定平面的依据②它是证明平面重合的依据(4)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线

符号:平面α和β相交,交线是a,记作α∩β=a。

符号语言:PABABl,Pl公理3的作用:

①它是判定两个平面相交的方法。

②它说明两个平面的交线与两个平面公共点之间的关系:交线必过公共点。③它可以判断点在直线上,即证若干个点共线的重要依据。(5)公理4:平行于同一条直线的两条直线互相平行(6)空间直线与直线之间的位置关系

①异面直线定义:不同在任何一个平面内的两条直线②异面直线性质:既不平行,又不相交。

③异面直线判定:过平面外一点与平面内一点的直线与平面内不过该店的直线是异面直线④异面直线xxx角:直线a、b是异面直线,经过空间任意一点O,分别引直线a’∥a,b’∥b,则把直线a’和b’xxx的锐角(或直角)叫做异面直线a和bxxx的角。两条异面直线xxx角的范围是(0°,90°],若两条异面直线xxx的角是直角,我们就说这两条异面直线互相垂直。说明:(1)判定空间直线是异面直线方法:①根据异面直线的定义;②异面直线的判定定理(2)在异面直线xxx角定义中,空间一点O是任取的,而和点O的位置无关。②求异面直线xxx角步骤:

A、利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选在特殊的'位置上。B、证明作出的角即为所求角C、利用三角形来求角

(7)等角定理:如果一个角的两边和另一个角的两边分别平行,那么这两角相等或互补。(8)空间直线与平面之间的位置关系

直线在平面内有无数个公共点.

三种位置关系的符号表示:aαa∩α=Aa∥α

(9)平面与平面之间的位置关系:平行没有公共点;α∥β

相交有一条公共直线。α∩β=b

5、空间中的平行问题

(1)直线与平面平行的判定及其性质

线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行。

线线平行线面平行

线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,

那么这条直线和交线平行。线面平行线线平行

(1)平面与平面平行的判定及其性质两个平面平行的判定定理

(2)如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行

(线面平行→面面平行),

(2)如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行。(线线平行→面面平行),

(3)垂直于同一条直线的两个平面平行,两个平面平行的性质定理

(1)如果两个平面平行,那么某一个平面内的直线与另一个平面平行。(面面平行→线面平行)(2)如果两个平行平面都和第三个平面相交,那么它们的交线平行。(面面平行→线线平行)7、空间中的垂直问题

(1)线线、面面、线面垂直的定义①两条异面直线的垂直:如果两条异面直线xxx的角是直角,就说这两条异面直线互相垂直。②线面垂直:如果一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直。

③平面和平面垂直:如果两个平面相交,xxx的二面角(从一条直线出发的两个半平面所组成的图形)是xxx面角(平面角是直角),就说这两个平面垂直。(2)垂直关系的判定和性质定理①线面垂直判定定理和性质定理判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面。性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。②面面垂直的判定定理和性质定理

判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面。

9、空间角问题

(1)直线与直线xxx的角

①两平行直线xxx的角:规定为0。

②两条相交直线xxx的角:两条直线相交其中不大于直角的角,叫这两条直线xxx的角。③两条异面直线xxx的角:过空间任意一点O,分别作与两条异面直线a,b平行的直线a,b,形成两条相交直线,这两条相交直线xxx的不大于直角的角叫做两条异面直线xxx的角。

(2)直线和平面xxx的角

①平面的平行线与平面xxx的角:规定为0。②平面的垂线与平面xxx的角:规定为90。③平面的斜线与平面xxx的角:平面的一条斜线和它在平面内的射影xxx的锐角,叫做这条直线和这个平面xxx的角。

求斜线与平面xxx角的思路类似于求异面直线xxx角:“一作,二证,三计算”。

第6页

在“作角”时依定义关键作射影,由射影定义知关键在于斜线上一点到面的垂线,在解题时,注意挖掘题设中两个主要信息:(1)斜线上一点到面的垂线;(2)过斜线上的一点或过斜线的平面与已知面垂直,由面面垂直性质易得垂线。(3)二面角和二面角的平面角①二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面。②二面角的平面角:以二面角的棱上任意一点为顶点,在两个面内分别作垂直于棱的两条射.....线,这两条射线xxx的角叫二面角的平面角。③xxx面角:平面角是直角的二面角叫xxx面角。

两相交平面如果所组成的二面角是xxx面角,那么这两个平面垂直;反过来,如果两个平面垂直,那么xxx的二面角为xxx面角④求二面角的方法

定义法:在棱上选择有关点,过这个点分别在两个面内作垂直于棱的射线得到平面角垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个面的交线xxx的角为二面角的平面角7、空间直角坐标系

(1)定义:如图,OBCDD,A,B,C,是单位正方体.以A为原点,分别以OD,OA,,OB的方向为正方向,建立三条数轴x轴.y轴.z轴。这时建立了一个空间直角坐标系Oxyz.

1)O叫做坐标原点2)x轴,y轴,z轴叫做坐标轴.3)过每两个坐标轴的平面叫做坐标面。

(2)右手表示法:令右手大拇指、食指和中指相互垂直时,可能形成的位置。大拇指指向为x轴正方向,食指指向为y轴正向,中指指向则为z轴正向,这样也可以决定三轴间的相位置。

(3)任意点坐标表示:空间一点M的坐标可以用有序实数组(x,y,z)来表示,有序实数组(x,y,z)叫做点M在此空间直角坐标系中的坐标,记作M(x,y,z)(x叫做点M的横坐标,y叫做点M的纵坐标,z叫做点M的竖坐标)

(4)空间两点距离坐标公式:d(x2x1)2(y2y1)2(z2z1)2

数学必修二总结 第17篇

必修二数学第三章知识点归纳

1直线方程形式

一般式:Ax+By+C=0(AB≠0)

斜截式:y=kx+b(k是斜率b是x轴截距)

点斜式:y-y1=k(x-x1)(直线过定点(x1,y1))

两点式:(y-y1)/(x-x1)=(y-y2)/(x-x2)(直线过定点(x1,y1),(x2,y2))

截距式:x/a+y/b=1(a是x轴截距,b是y轴截距)

做题过程中,点斜式和斜截式用的最多(两种合占90%以上),一般式属于中间过渡形态。

在与圆及圆锥曲线结合的过程中,还要用到点到直线距离公式。

2直线方程的局限性

各种不同形式的直线方程的局限性:

(1)点斜式和斜截式都不能表示斜率不存在的直线;

(2)两点式不能表示与坐标轴平行的直线;

(3)截距式不能表示与坐标轴平行或过原点的直线;

(4)直线方程的一般式中系数A、B不能同时为零。

数学直线和圆知识点

1.直线倾斜角与斜率的存在性及其取值范围;直线方向向量的意义(或)及其直线方程的向量式((为直线的方向向量)).应用直线方程的点斜式、斜截式设直线方程时,一般可设直线的斜率为k,但你是否注意到直线垂直于x轴时,即斜率k不存在的情况?

2.知直线纵截距,常设其方程为或;知直线横截距,常设其方程为(直线斜率k存在时,为k的倒数)或知直线过点,常设其方程为.

(2)直线在坐标轴上的截距可正、可负、也可为0.直线两截距相等 直线的斜率为-1或直线过原点;直线两截距互为相反数 直线的斜率为1或直线过原点;直线两截距绝对值相等 直线的斜率为 或直线过原点.

(3)在解析几何中,研究两条直线的位置关系时,有可能这两条直线重合,而在立体几何中一般提到的两条直线可以理解为它们不重合.

3.相交两直线的夹角和两直线间的到角是两个不同的概念:夹角特指相交两直线xxx的较小角,范围是。而其到角是带有方向的角,范围是

4.线性规划中几个概念:约束条件、可行解、可行域、目标函数、最优解.

5.圆的方程:最xxx ;标准方程 ;

6.解决直线与圆的关系问题有“函数方程思想”和“数形结合思想”两种思路,等价转化求解,重要的是发挥“圆的平面几何性质(如半径、半弦长、弦心距构成直角三角形,切线长定理、割线定理、弦切角定理等等)的作用!”

(1)过圆 上一点 圆的切线方程

过圆 上一点 圆的切线方程

过圆 上一点 圆的切线方程

如果点在圆外,那么上述直线方程表示过点 两切线上两切点的“切点弦”xxx

如果点在圆内,那么上述直线方程表示与圆相离且垂直于(为圆心)的直线方程, (为圆心 到直线的距离).

7.曲线与的交点坐标方程组的解;

过两圆交点的圆(公共弦)系为,当且仅当无平方项时,为两圆公共弦所在直线xxx

如何快速学好数学

新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。

首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,庆尽量回忆而不采用不清楚立即翻书之举。

数学必修二总结 第18篇

排列组合

排列P------和顺序有关

组合C-------不牵涉到顺序的问题

排列分顺序,组合不分

例如把5本不同的书分给3个人,有几种分法._排列_

把5本书分给3个人,有几种分法_组合_

1.排列及计算公式

从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用xxx(n,m)表示.

p(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!(规定0!=1).

2.组合及计算公式

从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号

c(n,m)表示.

c(n,m)=p(n,m)/m!=n!/((n-m)!_!);c(n,m)=c(n,n-m);

3.其他排列与组合公式

从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!.

n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为

n!/(n1!_2!_.._k!).

k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m).

排列(Pnm(n为下标,m为上标))

Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标)=n!;0!=1;Pn1(n为下标1为上标)=n

组合(Cnm(n为下标,m为上标))

Cnm=Pnm/Pmm;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标)=1;Cn1(n为下标1为上标)=n;Cnm=Cnn-m

2008-07-0813:30

公式P是指排列,从N个元素取R个进行排列。公式C是指组合,从N个元素取R个,不进行排列。N-元素的总个数R参与选择的元素个数!-阶乘,如9!=9________

从N倒数r个,表达式应该为n_n-1)_n-2)..(n-r+1);

因为从n到(n-r+1)个数为n-(n-r+1)=r

数学必修二总结 第19篇

一、集合有关概念

1、集合的含义

2、集合的中元素的三个特性:

(1)元素的确定性

(2)元素的互异性

(3)元素的无序性

3、集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}

(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}

(2)集合的表示方法:列举法与描述法。

注意:常用数集及其记法:XKb1、Com

非负整数集(即自然数集)记作:N

正整数集:N_或N+

整数集:Z

有理数集:Q

实数集:R

1)列举法:{a,b,c……}

2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合{x?R|x—3>2},{x|x—3>2}

3)语言描述法:例:{不是直角三角形的三角形}

4)Venn图:

4、集合的分类:

(1)有限集含有有限个元素的集合

(2)无限集含有无限个元素的集合

(3)空集不含任何元素的集合例:{x|x2=—5}

二、集合间的基本关系

1、“包含”关系—子集

注意:有两种可能

(1)A是B的一部分;

(2)A与B是同一集合。

反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA。

2、不含任何元素的集合叫做空集,记为Φ

规定:空集是任何集合的子集,空集是任何非空集合的真子集。

3、子集个数:

有n个元素的集合,含有2n个子集,2n—1个真子集,含有2n—1个非空子集,含有2n—1个非空真子集

三、集合的运算

由所有属于A且属于B的元素所组成的集合,叫做A,B的交集,记作A∩B(读作‘A交B’),即A∩B={x|x∈A,且x∈B}

由所有属于集合A或属于集合B的.元素所组成的集合,叫做A,B的并集,记作:A∪B(读作‘A并B’),即A∪B={x|x∈A,或x∈B})

高二数学学习技巧

1、重视课堂的学习效率

新知识的接受和数学能力的培养,主要是在课堂上进行,所以要特别重视课堂的学习效率,上课时要紧跟老师的思路,积极开展思维,预测下面的步骤,比较自己的解题思路与老师所讲的有哪些不同。课后要及时复习,不留疑点,对不懂的地方要及时请教老师或同学,切忌不懂将懂,或将不懂的地方跳过。课后还要注重基础知识的学习和基本技能的培养,要多记公式、定理,因为它们是学好数学的关键和必备条件。

2、多做习题,养成良好的解题习惯

要想学好数学,多做题是不可避免的。当然,多做题并不等于搞题海战术。做的题目要有代表性,不能胡子眉毛一把抓,碰到哪道题就做哪道题。有些题适合我们做,而有些题却超出了我们的能力范围,做这些题目只能是浪费我们宝贵的时间,不会达到任何效果。做的题要难易适中,通过做些有代表的题目,要力争能举一反三。数学是一门逻辑性很强的学科,需要缜密的思维,解题要有条理,在做题的过程中学会熟练运用正确的解题方法,掌握一些基本题型的解题规律。只有平时大量的训练,见多了、做多了,自然就熟能生巧,考试的时候就会应付自如,不至于乱了阵脚。

数学必修二总结 第20篇

【一】

1.函数的零点

(1)定义:

对于函数y=f(x)(x∈D),把使f(x)=0成立的实数x叫做函数y=f(x)(x∈D)的零点.

(2)函数的零点与相应方程的根、函数的图象与x轴交点间的关系:

方程f(x)=0有实数根?函数y=f(x)的图象与x轴有交点?函数y=f(x)有零点.

(3)函数零点的判定(零点存在性定理):

如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根.

2.二次函数y=ax2+bx+c(a>0)的图象与零点的关系

3.二分法

对于在区间[a,b]上连续不断且f(a)·f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.

4.函数的零点不是点:

函数y=f(x)的零点就是方程f(x)=0的实数根,也就是函数y=f(x)的图象与x轴交点的横坐标,所以函数的零点是一个数,而不是一个点.在写函数零点时,所写的一定是一个数字,而不是一个坐标.

5.对函数零点存在的判断中,必须强调:

(1)f(x)在[a,b]上连续;

(2)f(a)·f(b)<0;

(3)在(a,b)内存在零点.

这是零点存在的一个充分条件,但不必要.

6.对于定义域内连续不断的函数,其相邻两个零点之间的所有函数值保持同号.

【二】

1.等比数列的有关概念

(1)定义:

如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q表示,定义的表达式为an+1/an=q(n∈N_,q为非零常数).

(2)等比中项:

如果a、G、xxx等比数列,那么G叫做a与b的等比中项.即:G是a与b的等比中项?a,G,xxx等比数列?G2=ab.

2.等比数列的有关公式

(1)通项公式:an=a1qn-1.

3.等比数列{an}的常用性质

(1)在等比数列{an}中,若m+n=p+q=2r(m,n,p,q,r∈N_),则am·an=ap·aq=a.

特别地,a1an=a2an-1=a3an-2=….

(2)在公比为q的等比数列{an}中,数列am,am+k,am+2k,am+3k,…仍是等比数列,公比为qk;数列Sm,S2m-Sm,S3m-S2m,…仍是等比数列(此时q≠-1);an=amqn-m.

4.等比数列的特征

(1)从等比数列的定义看,等比数列的任意项都是非零的,公比q也是非零常数.

(2)由an+1=qan,q≠0并不能立即断言{an}为等比数列,还要验证a1≠0.

5.等比数列的前n项和Sn

(1)等比数列的前n项和Sn是用错位相减法求得的,注意这种思想方法在数列求和中的运用.

(2)在运用等比数列的前n项和公式时,必须注意对q=1与q≠1分类讨论,防止因忽略q=1这一特殊情形导致解题失误.

数学必修二总结 第21篇

(1)必然事件:在条件S下,一定会发生的事件,叫相对于条件S的必然事件;

(2)不可能事件:在条件S下,一定不会发生的事件,叫相对于条件S的不可能事件;

(3)确定事件:必然事件和不可能事件统称为相对于条件S的确定事件;

(4)随机事件:在条件S下可能发生也可能不发生的事件,叫相对于条件S的随机事件;

(5)频数与频率:在相同的条件S下重复n次试验,xxx一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数;称事件A出现的比例fn(A)=nnA为事件A出现的概率:对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,把这个常数记作P(A),称为事件A的概率。

(6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数nA与试验总次数n的比值nnA,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。频率在大量重复试验的前提下可以近似地作为这个事件的概率。

数学必修二总结 第22篇

棱锥

棱锥的定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,这些面围成的几xxx叫做棱锥

棱锥的的性质:

(1)侧棱交于一点。侧面都是三角形

(2)平行于底面的截面与底面是相似的多边形。且其面积比等于截得的棱锥的高与远棱锥高的比的平方

正棱锥

正棱锥的定义:如果一个棱锥底面是正多边形,并且顶点在底面内的射影是底面的中心,这样的棱锥叫做正棱锥。

正棱锥的性质:

(1)各侧棱交于一点且相等,各侧面都是全等的等腰三角形。各等腰三角形底边上的高相等,它叫做正棱锥的斜高。

(3)多个特殊的直角三角形

esp:

a、相邻两侧棱互相垂直的正三棱锥,由三垂线定理可得顶点在底面的射影为底面三角形的垂心。

b、四面体中有三对异面直线,若有两对互相垂直,则可得第三对也互相垂直。且顶点在底面的射影为底面三角形的垂心。

数学必修二总结 第23篇

1、数列概念

①数列是一种特殊的函数。其特殊性主要表现在其定义域和值域上。数列可以看作一个定义域为正整数集Nx或其有限子集{1,2,3,…,n}的函数,其中的{1,2,3,…,n}不能省略。

②用函数的观点认识数列是重要的思想方法,一般情况下函数有三种表示方法,数列也不例外,通常也有三种表示方法:a、列表法;b、图像法;c、解析法。其中解析法包括以通项公式给出数列和以递推公式给出数列。

③函数不一定有解析式,同样数列也并非都有通项公式。

等差数列

1、等差数列通项公式

an=a1+(n—1)d

n=1时a1=S1

n≥2时an=Sn—Sn—1

an=kn+b(k,b为常数)推导过程:an=dn+a1—d令d=k,a1—d=b则得到an=kn+b

2、等差中项

由三个数a,A,xxx的等差数列可以堪称最简单的等差数列。这时,A叫做a与b的等差中项(arithmeticmean)。

有关系:A=(a+b)÷2

3、前n项和

倒序相加法推导前n项和公式:

Sn=a1+a2+a3+xxx··+an

=a1+(a1+d)+(a1+2d)+xxxxxx+[a1+(n—1)d]①

Sn=an+an—1+an—2+xxxxxx+a1

=an+(an—d)+(an—2d)+xxxxxx+[an—(n—1)d]②

由①+②得2Sn=(a1+an)+(a1+an)+xxxxxx+(a1+an)(n个)=n(a1+an)

∴Sn=n(a1+an)÷2

等差数列的前n项和等于首末两项的和与项数乘积的一半:

Sn=n(a1+an)÷2=na1+n(n—1)d÷2

Sn=dn2÷2+n(a1—d÷2)

亦可得

a1=2sn÷n—an=[sn—n(n—1)d÷2]÷n

an=2sn÷n—a1

有趣的是S2n—1=(2n—1)an,S2n+1=(2n+1)an+1

4、等差数列性质

一、任意两项am,an的关系为:

an=am+(n—m)d

它可以看作等差数列广义的通项公式。

二、从等差数列的定义、通项公式,前n项和公式还可推出:

a1+an=a2+an—1=a3+an—2=…=ak+an—k+1,k∈Nx

三、若m,n,p,q∈Nx,且m+n=p+q,则有am+an=ap+aq

四、对任意的.k∈Nx,有

Sk,S2k—Sk,S3k—S2k,…,Snk—S(n—1)k…成等差数列。

等比数列

1、等比中项

如果在a与b中间插入一个数G,使a,G,xxx等比数列,那么G叫做a与b的等比中项。

有关系:

注:两个非零同号的实数的等比中项有两个,它们互为相反数,所以G2=ab是a,G,b三数成等比数列的必要不充分条件。

2、等比数列通项公式

an=a1xq’(n—1)(其中首项是a1,公比是q)

an=Sn—S(n—1)(n≥2)

前n项和

当q≠1时,等比数列的前n项和的公式为

Sn=a1(1—q’n)/(1—q)=(a1—a1xq’n)/(1—q)(q≠1)

当q=1时,等比数列的前n项和的公式为

Sn=na1

3、等比数列前n项和与通项的关系

an=a1=s1(n=1)

an=sn—s(n—1)(n≥2)

4、等比数列性质

(1)若m、n、p、q∈Nx,且m+n=p+q,则am·an=ap·aq;

(2)在等比数列中,依次每k项之和xxx等比数列。

(3)从等比数列的定义、通项公式、前n项和公式可以推出:a1·an=a2·an—1=a3·an—2=…=ak·an—k+1,k∈{1,2,…,n}

(4)等比中项:q、r、xxx等比数列,则aq·ap=ar2,ar则为ap,aq等比中项。

记πn=a1·a2…an,则有π2n—1=(an)2n—1,π2n+1=(an+1)2n+1

另外,一个各项均为正数的等比数列各项取同底指数幂后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。

(5)等比数列前n项之和Sn=a1(1—q’n)/(1—q)

(6)任意两项am,an的关系为an=am·q’(n—m)

(7)在等比数列中,首项a1与公比q都不为零。

注意:上述公式中a’n表示a的n次方。

数学三角形斜边计算公式

斜边是指直角三角形中最长的那条边,也指不是构成直角的那条边。在勾股定理中,斜边称作“弦”。

三角形斜边长等于根号下两直角边的平方和,即斜边c=√(a^2+b^2)

解答过程如下:

(1)在直角三角形中满足勾股定理—在平面上的一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方。数学表达式:a2+b2=c2

(2)a2+b2=c2求c,因为c是一条边,所以就是求大于0的一个根。即c=√(a2+b2)。

在几何中,斜边是直角三角形的最长边,与直角相对。直角三角形的斜边的长度可以使用xxx拉斯定理找到,该定理表示斜边长度的平方等于另外两边长度的平方和。例如,如果其中一方的长度为3(平方,9),另一方的长度为4(平方,16),那么它们的正方形加起来为25。斜边的长度为平方根25,即5。

提高数学成绩的窍门是什么

找漏洞

学生如何找自己学科上的漏洞呢?主要就是要在预习时找漏洞。上课学生的学习目标明确,注意力才会集中,听课效率才会高。除了预习,做题也是一种很好的找漏洞的方式。

多做题不等于提高分数,只有多补漏洞,才能提高分数

题目千千万,我们是做不完的。做题的是为了掌握、巩固知识点,如果已经掌握了,就没有必要再做了。学生应该把时间放在补漏洞上,预习也要引起高度重视。

不要轻易放过一道错题

对于学生错误的习题,教师会讲评一遍,学生更正一遍之后就了事,但这种态度是不正确的。从哪里倒下就在哪里爬起来,“错题是个宝,天天少不了,每天都在找,积累为大考。”这就要求学生反思三点,一、问题到底出在哪里?二、产生错误的根本是什么?三、如何做才能避免下次犯同样的错误?如果每道错题都利用好的,还怕成绩不能提高吗?

落实的关键是检测和重复

落实就是硬道理。看自己补漏洞的效果如何最好的方式就是检测,多次检测没有问题了,那么这个漏洞就不上了。补漏洞也不是一次、两次就能解决,需要一定的重复。

既要“亡羊补牢”,更要“未雨绸缪”

考试后,教师逐题分析错题、失分原因——找漏洞;制定切实有效的改进措施——想办法;有针对性地加强专项训练——补漏洞。有时“亡羊补牢”已经晚了,我们更应该“未雨绸缪”。每天把学习上的问题记录下来并解决落实好。考前的模拟测试,也是一个好办法。

数学必修二总结 第24篇

必修二数学知识点总结

立体几何初步

1、柱、锥、台、球的结构特征

(1)棱柱:

几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形.

(2)棱锥

几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方.

(3)棱台:

几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点

(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转xxx

几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形.

(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周xxx

几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形.

(6)圆台:定义:以直角梯形的垂直与底边的腰为旋转轴,旋转一周xxx

几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形.

(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一xxx的几xxx

几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径.

2、空间几xxx的三视图

定义三视图:正视图(光线从几xxx的前面向后面正投影);侧视图(从左向右)、

俯视图(从上向下)

注:正视图反映了物体的高度和长度;俯视图反映了物体的长度和宽度;侧视图反映了物体的高度和宽度.

3、空间几xxx的直观图——斜二测画法

斜二测画法特点:①原来与x轴平行的线段仍然与x平行且长度不变;

②原来与y轴平行的线段仍然与y平行,长度为原来的一半.

4、柱体、锥体、台体的表面积与体积

(1)几xxx的表面积为几xxx各个面的面积的和.

(2)特殊几xxx表面积公式(c为底面周长,h为高,为斜高,l为母线)

(3)柱体、锥体、台体的体积公式

直线与方程

(1)直线的倾斜角

定义:x轴正向与直线向上方向之间xxx的角叫直线的倾斜角.特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度.因此,倾斜角的取值范围是0°≤α<180°

(2)直线的斜率

①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率.直线的斜率xxx表示.即.斜率反映直线与轴的倾斜程度.

当时,;当时,;当时,不存在.

②过两点的直线的斜率公式:

注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;

(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;

(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到.

(3)直线方程

①点斜式:直线斜率k,且过点

注意:当直线的斜率为0°时,k=0,直线的方程是y=y1.

当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1.

②斜截式:,直线斜率为k,直线在y轴上的截距为b

③两点式:直线两点,

④截矩式:

其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为.

⑤一般式:(A,B不全为0)

注意:各式的适用范围特殊的方程如:

平行于x轴的直线:(b为常数);平行于y轴的直线:(a为常数);

(5)直线系方程:即具有某一共同性质的直线

(一)平行直线系

平行于已知直线(是不全为0的常数)的直线系:(C为常数)

(二)垂直直线系

垂直于已知直线(是不全为0的常数)的直线系:(C为常数)

(三)过定点的直线系

(ⅰ)斜率为k的直线系:,直线过定点;

(ⅱ)过两条直线,的交点的直线系方程为

(为参数),其中直线不在直线系中.

(6)两直线平行与垂直

注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否.

(7)两条直线的交点

交点坐标即方程组的一组解.

方程组无解;方程组有无数解与重合

(8)两点间距离公式:设是平面直角坐标系中的两个点

(9)点到直线距离公式:一点到直线的距离

(10)两平行直线距离公式

在任一直线上任取一点,再转化为点到直线的距离进行求解.

数学思维方法

对应思想方法

对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。如直线上的点(数轴)与表示具体的数是一一对应。

假设思想方法

假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。

比较思想方法

比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。

高中数学知识点顺口溜

集合与逻辑

集合逻辑互表里,子交并补归全集。

对错难知开语句,是非分明即命题。

纵横交错原否逆,充分必要四关系。

真非假时假非真,或真且假运算奇。

函数与数列

数列函数子母胎,等差等比自成排。

数列求和几多法?通项递推思路开。

变量分离无好坏,函数复合有内外。

同增异减定单调,区间挖隐最值来。

数学必修二总结 第25篇

圆的一般方程

圆的标准方程是一个关于x和y的二次方程,将它展开并按x、y的降幂排列,得:

x+y—2ax—2by+a+b—R=0

设D=—2a,E=—2b,F=a+b—R;则方程变成:

x+y+Dx+Ey+F=0

任意一个圆的方程都可写成上述形式。把它和下述的一般形式的二元二次方程比较,可以看出它有这样的特点:

(1)x2项和y2项的系数相等且不为0(在这里为1);

(2)没有xy的乘积项。

Ax+Bxy+Cy+Dx+Ey+F=0

圆的端点式:

若已知两点A(a1,b1),B(a2,b2),则以线段AB为直径的圆的方程为(x—a1)(x—a2)+(y—b1)(y—b2)=0

圆的离心率e=0,在圆上任意一点的曲率半径都是r。

经过圆x+y=r上一点M(a0,b0)的切线方程为a0·x+b0·y=r

在圆(x+y=r)外一点M(a0,b0)引该圆的两条切线,且两切点为A,B,则A,B两点所在直线的方程也为a0·x+b0·y=r。

圆的.性质有哪些

1、圆是定点的距离等于定长的点的集合

2、圆的内部可以看作是圆心的距离小于半径的点的集合

3、圆的外部可以看作是圆心的距离大于半径的点的集合

4、同圆或等圆的半径相等。

圆是一种几何图形,指的是平面中到一个定点距离为定值的所有点的集合。这个给定的点称为圆的圆心。作为定值的距离称为圆的半径。当一条线段绕着它的一个端点在平面内旋转一周时,它的另一个端点的轨迹就是一个圆。圆的直径有无数条;圆的对称轴有无数条。圆的直径是半径的2倍,圆的半径是直径的一半。

用圆规画圆时,针尖所在的点叫做圆心,一般用字母O表示。连接圆心和圆上任意一点的线段叫做半径,一般用字母r表示,半径的长度就是圆规两个角之间的距离。通过圆心并且两端都在圆上的线段叫做直径,一般用字母d表示。

数学指数与指数幂的运算

1、根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈x。

当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数。此时,的次方根用符号表示。式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand)。

当是偶数时,正数的次方根有两个,这两个数互为相反数。此时,正数的正的次方根用符号表示,负的次方根用符号—表示。正的次方根与负的次方根可以合并成±(>0)。由此可得:负数没有偶次方根;0的任何次方根都是0,记作。

注意:当是奇数时,当是偶数时,

2、分数指数幂

正数的分数指数幂的意义,规定:

0的正分数指数幂等于0,0的负分数指数幂没有意义

指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂。

数学的学习方法

1、养成良好的学习数学习惯。建立良好的学习数学习惯,会使自己学习感到有序而轻松。高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。良好的学习数学习惯包括课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。

2、及时了解、掌握常用的数学思想和方法,学好高中数学,需要我们从数学思想与方法高度来掌握它。中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,分类讨论思想,数形结合思想,运动思想,转化思想,变换思想。

3、逐步形成“以我为主”的学习模式数学不是靠老师教会的,而是在老师的引导下,靠自己主动的思维活动去获取的。学习数学就要积极主动地参与学习过程,养成实事求是的科学态度,独立思考、勇于探索的创新精神。

4、记数学笔记,特别是对概念理解的不同侧面和数学规律,教师在课堂中拓展的课外知识。记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。

数学必修二总结 第26篇

空间两条直线只有三种位置关系:平行、相交、异面

1、按是否共面可分为两类:

(1)共面:平行、相交

(2)异面:

异面直线的定义:不同在任何一个平面内的两条直线或既不平行也不相交。

异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。

两异面直线xxx的角:范围为(0°,90°)esp、空间向量法

两异面直线间距离:公垂线段(有且只有一条)esp、空间向量法

2、若从有无公共点的角度看可分为两类:

(1)有且仅有一个公共点——相交直线;

(2)没有公共点——平行或异面

直线和平面的位置关系:

直线和平面只有三种位置关系:在平面内、与平面相交、与平面平行

①直线在平面内——有无数个公共点

②直线和平面相交——有且只有一个公共点

直线与平面xxx的角:平面的一条斜线和它在这个平面内的射影xxx的锐角。

高中学数学的技巧

1、重视课堂的学习效率

新知识的接受和数学能力的培养,主要是在课堂上进行,所以要特别重视课堂的学习效率,上课时要紧跟老师的思路,积极开展思维,预测下面的步骤,比较自己的解题思路与老师所讲的有哪些不同。课后要及时复习,不留疑点,对不懂的地方要及时请教老师或同学,切忌不懂将懂,或将不懂的地方跳过。课后还要注重基础知识的学习和基本技能的培养,要多记公式、定理,因为它们是学好数学的关键和必备条件。

2、多做习题,养成良好的解题习惯

要想学好数学,多做题是不可避免的。当然,多做题并不等于搞题海战术。做的题目要有代表性,不能胡子眉毛一把抓,碰到哪道题就做哪道题。有些题适合我们做,而有些题却超出了我们的能力范围,做这些题目只能是浪费我们宝贵的时间,不会达到任何效果。做的题要难易适中,通过做些有代表的题目,要力争能举一反三。数学是一门逻辑性很强的学科,需要缜密的思维,解题要有条理,在做题的过程中学会熟练运用正确的解题方法,掌握一些基本题型的解题规律。只有平时大量的训练,见多了、做多了,自然就熟能生巧,考试的时候就会应付自如,不至于乱了阵脚。

数学必修一知识点复习

一、集合有关概念

1、集合的含义

2、集合的中元素的三个特性:

(1)元素的确定性

(2)元素的互异性

(3)元素的无序性

3、集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}

(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}

(2)集合的表示方法:列举法与描述法。

注意:常用数集及其记法:XKb1、Com

非负整数集(即自然数集)记作:N

正整数集:N_或N+

整数集:Z

有理数集:Q

实数集:R

1)列举法:{a,b,c……}

2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合{x?R|x—3>2},{x|x—3>2}

3)语言描述法:例:{不是直角三角形的三角形}

4)Venn图:

4、集合的分类:

(1)有限集含有有限个元素的集合

(2)无限集含有无限个元素的集合

(3)空集不含任何元素的集合例:{x|x2=—5}

二、集合间的基本关系

1、“包含”关系—子集

注意:有两种可能

(1)A是B的一部分;

(2)A与B是同一集合。

反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA。

2、不含任何元素的集合叫做空集,记为Φ

规定:空集是任何集合的子集,空集是任何非空集合的真子集。

3、子集个数:

有n个元素的集合,含有2n个子集,2n—1个真子集,含有2n—1个非空子集,含有2n—1个非空真子集

三、集合的运算

由所有属于A且属于B的元素所组成的集合,叫做A,B的交集,记作A∩B(读作‘A交B’),即A∩B={x|x∈A,且x∈B}

由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集,记作:A∪B(读作‘A并B’),即A∪B={x|x∈A,或x∈B})

数学必修二总结 第27篇

棱锥的定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,这些面围成的几xxx叫做棱锥

棱锥的的性质:

(1)侧棱交于一点。侧面都是三角形

(2)平行于底面的截面与底面是相似的多边形。且其面积比等于截得的棱锥的高与远棱锥高的比的平方

正棱锥

正棱锥的.定义:如果一个棱锥底面是正多边形,并且顶点在底面内的射影是底面的中心,这样的棱锥叫做正棱锥。

正棱锥的性质:

(1)各侧棱交于一点且相等,各侧面都是全等的等腰三角形。各等腰三角形底边上的高相等,它叫做正棱锥的斜高。

(3)多个特殊的直角三角形

esp:

a、相邻两侧棱互相垂直的正三棱锥,由三垂线定理可得顶点在底面的射影为底面三角形的垂心。

b、四面体中有三对异面直线,若有两对互相垂直,则可得第三对也互相垂直。且顶点在底面的射影为底面三角形的垂心。

数学必修二总结 第28篇

圆的方程

1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。

2、圆的方程

(1)标准方程,圆心,半径为r;

(2)一般方程

当时,方程表示圆,此时圆心为,半径为

当时,表示一个点;当时,方程不表示任何图形。

(3)求圆方程的方法:

一般都采用待定系数法:先设后求。确定一个圆需要三个独立条件,若利用圆的标准方程,

需求出a,b,r;若利用一般方程,需要求出D,E,F;

另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。

3、直线与圆的位置关系:

直线与圆的位置关系有相离,相切,相交三种情况:

(1)设直线,圆,圆心到l的距离为,则有;;

(2)过圆外一点的切线:①k不存在,验证是否成立②k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程

(3)过圆上一点的切线方程:圆(x—a)2+(y—b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0—a)(x—a)+(y0—b)(y—b)=r2

4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。

设圆,

两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。

当时两圆外离,此时有公切线四条;

当时两圆外切,连心线过切点,有外公切线两条,内公切线一条;

当时两圆相交,连心线垂直平分公共弦,有两条外公切线;

当时,两圆内切,连心线经过切点,只有一条公切线;

当时,两圆内含;当时,为同心圆。

注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线

圆的辅助线一般为连圆心与切线或者连圆心与弦中点

数学如何预习

上课前对即将要上的数学内容进行阅读,做到心中有数,以便于掌握听课的主动权。这样有利于提高学习能力和养成自学的习惯,所以它是数学学习中的重要一环。

(1)看书要动笔。(不动笔墨不读书)

①一般采用边阅读、边思考、边书写的方式,把内容的要点、层次、联系划出来或打上记号,写下自己的看法或在弄不懂的地方与问题上做记号;

②预习时一旦发现旧知识掌握得不好,甚至不理解时,就要及时翻书查阅摘抄,采取措施补上,为顺利学习新内容创造条件。

③了解本节课的基本内容,也就是知道要讲些什么,要解决什么问题,采取什么方法,重点关键在哪里等等。

④要把某一本练习册所对应的章节拿出来大致看一遍,看哪些题一下能看会,哪些题根本看不懂,然后带着疑问去听课。

成数概念

一数为另一数的几成,泛指比率:应在生产组内找标准劳动力,互相比较,评成数。

表示一个数是另一个数的十分之几的数,叫做成数。

通常用在工农业生产中表示生产的增长状况。几成就是十分之几。

例如,粮食产量增产“xxx”。

“xxx”即是十分之二,也就是粮食产量增加了20%。

在计算成数时,设有甲、乙两数,求乙数对于甲数的比,并把比值化成纯小数,那么所得的纯小数叫做乙数对于甲数的成数。其中小数第一位叫做“成”或“分”,第二位叫做“厘”。

例如,计划粮食产量为5万斤,实际多产了1万斤,那么粮食增产的成数是1÷5=,即粮食增产了xxx。

成数与其他数的互化

方法:分数X10=成数成数/10=小数(成数除以10等于小数)成数X10=百分数

数学必修二总结 第29篇

函数简介

函数的定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。

函数的近代定义是给定一个数集A,假设其中的元素为x,对A中的元素x施加对应法则f,记作f(x),得到另一数集B,假设B中的元素为y,则y与x之间的等量关系可以用y=f(x)表示。

函数概念含有三个要素:定义域A、值域B和对应法则f。其中核心是对应法则f,它是函数关系的本质特征。

函数最早由中国清朝数学家xxx翻译,出于其著作《代数学》。之所以这么翻译,他给出的原因是“凡此变数中函彼变数者,则此为xxx函数”,也即函数指一个量随着另一个量的变化而变化,或者说一个量中包含另一个量。

一、一次函数定义与定义式:

自变量x和因变量y有如下关系:

y=kx+b

则此时称y是x的一次函数。

特别地,当b=0时,y是x的正比例函数。

即:y=kx(k为常数,k≠0)

二、一次函数的性质:

的变化值与对应的x的变化值成正比例,比值为k

即:y=kx+b(k为任意不为零的实数b取任何实数)

2.当x=0时,b为函数在y轴上的截距。

三、一次函数的图像及性质:

1.作法与图形:通过如下3个步骤

(1)列表;

(2)描点;

(3)连线,可以作出一次函数的图像——一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴的交点)

2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。

,b与函数图像所在象限:

当k>0时,直线必通过一、三象限,y随x的增大而增大;

当k<0时,直线必通过二、四象限,y随x的增大而减小。

当b>0时,直线必通过一、二象限;

当b=0时,直线通过原点

当b<0时,直线必通过三、四象限。

特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。

这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。

四、确定一次函数的表达式:

已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。

(1)设一次函数的表达式(也叫解析式)为y=kx+b。

(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。所以可以列出2个方程:y1=kx1+b……①和y2=kx2+b……②

(3)解这个二元一次方程,得到k,b的值。

(4)最后得到一次函数的表达式。

五、一次函数在生活中的应用:

1.当时间t一定,距离s是速度v的一次函数。s=vt。

2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。

六、常用公式:

1.求函数图像的k值:(y1-y2)/(x1-x2)

2.求与x轴平行线段的中点:|x1-x2|/2

3.求与y轴平行线段的中点:|y1-y2|/2

4.求任意线段的长:√(x1-x2)’2+(y1-y2)’2(注:根号下(x1-x2)与(y1-y2)的平方和)

数学集合与集合之间的关系知识点

某些指定的对象集在一起就成为一个集合集合符号,含有有限个元素叫有限集,含有无限个元素叫无限集,空集是不含任何元素的集,记做Φ。空集是任何集合的子集,是任何非空集的真子集。任何集合是它本身的子集。子集,真子集都具有传递性。(说明一下:如果集合A的所有元素同时都是集合B的元素,则A称作是B的子集,写作A B。若A是B的子集,且A不等于B,则A称作是B的真子集,一般写作A属于B。中学教材课本里将符号下加了一个不等于符号,不要混淆,考试时还是要以课本为准。所有男人的'集合是所有人的集合的真子集。)

高中数学的学习方法

多看辅导书

老师布置的作业我肯定都要做完,但我不会满足于老师布置的作业,我还要看一些辅导书籍,做一些辅导书籍上的作业,直到我能理解定义、定理和公式的含义,一道题尽量用多种办法去解题,做到举一反三。我经常买和课程有关的辅导书籍看,每一门课程我都有好几本相关的辅导书籍。

定期整理归纳

每学完一章的内容,我都要进行小结。把这章的内容归纳一下,把定义、定理、公式和这个定义、定理、公式有代表行的练习题写出来,最后就是用几句话把这一章的内容概括一下,目的是方便记忆。我写在一张纸上,放在口袋里,随时会拿出这张纸来看一下。我一般不看完,只看前面几个字,然后去想后面的内容,实在想不出来才再看一下的。考试前每一科目我都是把内容归纳后,写在纸上放在口袋里,跑到没人的大树底下,一会看一下归纳的纸条,背诵内容和例题。

数学必修二总结 第30篇

一、集合

1.集合的含义

2.集合的中元素的三个特性:

(1)元素的确定性如:世界上最高的山

(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}

(3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合

3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}

(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}

(2)集合的表示方法:列举法与描述法。

u注意:常用数集及其记法:

非负整数集(即自然数集) 记作:N

正整数集 N_或 N+ 整数集Z 有理数集Q 实数集R

1)列举法:{a,b,c……}

2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{x?R| x-3>2} ,{x| x-3>2}

3)语言描述法:例:{不是直角三角形的三角形}

4)Venn图:

4、集合的分类:

(1)有限集 含有有限个元素的集合

(2)无限集 含有无限个元素的集合

(3)空集 不含任何元素的集合 例:{x|x2=-5}

二、集合间的基本关系

1.“包含”关系—子集

注意:

有两种可能(1)A是B的一部分,;(2)A与B是同一集合。反之: 集合A不包含于集合B,或集合B不包含集合A,记作A

2.“相等”关系:A=B (5≥5,且5≤5,则5=5)

实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”

即:① 任何一个集合是它本身的子集。A?A

②真子集:如果A?B,且A? B那就说集合A是集合B的真子集,记作A

③如果 A?B, B?C ,那么 A?C

④ 如果A?B 同时 B?A 那么A=B

3. 不含任何元素的集合叫做空集,记为Φ

规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。

u有n个元素的集合,含有2n个子集,2n-1个真子集

二、函数

1、函数定义域、值域求法综合

2.、函数奇偶性与单调性问题的解题策略

3、恒成立问题的求解策略

4、反函数的几种题型及方法

5、二次函数根的问题——一题多解

&指数函数y=a^x

a^a_a^b=a^a+b(a>0,a、b属于Q)

(a^a)^b=a^ab(a>0,a、b属于Q)

(ab)^a=a^a_b^a(a>0,a、b属于Q)

指数函数对称规律:

1、函数y=a^x与y=a^-x关于y轴对称

2、函数y=a^x与y=-a^x关于x轴对称

3、函数y=a^x与y=-a^-x关于坐标原点对称为常数.

2、幂函数性质归纳.

(1)所有的幂函数在(0,+∞)都有定义并且图象都过点(1,1);

三、平面向量

已知两个从同一点O出发的两个向量OA、OB,以OA、OB为邻边作平行四边形OACB,则以O为起点的对角线OC就是向量OA、OB的和,这种计算法则叫做向量加法的平行四边形法则。对于零向量和任意向量a,有:0+a=a+0=a。|a+b|≤|a|+|b|。向量的加法满足所有的加法运算定律。数乘运算实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa,|λa|=|λ||a|,当λ >0时,λa的方向和a的方向相同,当λ < 0时,λa的方向和a的方向相反,当λ = 0时,λa = 0。设λ、μ是实数,那么:(1)(λμ)a = λ(μa)(2)(λ μ)a = λa μa(3)λ(a ± b) = λa ± λb(4)(-λ)a =-(λa) = λ(-a)。向量的加法运算、减法运算、数乘运算统称线性运算。向量的数量积已知两个非零向量a、b,那么|a||b|cos θ叫做a与b的数量积或内积,记作a?b,θ是a与b的夹角,|a|cos θ(|b|cos θ)叫做向量a在b方向上(b在a方向上)的投影。零向量与任意向量的数量积为0。a?b的几何意义:数量积a?b等于a的长度|a|与b在a的方向上的投影|b|cos θ的乘积。两个向量的数量积等于它们对应坐标的乘积的和。

数学必修二总结 第31篇

数学必修二第二章知识点

1、平面

(1)平面概念的理解

直观的理解:桌面、黑板面、平静的水面等等都给人以平面的直观的印象,但它们都不是平面,而仅仅是平面的一部分.

抽象的理解:平面是平的,平面是无限延展的,平面没有厚薄.

(2)平面的表示法

①图形表示法:通常用平行四边形来表示平面,有时根据实际需要,也用其他的平面图形来表示平面.

②字母表示:常用等xxx母表示平面.

(3)涉及本部分内容的符号表示有:

①点A在直线l内,记作;②点A不在直线l内,记作;

③点A在平面内,记作;④点A不在平面内,记作;

⑤直线l在平面内,记作;⑥直线l不在平面内,记作;

注意:符号的使用与集合中这四个符号的使用的区别与联系.

(4)平面的基本性质

公理1:如果一条直线的两个点在一个平面内,那么这条直线上的所有点都在这个平面内.

符号表示为:.

注意:如果直线上所有的点都在一个平面内,我们也说这条直线在这个平面内,或者称平面经过这条直线.

公理2:过不在一条直线上的三点,有且只有一个平面.

符号表示为:直线AB存在唯一的平面,使得.

注意:有且只有的含义是:有表示存在,只有表示唯一,不能用只有来代替.此公理又可表示为:不共线的三点确定一个平面.

公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.

符号表示为:.

注意:两个平面有一条公共直线,我们说这两个平面相交,这条公共直线就叫作两个平面的交线.若平面、平面相交于直线l,记作.

公理的推论:

推论1:经过一条直线和直线外的一点有且只有一个平面.

推论2:经过两条相交直线有且只有一个平面.

推论3:经过两条平行直线有且只有一个平面.

2.空间直线

(1)空间两条直线的位置关系

①相交直线:有且仅有一个公共点,可表示为;

②平行直线:在同一个平面内,没有公共点,可表示为a//b;

③异面直线:不同在任何一个平面内,没有公共点.

(2)平行直线

公理4:平行于同一条直线的两条直线互相平行.

符号表示为:设a、b、c是三条直线,.

定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等.

(3)两条异面直线xxx的角

注意:①两条异面直线a,bxxx的角的范围是(0,90].

②两条异面直线xxx的角与点O的`选择位置无关,这可由前面所讲过的等角定理直接得出.

③由两条异面直线xxx的角的定义可得出异面直线xxx角的一般方法:

(i)在空间任取一点,这个点通常是线段的中点或端点.

(ii)分别作两条异面直线的平行线,这个过程通常采用平移的方法来实现.

(iii)指出哪一个角为两条异面直线xxx的角,这时我们要注意两条异面直线xxx的角的范围.

3.空间直线与平面

直线与平面位置关系有且只有三种:

(1)直线在平面内:有无数个公共点;

(2)直线与平面相交:有且只有一个公共点;

(3)直线与平面平行:没有公共点.

4.平面与平面

两个平面之间的位置关系有且只有以下两种:

(1)两个平面平行:没有公共点;

(2)两个平面相交:有一条公共直线.

中位数的特点

1.中位数是以它在所有标版志值中所处的位置确定的全体单位标志值的代表值,不受分布数列的极大或极小值影响,从而在一定程度上提高了权中位数对分布数列的代表性。

2.有些离散型变量的单项式数列,当次数分布偏态时,中位数的代表性会受到影响。

3.趋于一组有序数据的中间位置。

数学学习方法诀窍

1细心地发掘概念和公式

很多同学对概念和公式不够重视,这类问题反映在三个方面:一是,对概念的理解只是停留在文字表面,对概念的特殊情况重视不够。例如,在代数式的概念(用字母或数字表示的式子是代数式)中,很多同学忽略了“单个字母或数字也是代数式”。

二是,对概念和公式一味的死记硬背,缺乏与实际题目的联系。这样就不能很好的将学到的知识点与解题联系起来。三是,一部分同学不重视对数学公式的记忆。记忆是理解的基础。如果你不能将公式烂熟于心,又怎能够在题目中熟练应用呢?

我们的建议是:更细心一点(观察特例),更深入一点(了解它在题目中的常见考点),更熟练一点(无论它以什么面目出现,我们都能够应用自如)。

2养成良好的解题习惯

要想学好数学,多做题目是难免的,熟悉掌握各种题型的解题思路。刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。

在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平  时养成良好的解题习惯是非常重要的。

数学必修二总结 第32篇

一、直线与方程

(1)直线的倾斜角

定义:x轴正向与直线向上方向之间xxx的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180°

(2)直线的斜率

①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率xxx表示。即 。斜率反映直线与轴的倾斜程度。

当 时, ; 当 时, ; 当 时, 不存在。

②过两点的直线的斜率公式:

注意下面四点:(1)当 时,公式右边无意义,直线的斜率不存在,倾斜角为90°;

(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;

(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。

(3)直线方程

①点斜式: 直线斜率k,且过点

注意:当直线的斜率为0°时,k=0,直线的方程是y=y1。

当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的.方程是x=x1。

②斜截式: ,直线斜率为k,直线在y轴上的截距为b

③两点式: ( )直线两点 ,

④截矩式:

其中直线 与 轴交于点 ,与 轴交于点 ,即 与 轴、 轴的截距分别为 。

⑤一般式: (A,B不全为0)

注意:各式的适用范围 特殊的方程如:

平行于x轴的直线: (b为常数); 平行于y轴的直线: (a为常数);

(5)直线系方程:即具有某一共同性质的直线

(一)平行直线系

平行于已知直线 ( 是不全为0的常数)的直线系: (C为常数)

(二)垂直直线系

垂直于已知直线 ( 是不全为0的常数)的直线系: (C为常数)

(三)过定点的直线系

(ⅰ)斜率为k的直线系: ,直线过定点 ;

(ⅱ)过两条直线 , 的交点的直线系方程为

( 为参数),其中直线 不在直线系中。

(6)两直线平行与垂直

当 , 时,;

注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。

(7)两条直线的交点

交点坐标即方程组 的一组解。

方程组无解 ; 方程组有无数解 与 重合

(8)两点间距离公式:设 是平面直角坐标系中的两个点,

(9)点到直线距离公式:一点 到直线 的距离

(10)两平行直线距离公式

在任一直线上任取一点,再转化为点到直线的距离进行求解。

二、圆的方程

1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。

2、圆的方程

(1)标准方程 ,圆心 ,半径为r;

(2)一般方程

当 时,方程表示圆,此时圆心为 ,半径为

当 时,表示一个点; 当 时,方程不表示任何图形。

(3)求圆方程的方法:

一般都采用待定系数法:先设后求。确定一个圆需要三个独立条件,若利用圆的标准方程,

需求出a,b,r;若利用一般方程,需要求出D,E,F;

另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。

3、直线与圆的位置关系:

直线与圆的位置关系有相离,相切,相交三种情况:

(1)设直线 ,圆 ,圆心 到l的距离为 ,则有 ; ;

(2)过圆外一点的切线:①k不存在,验证是否成立②k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程

(3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)= r2

4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。

设圆 ,

两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。

当 时两圆外离,此时有公切线四条;

当 时两圆外切,连心线过切点,有外公切线两条,内公切线一条;

当 时两圆相交,连心线垂直平分公共弦,有两条外公切线;

当 时,两圆内切,连心线经过切点,只有一条公切线;

当 时,两圆内含; 当 时,为同心圆。

注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线

圆的辅助线一般为连圆心与切线或者连圆心与弦中点

三、立体几何初步

1、柱、锥、台、球的结构特征

(1)棱柱:

几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

(2)棱锥

几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

(3)棱台:

几何特征:①上下底面是相似的平行多边形 ②侧面是梯形 ③侧棱交于原棱锥的顶点

(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转xxx

几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周xxx

几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

(6)圆台:定义:以直角梯形的垂直与底边的腰为旋转轴,旋转一周xxx

几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一xxx的几xxx

几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。

2、空间几xxx的三视图

定义三视图:正视图(光线从几xxx的前面向后面正投影);侧视图(从左向右)、

俯视图(从上向下)

注:正视图反映了物体的高度和长度;俯视图反映了物体的长度和宽度;侧视图反映了物体的高度和宽度。

3、空间几xxx的直观图——斜二测画法

斜二测画法特点:①原来与x轴平行的线段仍然与x平行且长度不变;

②原来与y轴平行的线段仍然与y平行,长度为原来的一半。

4、柱体、锥体、台体的表面积与体积

(1)几xxx的表面积为几xxx各个面的面积的和。

(2)特殊几xxx表面积公式(c为底面周长,h为高, 为斜高,l为母线)

(3)柱体、锥体、台体的体积公式

(4)球体的表面积和体积公式:V = ; S =

4、空间点、直线、平面的位置关系

公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内。

应用: 判断直线是否在平面内

用符号语言表示公理1:

公理2:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线

符号:平面α和β相交,交线是a,记作α∩β=a。

符号语言:

公理2的作用:

①它是判定两个平面相交的方法。

②它说明两个平面的交线与两个平面公共点之间的关系:交线必过公共点。

③它可以判断点在直线上,即证若干个点共线的重要依据。

公理3:经过不在同一条直线上的三点,有且只有一个平面。

推论:一直线和直线外一点确定一平面;两相交直线确定一平面;两平行直线确定一平面。

公理3及其推论作用:

①它是空间内确定平面的依据

②它是证明平面重合的依据

公理4:平行于同一条直线的两条直线互相平行

空间直线与直线之间的位置关系

① 异面直线定义:不同在任何一个平面内的两条直线

② 异面直线性质:既不平行,又不相交。

③ 异面直线判定:过平面外一点与平面内一点的直线与平面内不过该店的直线是异面直线

④ 异面直线xxx角:作平行,令两线相交,所得锐角或直角,即xxx角。两条异面直线xxx角的范围是(0°,90°],若两条异面直线xxx的角是直角,我们就说这两条异面直线互相垂直。

求异面直线xxx角步骤:

A、利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选在特殊的位置上。

B、证明作出的角即为所求角

C、利用三角形来求角

(7)等角定理:如果一个角的两边和另一个角的两边分别平行,那么这两角相等或互补。

(8)空间直线与平面之间的位置关系

直线在平面内——有无数个公共点.

三种位置关系的符号表示:a α a∩α=A a‖α

(9)平面与平面之间的位置关系:平行——没有公共点;α‖β

相交——有一条公共直线。α∩β=b

5、空间中的平行问题

(1)直线与平面平行的判定及其性质

线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行。

线线平行 线面平行

线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。线面平行 线线平行

(2)平面与平面平行的判定及其性质

两个平面平行的判定定理

(1)如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行

(线面平行→面面平行),

(2)如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行。

(线线平行→面面平行),

(3)垂直于同一条直线的两个平面平行,

两个平面平行的性质定理

(1)如果两个平面平行,那么某一个平面内的直线与另一个平面平行。(面面平行→线面平行)

(2)如果两个平行平面都和第三个平面相交,那么它们的交线平行。(面面平行→线线平行)

7、空间中的垂直问题

(1)线线、面面、线面垂直的定义

①两条异面直线的垂直:如果两条异面直线xxx的角是直角,就说这两条异面直线互相垂直。

②线面垂直:如果一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直。

③平面和平面垂直:如果两个平面相交,xxx的二面角(从一条直线出发的两个半平面所组成的图形)是xxx面角(平面角是直角),就说这两个平面垂直。

(2)垂直关系的判定和性质定理

①线面垂直判定定理和性质定理

判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面。

性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。

②面面垂直的判定定理和性质定理

判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。

性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面。

9、空间角问题

(1)直线与直线xxx的角

①两平行直线xxx的角:规定为 。

②两条相交直线xxx的角:两条直线相交其中不大于直角的角,叫这两条直线xxx的角。

③两条异面直线xxx的角:过空间任意一点O,分别作与两条异面直线a,b平行的直线 ,形成两条相交直线,这两条相交直线xxx的不大于直角的角叫做两条异面直线xxx的角。

(2)直线和平面xxx的角

①平面的平行线与平面xxx的角:规定为 。

②平面的垂线与平面xxx的角:规定为 。

③平面的斜线与平面xxx的角:平面的一条斜线和它在平面内的射影xxx的锐角,叫做这条直线和这个平面xxx的角。

求斜线与平面xxx角的思路类似于求异面直线xxx角:“一作,二证,三计算”。

在“作角”时依定义关键作射影,由射影定义知关键在于斜线上一点到面的垂线,

在解题时,注意挖掘题设中两个主要信息:

(1)斜线上一点到面的垂线;

(2)过斜线上的一点或过斜线的平面与已知面垂直,由面面垂直性质易得垂线。

(3)二面角和二面角的平面角

①二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面。

②二面角的平面角:以二面角的棱上任意一点为顶点,在两个面内分别作垂直于棱的两条射线,这两条射线xxx的角叫二面角的平面角。

③xxx面角:平面角是直角的二面角叫xxx面角。

两相交平面如果所组成的二面角是xxx面角,那么这两个平面垂直;反过来,如果两个平面垂直,那么xxx的二面角为xxx面角

④求二面角的方法

定义法:在棱上选择有关点,过这个点分别在两个面内作垂直于棱的射线得到平面角

垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个面的交线xxx的角为二面角的平面角

数学必修二总结 第33篇

圆的方程

1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。

2、圆的方程

(1)标准方程,圆心,半径为r;

(2)一般方程

当时,方程表示圆,此时圆心为,半径为

当时,表示一个点;当时,方程不表示任何图形。

(3)求圆方程的方法:

一般都采用待定系数法:先设后求。确定一个圆需要三个独立条件,若利用圆的标准方程,

需求出a,b,r;若利用一般方程,需要求出D,E,F;

另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。

3、直线与圆的位置关系:

直线与圆的位置关系有相离,相切,相交三种情况:

(1)设直线,圆,圆心到l的距离为,则有;;

(2)过圆外一点的切线:①k不存在,验证是否成立②k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程

(3)过圆上一点的切线方程:圆(x—a)2+(y—b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0—a)(x—a)+(y0—b)(y—b)=r2

4、圆与圆的`位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。

设圆,

两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。

当时两圆外离,此时有公切线四条;

当时两圆外切,连心线过切点,有外公切线两条,内公切线一条;

当时两圆相交,连心线垂直平分公共弦,有两条外公切线;

当时,两圆内切,连心线经过切点,只有一条公切线;

当时,两圆内含;当时,为同心圆。

注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线

圆的辅助线一般为连圆心与切线或者连圆心与弦中点

数学如何预习

上课前对即将要上的数学内容进行阅读,做到心中有数,以便于掌握听课的主动权。这样有利于提高学习能力和养成自学的习惯,所以它是数学学习中的重要一环。

(1)看书要动笔。(不动笔墨不读书)

①一般采用边阅读、边思考、边书写的方式,把内容的要点、层次、联系划出来或打上记号,写下自己的看法或在弄不懂的地方与问题上做记号;

②预习时一旦发现旧知识掌握得不好,甚至不理解时,就要及时翻书查阅摘抄,采取措施补上,为顺利学习新内容创造条件。

③了解本节课的基本内容,也就是知道要讲些什么,要解决什么问题,采取什么方法,重点关键在哪里等等。

④要把某一本练习册所对应的章节拿出来大致看一遍,看哪些题一下能看会,哪些题根本看不懂,然后带着疑问去听课。

成数概念

一数为另一数的几成,泛指比率:应在生产组内找标准劳动力,互相比较,评成数。

表示一个数是另一个数的十分之几的数,叫做成数。

通常用在工农业生产中表示生产的增长状况。几成就是十分之几。

例如,粮食产量增产“xxx”。

“xxx”即是十分之二,也就是粮食产量增加了20%。

在计算成数时,设有甲、乙两数,求乙数对于甲数的比,并把比值化成纯小数,那么所得的纯小数叫做乙数对于甲数的成数。其中小数第一位叫做“成”或“分”,第二位叫做“厘”。

例如,计划粮食产量为5万斤,实际多产了1万斤,那么粮食增产的成数是1÷5=,即粮食增产了xxx。

成数与其他数的互化

方法:分数X10=成数成数/10=小数(成数除以10等于小数)成数X10=百分数

数学必修二总结 第34篇

(一)解三角形:

1、正弦定理:在中,、、分别为角、、的对边,,则有

(为的外接圆的半径)

2、正弦定理的变形公式:①,,;

②,,;③;

3、三角形面积公式:.

4、余弦定理:在中,有,推论:

(二)数列:

1.数列的有关概念:

(1)数列:按照一定次序排列的一列数。数列是有序的。数列是定义在自然数N_它的.有限子集{1,2,3,…,n}上的函数。

(2)通项公式:数列的第n项an与n之间的函数关系用一个公式来表示,这个公式即是该数列的通项公式。如:。

(3)递推公式:已知数列{an}的第1项(或前几项),且任一项an与他的前一项an-1(或前几项)可以用一个公式来表示,这个公式即是该数列的递推公式。

如:。

2.数列的表示方法:

(1)列举法:如1,3,5,7,9,…(2)图象法:用(n,an)孤立点表示。

(3)解析法:用通项公式表示。(4)递推法:用递推公式表示。

3.数列的分类:

4.数列{an}及前n项和之间的关系:

数学必修二总结 第35篇

(一)解三角形:

1、正弦定理:在中分别为角的对边则有

(为的外接圆的半径)

2、正弦定理的变形公式:①

3、三角形面积公式:

4、余弦定理:在中,有,推论:

(二)数列:

1.数列的有关概念:

(1)数列:按照一定次序排列的一列数。数列是有序的。数列是定义在自然数N_它的有限子集{1,2,3,…,n}上的函数。

(2)通项公式:数列的第n项an与n之间的函数关系用一个公式来表示,这个公式即是该数列的通项公式。如:。

(3)递推公式:已知数列{an}的第1项(或前几项),且任一项an与他的前一项an-1(或前几项)可以用一个公式来表示,这个公式即是该数列的递推公式。

如:。

2.数列的表示方法:

(1)列举法:如1,3,5,7,9,…

(2)图象法:用(n,an)孤立点表示。

(3)解析法:用通项公式表示。

(4)递推法:用递推公式表示。

3.数列的分类:

4.数列{an}及前n项和之间的关系:

数学必修二总结 第36篇

必修二数学数列知识点总结

一、排列组合与二项式定理知识点

1.计数原理知识点

①乘法原理:N=n1·n2·n3·…nM (分步) ②加法原理:N=n1+n2+n3+…+nM (分类)

2. 排列(有序)与组合(无序)

Anm=n(n-1)(n-2)(n-3)…(n-m+1)=n!/(n-m)! Ann =n!

Cnm = n!/(n-m)!m!

Cnm= Cnn-m Cnm+Cnm+1= Cn+1m+1 k?k!=(k+1)!-k!

3.排列组合混合题的解题原则:先选后排,先分再排

排列组合题的主要解题方法:优先法:以元素为主,应先满足特殊元素的要求,再考虑其他元素. 以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置.

捆绑法(集团元素法,把某些必须在一起的元素视为一个整体考虑)

插空法(解决相间问题) 间接法和去杂法等等

在求解排列与组合应用问题时,应注意:

(1)把具体问题转化或归结为排列或组合问题;

(2)通过分析确定运用分类计数原理还是分步计数原理;

(3)分析题目条件,避免“选取”时重复和遗漏;

(4)列出式子计算和作答.

经常运用的数学思想是:

①分类讨论思想;②转化思想;③对称思想.

4.二项式定理知识点:

①(a+b)n=Cn0ax+Cn1an-1b1+ Cn2an-2b2+ Cn3an-3b3+…+ Cnran-rbr+…+ Cn n-1abn-1+ Cnnbn

特别地:(1+x)n=1+Cn1x+Cn2x2+…+Cnrxr+…+Cnnxn

②主要性质和主要结论:对称性Cnm=Cnn-m

最大二项式系数在中间。(要注意n为奇数还是偶数,答案是中间一项还是中间两项)

所有二项式系数的和:Cn0+Cn1+Cn2+ Cn3+ Cn4+…+Cnr+…+Cnn=2n

奇数项二项式系数的和=偶数项而是系数的和

Cn0+Cn2+Cn4+ Cn6+ Cn8+…=Cn1+Cn3+Cn5+ Cn7+ Cn9+…=2n -1

③通项为第r+1项: Tr+1= Cnran-rbr 作用:处理与指定项、特定项、常数项、有理项等有关问题。

5.二项式定理的应用:解决有关近似计算、整除问题,运用二项展开式定理并且结合放缩法证明与指数有关的不等式。

6.注意二项式系数与项的系数(字母项的系数,指定项的系数等,指运算结果的系数)的区别,在求某几项的系数的和时注意赋值法的应用。

二、高中数学中有关等差、等比数列的结论

1、等差数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍为等差数列。

2、等差数列{an}中,若m+n=p+q,则 am+an=ap+aq

3、等比数列{an}中,若m+n=p+q,则am·an=ap·aq

4、等比数列{an}的任意连续m项的.和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍为等比数列。

5、两个等差数列{an}与{bn}的和差的数列{an+bn}、{an-bn}仍为等差数列。

6、两个等比数列{an}与{bn}的积、商、倒数组成的数列

7、等差数列{an}的任意等距离的项构成的数列仍为等差数列。

8、等比数列{an}的任意等距离的项构成的数列仍为等比数列。

9、三个数成等差数列的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3d

10、三个数成等比数列的设法:a/q,a,aq;

三、数列基本公式:

1、一般数列的通项an与前n项和Sn的关系:an= S1(n-1)或Sn-Sn-1(n>2或n=2)

2、等差数列的通项公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1为首项、ak为已知的第k项) 当d≠0时,an是xxx的一次式;当d=0时,an是一个常数。

3、等差数列的前n项和公式:Sn=na1+[n(n-1)/2]d

Sn=n(a1+a2)/2

Sn=nan-[n(n-1)/2]d

当d≠0时,Sn是xxx的二次式且常数项为0;当d=0时(a1≠0),Sn=na1是xxx的正比例式。

4、等比数列的通项公式: an= a1 qn-1 an= ak qn-k(其中a1为首项、ak为已知的第k项,an≠0)

5、等比数列的前n项和公式:当q=1时,Sn=n a1 (是xxx的正比例式);

怎么学好数学

1、要有学习数学的兴趣。“兴趣是最好的老师”。做任何事情,只要有兴趣,就会积极、主动去做,就会想方设法把它做好。但培养数学兴趣的关键是必须先掌握好数学基础知识和基本技能。有的同学老想做难题,看到别人上数奥班,自己也要去。如果这些同学连课内的基础知识都掌握不好,在里面学习只能滥竽充数,对学习并没有帮助,反而使自己失去学习数学的信心。我建议同学们可以看一些数学名人小故事、趣味数学等知识来增强学习的自信心。

2、要有端正的学习态度。首先,要明确学习是为了自己,而不是为了老师和父母。因此,上课要专心、积极思考并勇于发言。其次,回家后要认真完成作业,及时地把当天学习的知识进行复习,再把明天要学的内容做一下预习,这样,学起来会轻松,理解得更加深刻些。

3、要有“持之以恒”的精神。要使学习成绩提高,不能着急,要一步一步地进行,不要指望一夜之间什么都学会了。即使进步慢一点,只要坚持不懈,也一定能在数学的学习道路上获得成功!还要有“不耻下问”的精神,不要怕丢面子。其实无论知识难易,只要学会了,弄懂了,那才是最大的面子!

数学两个平面的位置关系知识点

(1)两个平面互相平行的定义:空间两平面没有公共点

(2)两个平面的位置关系:

两个平面平行——没有公共点;两个平面相交——有一条公共直线。

a、平行

两个平面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。

两个平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么交线平行。

b、相交

二面角

(1)半平面:平面内的一条直线把这个平面分成两个部分,其中每一个部分叫做半平面。

(2)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。二面角的取值范围为[0°,180°]

(3)二面角的棱:这一条直线叫做二面角的棱。

(4)二面角的面:这两个半平面叫做二面角的面。

(5)二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线xxx的角叫做二面角的平面角。

(6)xxx面角:平面角是直角的二面角叫做xxx面角。

两平面垂直

两平面垂直的定义:两平面相交,如果xxx的角是xxx面角,就说这两个平面互相垂直。记为⊥

两平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直

两个平面垂直的性质定理:如果两个平面互相垂直,那么在一个平面内垂直于交线的直线垂直于另一个平面。

二面角求法:直接法(作出平面角)、三垂线定理及逆定理、面积射影定理、空间向量之法向量法(注意求出的角与所需要求的角之间的等补关系)

数学必修二总结 第37篇

1高中数学必修二知识点总结:立体几何初步

1、柱、锥、台、球的结构特征

(1)棱柱:

几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形.

(2)棱锥

几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方.

(3)棱台:

几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点

(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转xxx

几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形.

(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周xxx

几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形.

(6)圆台:定义:以直角梯形的垂直与底边的腰为旋转轴,旋转一周xxx

几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形.

(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一xxx的几xxx

几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径.

2、空间几xxx的三视图

定义三视图:正视图(光线从几xxx的前面向后面正投影);侧视图(从左向右)、

俯视图(从上向下)

注:正视图反映了物体的高度和长度;俯视图反映了物体的长度和宽度;侧视图反映了物体的高度和宽度.

3、空间几xxx的直观图——斜二测画法

斜二测画法特点:①原来与x轴平行的线段仍然与x平行且长度不变;

②原来与y轴平行的线段仍然与y平行,长度为原来的一半.

4、柱体、锥体、台体的表面积与体积

(1)几xxx的表面积为几xxx各个面的面积的和.

(2)特殊几xxx表面积公式(c为底面周长,h为高,为斜高,l为母线)

(3)柱体、锥体、台体的体积公式

2高中数学必修二知识点总结:直线与方程

(1)直线的倾斜角

定义:x轴正向与直线向上方向之间xxx的角叫直线的倾斜角.特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度.因此,倾斜角的取值范围是0°≤α<180°

(2)直线的斜率

①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率.直线的斜率xxx表示.即.斜率反映直线与轴的倾斜程度.

当时,;当时,;当时,不存在.

②过两点的直线的斜率公式:

注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;

(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;

(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到.

(3)直线方程

①点斜式:直线斜率k,且过点

注意:当直线的斜率为0°时,k=0,直线的方程是y=y1.

当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1.

②斜截式:,直线斜率为k,直线在y轴上的截距为b

③两点式:直线两点,

④截矩式:

其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为.

⑤一般式:(A,B不全为0)

注意:各式的适用范围特殊的方程如:

平行于x轴的直线:(b为常数);平行于y轴的直线:(a为常数);

(5)直线系方程:即具有某一共同性质的直线

(一)平行直线系

平行于已知直线(是不全为0的常数)的直线系:(C为常数)

(二)垂直直线系

垂直于已知直线(是不全为0的常数)的直线系:(C为常数)

(三)过定点的直线系

(ⅰ)斜率为k的直线系:,直线过定点;

(ⅱ)过两条直线,的交点的直线系方程为

(为参数),其中直线不在直线系中.

(6)两直线平行与垂直

注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否.

(7)两条直线的交点

交点坐标即方程组的一组解.

方程组无解;方程组有无数解与重合

(8)两点间距离公式:设是平面直角坐标系中的两个点

(9)点到直线距离公式:一点到直线的距离

(10)两平行直线距离公式

在任一直线上任取一点,再转化为点到直线的距离进行求解.

3高中数学必修二知识点总结:圆的方程

1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径.

2、圆的方程

(1)标准方程,圆心,半径为r;

(2)一般方程

当时,方程表示圆,此时圆心为,半径为

当时,表示一个点;当时,方程不表示任何图形.

(3)求圆方程的方法:

一般都采用待定系数法:先设后求.确定一个圆需要三个独立条件,若利用圆的标准方程,

需求出a,b,r;若利用一般方程,需要求出D,E,F;

另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置.

高中数学必修二知识点总结:直线与圆的位置关系:

直线与圆的位置关系有相离,相切,相交三种情况:

(1)设直线,圆,圆心到l的距离为,则有;;

(2)过圆外一点的切线:①k不存在,验证是否成立②k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程【一定两解】

(3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2

4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.

设圆,

两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.

当时两圆外离,此时有公切线四条;

当时两圆外切,连心线过切点,有外公切线两条,内公切线一条;

当时两圆相交,连心线垂直平分公共弦,有两条外公切线;

当时,两圆内切,连心线经过切点,只有一条公切线;

当时,两圆内含;当时,为同心圆.

注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线

4、空间点、直线、平面的位置关系

公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内.

应用:判断直线是否在平面内

用符号语言表示公理1:

公理2:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线

符号:平面α和β相交,交线是a,记作α∩β=a.

符号语言:

公理2的作用:

①它是判定两个平面相交的方法.

②它说明两个平面的交线与两个平面公共点之间的关系:交线必过公共点.

③它可以判断点在直线上,即证若干个点共线的重要依据.

公理3:经过不在同一条直线上的三点,有且只有一个平面.

推论:一直线和直线外一点确定一平面;两相交直线确定一平面;两平行直线确定一平面.

公理3及其推论作用:①它是空间内确定平面的依据②它是证明平面重合的依据

公理4:平行于同一条直线的两条直线互相平行

4高中数学必修二知识点总结:空间直线与直线之间的位置关系

①异面直线定义:不同在任何一个平面内的两条直线

②异面直线性质:既不平行,又不相交.

③异面直线判定:过平面外一点与平面内一点的直线与平面内不过该店的直线是异面直线

④异面直线xxx角:作平行,令两线相交,所得锐角或直角,即xxx角.两条异面直线xxx角的范围是(0°,90°],若两条异面直线xxx的角是直角,我们就说这两条异面直线互相垂直.

求异面直线xxx角步骤:

A、利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选在特殊的位置上.B、证明作出的角即为所求角C、利用三角形来求角

(7)等角定理:如果一个角的两边和另一个角的两边分别平行,那么这两角相等或互补.

(8)空间直线与平面之间的位置关系

直线在平面内——有无数个公共点.

三种位置关系的符号表示:aαa∩α=Aa‖α

(9)平面与平面之间的位置关系:平行——没有公共点;α‖β

相交——有一条公共直线.α∩β=b

5、空间中的平行问题

(1)直线与平面平行的判定及其性质

线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行.

线线平行线面平行

线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,

那么这条直线和交线平行.线面平行线线平行

(2)平面与平面平行的判定及其性质

两个平面平行的判定定理

(1)如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行

(线面平行→面面平行),

(2)如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行.

(线线平行→面面平行),

(3)垂直于同一条直线的两个平面平行,

两个平面平行的性质定理

(1)如果两个平面平行,那么某一个平面内的直线与另一个平面平行.(面面平行→线面平行)

(2)如果两个平行平面都和第三个平面相交,那么它们的交线平行.(面面平行→线线平行)

7、空间中的垂直问题

(1)线线、面面、线面垂直的定义

①两条异面直线的垂直:如果两条异面直线xxx的角是直角,就说这两条异面直线互相垂直.

②线面垂直:如果一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直.

③平面和平面垂直:如果两个平面相交,xxx的二面角(从一条直线出发的两个半平面所组成的图形)是xxx面角(平面角是直角),就说这两个平面垂直.

(2)垂直关系的判定和性质定理

①线面垂直判定定理和性质定理

判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面.

性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行.

②面面垂直的判定定理和性质定理

判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.

性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面.

9、空间角问题

(1)直线与直线xxx的角

①两平行直线xxx的角:规定为.

②两条相交直线xxx的角:两条直线相交其中不大于直角的角,叫这两条直线xxx的角.

③两条异面直线xxx的角:过空间任意一点O,分别作与两条异面直线a,b平行的`直线,形成两条相交直线,这两条相交直线xxx的不大于直角的角叫做两条异面直线xxx的角.

(2)直线和平面xxx的角

①平面的平行线与平面xxx的角:规定为.②平面的垂线与平面xxx的角:规定为.

③平面的斜线与平面xxx的角:平面的一条斜线和它在平面内的射影xxx的锐角,叫做这条直线和这个平面xxx的角.

求斜线与平面xxx角的思路类似于求异面直线xxx角:“一作,二证,三计算”.

在“作角”时依定义关键作射影,由射影定义知关键在于斜线上一点到面的垂线,

在解题时,注意挖掘题设中两个主要信息:(1)斜线上一点到面的垂线;(2)过斜线上的一点或过斜线的平面与已知面垂直,由面面垂直性质易得垂线.

(3)二面角和二面角的平面角

①二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面.

②二面角的平面角:以二面角的棱上任意一点为顶点,在两个面内分别作垂直于棱的两条射线,这两条射线xxx的角叫二面角的平面角.

③xxx面角:平面角是直角的二面角叫xxx面角.

两相交平面如果所组成的二面角是xxx面角,那么这两个平面垂直;反过来,如果两个平面垂直,那么xxx的二面角为xxx面角

④求二面角的方法

定义法:在棱上选择有关点,过这个点分别在两个面内作垂直于棱的射线得到平面角

垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个面的交线xxx的角为二面角的平面角

5高中数学必修二知识点总结:解三角形

(1)正弦定理和余弦定理

掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.

(2)应用

能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.

数学必修二总结 第38篇

立体几何初步

1、柱、锥、台、球的结构特征

(1)棱柱:

几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形.

(2)棱锥

几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方.

(3)棱台:

几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点

(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转xxx

几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形.

(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周xxx

几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形.

(6)圆台:定义:以直角梯形的垂直与底边的腰为旋转轴,旋转一周xxx

几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形.

(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一xxx的几xxx

几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径.

2、空间几xxx的三视图

定义三视图:正视图(光线从几xxx的前面向后面正投影);侧视图(从左向右)、

俯视图(从上向下)

注:正视图反映了物体的高度和长度;俯视图反映了物体的长度和宽度;侧视图反映了物体的高度和宽度.

3、空间几xxx的直观图——斜二测画法

斜二测画法特点:①原来与x轴平行的线段仍然与x平行且长度不变;

②原来与y轴平行的线段仍然与y平行,长度为原来的一半.

4、柱体、锥体、台体的表面积与体积

(1)几xxx的表面积为几xxx各个面的面积的和.

(2)特殊几xxx表面积公式(c为底面周长,h为高,为斜高,l为母线)

(3)柱体、锥体、台体的体积公式

直线与方程

(1)直线的倾斜角

定义:x轴正向与直线向上方向之间xxx的角叫直线的倾斜角.特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度.因此,倾斜角的取值范围是0°≤α<180°

(2)直线的斜率

①定义:倾斜角不是90°的.直线,它的倾斜角的正切叫做这条直线的斜率.直线的斜率xxx表示.即.斜率反映直线与轴的倾斜程度.

当时,;当时,;当时,不存在.

②过两点的直线的斜率公式:

注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;

(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;

(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到.

(3)直线方程

①点斜式:直线斜率k,且过点

注意:当直线的斜率为0°时,k=0,直线的方程是y=y1.

当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1.

②斜截式:,直线斜率为k,直线在y轴上的截距为b

③两点式:()直线两点,

④截矩式:

其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为.

⑤一般式:(A,B不全为0)

注意:各式的适用范围特殊的方程如:

平行于x轴的直线:(b为常数);平行于y轴的直线:(a为常数);

(5)直线系方程:即具有某一共同性质的直线

(一)平行直线系

平行于已知直线(是不全为0的常数)的直线系:(C为常数)

(二)垂直直线系

垂直于已知直线(是不全为0的常数)的直线系:(C为常数)

(三)过定点的直线系

(ⅰ)斜率为k的直线系:,直线过定点;

(ⅱ)过两条直线,的交点的直线系方程为

(为参数),其中直线不在直线系中.

(6)两直线平行与垂直

注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否.

(7)两条直线的交点

交点坐标即方程组的一组解.

方程组无解;方程组有无数解与重合

(8)两点间距离公式:设是平面直角坐标系中的两个点

(9)点到直线距离公式:一点到直线的距离

(10)两平行直线距离公式

在任一直线上任取一点,再转化为点到直线的距离进行求解.

数学思维方法

对应思想方法

对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。如直线上的点(数轴)与表示具体的数是一一对应。

假设思想方法

假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。

比较思想方法

比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。

高中数学知识点顺口溜

集合与逻辑

集合逻辑互表里,子交并补归全集。

对错难知开语句,是非分明即命题。

纵横交错原否逆,充分必要四关系。

真非假时假非真,或真且假运算奇。

函数与数列

数列函数子母胎,等差等比自成排。

数列求和几多法?通项递推思路开。

变量分离无好坏,函数复合有内外。

同增异减定单调,区间挖隐最值来。

数学必修二总结 第39篇

1、在中学我们只研直圆柱、直圆锥和直圆台。所以对圆柱、圆锥、圆台的旋转定义、实际上是直圆柱、直圆锥、直圆台的定义。

这样定义直观形象,便于理解,而且对它们的性质也易推导。

对于球的定义中,要注意区分球和球面的概念,球是实心的。

等边圆柱和等边圆锥是特殊圆柱和圆锥,它是由其轴截面来定义的,在实践中运用较广,要注意与一般圆柱、圆锥的区分。

2、圆柱、圆锥、圆和球的性质

(1)圆柱的性质,要强调两点:一是连心线垂直圆柱的底面;二是三个截面的性质——平行于底面的截面是与底面全等的圆;轴截面是一个以上、下底面圆的直径和母线所组成的矩形;平行于轴线的截面是一个以上、下底的圆的弦和母线组成的矩形。

(2)圆锥的性质,要强调三点

①平行于底面的截面圆的性质:

截面圆面积和底面圆面积的比等于从顶点到截面和从顶点到底面距离的平方比。

②过圆锥的顶点,且与其底面相交的截面是一个由两条母线和底面圆的弦组成的等腰三角形,其面积为:

易知,截面三角形的顶角不大于轴截面的顶角(如图10—20),事实上,由BC≥AB,VC=VB=VA可得∠AVB≤BVC。

由于截面三角形的顶角不大于轴截面的顶角。

所以,当轴截面的顶角θ≤90°,有0°<α≤θ≤90°,即有当轴截面的顶角θ>90°时,轴截面的面积却不是的,这是因为,若90°≤α<θ<180°时,1≥sinα>sinθ>0。

③圆锥的母线l,高h和底面圆的半径组成一个直径三角形,圆锥的有关计算问题,一般都要归结为解这个直角三角形,特别是关系式l2=h2+R2

(3)圆台的性质,都是从“圆台为截头圆锥”这个事实推得的,高考,但仍要强调下面几点:

①圆台的母线共点,所以任两条母线确定的截面为一等腰梯形,但是,与上、下底面都相交的截面不一定是梯形,更不一定是等腰梯形。

②平行于底面的截面若将圆台的高分成距上、下两底为两段的截面面积为S,则其中S1和S2分别为上、下底面面积。

的截面性质的推广。

③圆台的母线l,高h和上、下两底圆的半径r、R,组成一个直角梯形,且有l2=h2+(R—r)2。

圆台的有关计算问题,常归结为解这个直角梯形。

(4)球的性质,着重掌握其截面的性质。

①用任意平面截球所得的截面是一个圆面,球心和截面圆圆心的连线与这个截面垂直。

②如果用R和r分别表示球的半径和截面圆的半径,d表示球心到截面的距离,则R2=r2+d2即,球的半径,截面圆的半径,和球心到截面的距离组成一个直角三角形,有关球的计算问题,常归结为解这个直角三角形。

数学必修二总结 第40篇

等比数列

1、等比中项

如果在a与b中间插入一个数G,使a,G,xxx等比数列,那么G叫做a与b的等比中项。

有关系:

注:两个非零同号的实数的等比中项有两个,它们互为相反数,所以G2=ab是a,G,b三数成等比数列的必要不充分条件。

2、等比数列通项公式

an=a1xq’(n—1)(其中首项是a1,公比是q)

an=Sn—S(n—1)(n≥2)

前n项和

当q≠1时,等比数列的前n项和的公式为

Sn=a1(1—q’n)/(1—q)=(a1—a1xq’n)/(1—q)(q≠1)

当q=1时,等比数列的前n项和的公式为

Sn=na1

3、等比数列前n项和与通项的关系

an=a1=s1(n=1)

an=sn—s(n—1)(n≥2)

4、等比数列性质

(1)若m、n、p、q∈Nx,且m+n=p+q,则am·an=ap·aq;

(2)在等比数列中,依次每k项之和xxx等比数列。

(3)从等比数列的定义、通项公式、前n项和公式可以推出:a1·an=a2·an—1=a3·an—2=…=ak·an—k+1,k∈{1,2,…,n}

(4)等比中项:q、r、xxx等比数列,则aq·ap=ar2,ar则为ap,aq等比中项。

记πn=a1·a2…an,则有π2n—1=(an)2n—1,π2n+1=(an+1)2n+1

另外,一个各项均为正数的等比数列各项取同底指数幂后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。

(5)等比数列前n项之和Sn=a1(1—q’n)/(1—q)

(6)任意两项am,an的关系为an=am·q’(n—m)

(7)在等比数列中,首项a1与公比q都不为零。

注意:上述公式中a’n表示a的n次方。