榆树范文网

数学必修五知识点总结(合集43篇)

120

数学必修五知识点总结 第1篇

排列、组合的概念和公式典型例题分析

例1设有3名学生和4个课外小组.(1)每名学生都只参加一个课外小组;(2)每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加.各有多少种不同方法?

解(1)由于每名学生都可以参加4个课外小组中的任何一个,而不限制每个课外小组的人数,因此共有种不同方法.

(2)由于每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加,因此共有种不同方法.

点评由于要让3名学生逐个选择课外小组,故两问都用乘法原理进行计算.

例2xxx一行,其中不排第一,不排第二,不排第三,不排第四的不同排法共有多少种?

解依题意,符合要求的排法可分为第一个排、、中的某一个,共3类,每一类中不同排法可采用画“树图”的方式逐一排出:

∴符合题意的不同排法共有9种.

点评按照分“类”的思路,本题应用了加法原理.为把握不同排法的规律,“树图”是一种具有直观形象的有效做法,也是解决计数问题的一种数学模型.

例3判断下列问题是排列问题还是组合问题?并计算出结果.

(1)高三年级学生会有11人:①每两人互通一封信,共通了多少封信?②每两人互握了一次手,共握了多少次手?

(2)高二年级数学课外小组共10人:①从中选一名正组长和一名副组长,共有多少种不同的选法?②从中选2名参加省数学竞赛,有多少种不同的选法?

(3)有2,3,5,7,11,13,17,19八个质数:①从中任取两个数求它们的商可以有多少种不同的商?②从中任取两个求它的积,可以得到多少个不同的积?

(4)有8盆花:①从中选出2盆分别给甲乙两人每人一盆,有多少种不同的选法?②从中选出2盆放在教室有多少种不同的选法?

分析(1)①由于每人互通一封信,甲给乙的信与乙给甲的信是不同的两封信,所以与顺序有关是排列;②由于每两人互握一次手,甲与乙握手,乙与甲握手是同一次握手,与顺序无关,所以是组合问题.其他类似分析.

(1)①是排列问题,共用了封信;②是组合问题,共需握手(次).

(2)①是排列问题,共有(种)不同的选法;②是组合问题,共有种不同的选法.

(3)①是排列问题,共有种不同的商;②是组合问题,共有种不同的积.

(4)①是排列问题,共有种不同的选法;②是组合问题,共有种不同的选法.

例4证明.

证明左式

右式.

∴等式成立.

点评这是一个排列数等式的证明问题,选用阶乘之商的形式,并利用阶乘的性质,可使变形过程得以简化.

数学必修五知识点总结 第2篇

(一)解三角形:

1、正弦定理:在中,、、分别为角、、的对边,,则有

(为的外接圆的半径)

2、正弦定理的变形公式:①,,;

②,,;③;

3、三角形面积公式:.

4、余弦定理:在中,有,推论:

(二)数列:

1.数列的有关概念:

(1)数列:按照一定次序排列的一列数。数列是有序的。数列是定义在自然数N_它的有限子集{1,2,3,…,n}上的函数。

(2)通项公式:数列的第n项an与n之间的函数关系用一个公式来表示,这个公式即是该数列的通项公式。如:。

(3)递推公式:已知数列{an}的第1项(或前几项),且任一项an与他的前一项an-1(或前几项)可以用一个公式来表示,这个公式即是该数列的递推公式。

如:。

2.数列的表示方法:

(1)列举法:如1,3,5,7,9,…(2)图象法:用(n,an)孤立点表示。

(3)解析法:用通项公式表示。(4)递推法:用递推公式表示。

3.数列的分类:

4.数列{an}及前n项和之间的关系:

数学必修五知识点总结 第3篇

不等关系及不等式知识点

1.不等式的定义

在客观世界中,量与量之间的不等关系是普遍存在的,我们用数学符号、、连接两个数或代数式以表示它们之间的不等关系,含有这些不等号的式子,叫做不等式.

2.比较两个实数的大小

两个实数的大小是用实数的运算性质来定义的,有a-baa-b=0a-ba0,则有a/baa/b=1a/ba

3.不等式的性质

(1)对称性:ab

(2)传递性:ab,ba

(3)可加性:aa+cb+c,ab,ca+c

(4)可乘性:ab,cacb0,c0bd;

(5)可乘方:a0bn(nN,n

(6)可开方:a0

(nN,n2).

注意:

一个技巧

作差法变形的技巧:作差法中变形是关键,常进行因式分解或配方.

一种方法

待定系数法:求代数式的范围时,先用已知的代数式表示目标式,再利用多项式相等的法则求出参数,最后利用不等式的性质求出目标式的范围.

数学必修五知识点总结 第4篇

1、数列概念

①数列是一种特殊的函数。其特殊性主要表现在其定义域和值域上。数列可以看作一个定义域为正整数集Nx或其有限子集{1,2,3,…,n}的函数,其中的{1,2,3,…,n}不能省略。

②用函数的观点认识数列是重要的思想方法,一般情况下函数有三种表示方法,数列也不例外,通常也有三种表示方法:a、列表法;b、图像法;c、解析法。其中解析法包括以通项公式给出数列和以递推公式给出数列。

③函数不一定有解析式,同样数列也并非都有通项公式。

等差数列

1、等差数列通项公式

an=a1+(n—1)d

n=1时a1=S1

n≥2时an=Sn—Sn—1

an=kn+b(k,b为常数)推导过程:an=dn+a1—d令d=k,a1—d=b则得到an=kn+b

2、等差中项

由三个数a,A,xxx的等差数列可以堪称最简单的等差数列。这时,A叫做a与b的等差中项(arithmeticmean)。

有关系:A=(a+b)÷2

3、前n项和

倒序相加法推导前n项和公式:

Sn=a1+a2+a3+xxx··+an

=a1+(a1+d)+(a1+2d)+xxxxxx+[a1+(n—1)d]①

Sn=an+an—1+an—2+xxxxxx+a1

=an+(an—d)+(an—2d)+xxxxxx+[an—(n—1)d]②

由①+②得2Sn=(a1+an)+(a1+an)+xxxxxx+(a1+an)(n个)=n(a1+an)

∴Sn=n(a1+an)÷2

等差数列的前n项和等于首末两项的和与项数乘积的一半:

Sn=n(a1+an)÷2=na1+n(n—1)d÷2

Sn=dn2÷2+n(a1—d÷2)

亦可得

a1=2sn÷n—an=[sn—n(n—1)d÷2]÷n

an=2sn÷n—a1

有趣的是S2n—1=(2n—1)an,S2n+1=(2n+1)an+1

4、等差数列性质

一、任意两项am,an的关系为:

an=am+(n—m)d

它可以看作等差数列广义的通项公式。

二、从等差数列的定义、通项公式,前n项和公式还可推出:

a1+an=a2+an—1=a3+an—2=…=ak+an—k+1,k∈Nx

三、若m,n,p,q∈Nx,且m+n=p+q,则有am+an=ap+aq

四、对任意的k∈Nx,有

Sk,S2k—Sk,S3k—S2k,…,Snk—S(n—1)k…成等差数列。

等比数列

1、等比中项

如果在a与b中间插入一个数G,使a,G,xxx等比数列,那么G叫做a与b的等比中项。

有关系:

注:两个非零同号的实数的等比中项有两个,它们互为相反数,所以G2=ab是a,G,b三数成等比数列的必要不充分条件。

2、等比数列通项公式

an=a1xq’(n—1)(其中首项是a1,公比是q)

an=Sn—S(n—1)(n≥2)

前n项和

当q≠1时,等比数列的前n项和的公式为

Sn=a1(1—q’n)/(1—q)=(a1—a1xq’n)/(1—q)(q≠1)

当q=1时,等比数列的前n项和的公式为

Sn=na1

3、等比数列前n项和与通项的关系

an=a1=s1(n=1)

an=sn—s(n—1)(n≥2)

4、等比数列性质

(1)若m、n、p、q∈Nx,且m+n=p+q,则am·an=ap·aq;

(2)在等比数列中,依次每k项之和xxx等比数列。

(3)从等比数列的定义、通项公式、前n项和公式可以推出:a1·an=a2·an—1=a3·an—2=…=ak·an—k+1,k∈{1,2,…,n}

(4)等比中项:q、r、xxx等比数列,则aq·ap=ar2,ar则为ap,aq等比中项。

记πn=a1·a2…an,则有π2n—1=(an)2n—1,π2n+1=(an+1)2n+1

另外,一个各项均为正数的等比数列各项取同底指数幂后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。

(5)等比数列前n项之和Sn=a1(1—q’n)/(1—q)

(6)任意两项am,an的关系为an=am·q’(n—m)

(7)在等比数列中,首项a1与公比q都不为零。

注意:上述公式中a’n表示a的n次方。

数学三角形斜边计算公式

斜边是指直角三角形中最长的那条边,也指不是构成直角的那条边。在勾股定理中,斜边称作“弦”。

三角形斜边长等于根号下两直角边的平方和,即斜边c=√(a^2+b^2)

解答过程如下:

(1)在直角三角形中满足勾股定理—在平面上的一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方。数学表达式:a2+b2=c2

(2)a2+b2=c2求c,因为c是一条边,所以就是求大于0的一个根。即c=√(a2+b2)。

在几何中,斜边是直角三角形的最长边,与直角相对。直角三角形的斜边的长度可以使用xxx拉斯定理找到,该定理表示斜边长度的平方等于另外两边长度的平方和。例如,如果其中一方的长度为3(平方,9),另一方的长度为4(平方,16),那么它们的正方形加起来为25。斜边的长度为平xxx25,即5。

提高数学成绩的窍门是什么

找漏洞

学生如何找自己学科上的漏洞呢?主要就是要在预习时找漏洞。上课学生的学习目标明确,注意力才会集中,听课效率才会高。除了预习,做题也是一种很好的找漏洞的方式。

多做题不等于提高分数,只有多补漏洞,才能提高分数

题目千千万,我们是做不完的。做题的是为了掌握、巩固知识点,如果已经掌握了,就没有必要再做了。学生应该把时间放在补漏洞上,预习也要引起高度重视。

不要轻易放过一道错题

对于学生错误的习题,教师会讲评一遍,学生更正一遍之后就了事,但这种态度是不正确的。从哪里倒下就在哪里爬起来,“错题是个宝,天天少不了,每天都在找,积累为大考。”这就要求学生反思三点,一、问题到底出在哪里?二、产生错误的根本是什么?三、如何做才能避免下次犯同样的错误?如果每道错题都利用好的,还怕成绩不能提高吗?

落实的关键是检测和重复

落实就是硬道理。看自己补漏洞的效果如何最好的方式就是检测,多次检测没有问题了,那么这个漏洞就不上了。补漏洞也不是一次、两次就能解决,需要一定的重复。

既要“亡羊补牢”,更要“未雨绸缪”

考试后,教师逐题分析错题、失分原因——找漏洞;制定切实有效的改进措施——想办法;有针对性地加强专项训练——补漏洞。有时“亡羊补牢”已经晚了,我们更应该“未雨绸缪”。每天把学习上的问题记录下来并解决落实好。考前的模拟测试,也是一个好办法。

数学必修五知识点总结 第5篇

1.数列的函数理解:

①数列是一种特殊的函数。其特殊性主要表现在其定义域和值域上。数列可以看作一个定义域为正整数集N或其有限子集{1,2,3,…,n}的函数,其中的{1,2,3,…,n}不能省略。②用函数的观点认识数列是重要的思想方法,一般情况下函数有三种表示方法,数列也不例外,通常也有三种表示方法:a.列表法;b。图像法;c.解析法。其中解析法包括以通项公式给出数列和以递推公式给出数列。③函数不一定有解析式,同样数列也并非都有通项公式。

2.通项公式:数列的第N项an与项的序数n之间的关系可以用一个公式an=f(n)来表示,这个公式就叫做这个数列的通项公式。

数列通项公式的特点:

(1)有些数列的通项公式可以有不同形式,即不。

(2)有些数列没有通项公式(如:素数由小到大xxx一列2,3,5,7,11,...)。

3.递推公式:如果数列{an}的第n项与它前一项或几项的关系可以用一个式子来表示,那么这个公式叫做这个数列的递推公式。

数列递推公式特点:

(1)有些数列的递推公式可以有不同形式,即不。

(2)有些数列没有递推公式。

有递推公式不一定有通项公式。

注:数列中的项必须是数,它可以是实数,也可以是复数。

数学必修五知识点总结 第6篇

⑴如果数列{a}是公比为q的等比数列,那么,它的前n项和公式是S=

也就是说,公比为q的等比数列的前n项和公式是q的分段函数的一系列函数值,分段的界限是在q=1处。因此,使用等比数列的前n项和公式,必须要弄清公比q是可能等于1还是必不等于1,如果q可能等于1,则需分q=1和q≠1进行讨论。

⑵当已知a,q,n时,用公式S=;当已知a,q,a时,用公式S=。

⑶若S是以q为公比的等比数列,则有S=S+qS。⑵

⑷若数列{a}为等比数列,则S,S—S,S—S,…仍然成等比数列。

⑸若项数为3n的等比数列(q≠—1)前n项和与前n项积分别为S与T,次n项和与次n项积分别为S与T,最后n项和与n项积分别为S与T,则S,S,xxx等比数列,T,T,T亦成等比数列

万能公式:sin2α=2tanα/(1+tan^2α)(注:tan^2α是指tan平方α)

cos2α=(1—tan^2α)/(1+tan^2α)tan2α=2tanα/(1—tan^2α)

升幂公式:1+cosα=2cos^2(α/2)1—cosα=2sin^2(α/2)1±sinα=(sin(α/2)±cos(α/2))^2

降幂公式:cos^2α=(1+cos2α)/2sin^2α=(1—cos2α)/21)sin(2kπ+α)=sinα,cos(2kπ+α)=cosα,tan(2kπ+α)=tanα,cot(2kπ+α)=cotα,其中k∈Z;

(2)sin(—α)=—sinα,cos(—α)=cosα,tan(—α)=—tanα,cot(—α)=—cotα

(3)sin(π+α)=—sinα,cos(π+α)=—cosα,tan(π+α)=tanα,cot(π+α)=cotα

(4)sin(π—α)=sinα,cos(π—α)=—cosα,tan(π—α)=—tanα,cot(π—α)=—cotα

(5)sin(π/2—α)=cosα,cos(π/2—α)=sinα,tan(π/2—α)=cotα,cot(π/2—α)=tanα

(6)sin(π/2+α)=cosα,cos(π/2+α)=—sinα,

tan(π/2+α)=—cotα,cot(π/2+α)=—tanα

(7)sin(3π/2+α)=—cosα,cos(3π/2+α)=sinα,

tan(3π/2+α)=—cotα,cot(3π/2+α)=—tanα

(8)sin(3π/2—α)=—cosα,cos(3π/2—α)=—sinα,

tan(3π/2—α)=cotα,cot(3π/2—α)=tanα(k·π/2±α),其中k∈Z

注意:为方便做题,习惯我们把α看成是一个位于第一象限且小于90°的角;

当k是奇数的时候,等式右边的三角函数发生变化,如sin变成cos。偶数则不变;

用角(k·π/2±α)所在的象限确定等式右边三角函数的正负。例:tan(3π/2+α)=—cotα

∵在这个式子中k=3,是奇数,因此等式右边应变为cot

又,∵角(3π/2+α)在第四象限,tan在第四象限为负值,因此为使等式成立,等式右边应为—cotα。三角函数在各象限中的正负分布

sin:第一第二象限中为正;第三第四象限中为负cos:第一第四象限中为正;第二第三象限中为负cot、tan:第一第三象限中为正;第二第四象限中为负。

数学必修五知识点总结 第7篇

【差数列的基本性质】

⑴公差为d的等差数列,各项同加一数所得数列仍是等差数列,其公差仍为d。

⑵公差为d的等差数列,各项同乘以常数k所得数列仍是等差数列,其公差为kd。

⑶若{a}、{b}为等差数列,则{a±b}与{ka+b}(k、b为非零常数)也是等差数列。

⑷对任何m、n,在等差数列{a}中有:a=a+(n—m)d,特别地,当m=1时,便得等差数列的通项公式,此式较等差数列的通项公式更具有一般性、

⑸、一般地,如果l,k,p,…,m,n,r,…皆为自然数,且l+k+p+…=m+n+r+…(两边的自然数个数相等),那么当{a}为等差数列时,有:a+a+a+…=a+a+a+…。

⑹公差为d的等差数列,从中取出等距离的项,构成一个新数列,此数列仍是等差数列,其公差为kd(k为取出项数之差)。

⑺如果{a}是等差数列,公差为d,那么,a,a,…,a、a也是等差数列,其公差为—d;在等差数列{a}中,a—a=a—a=md、(其中m、k、)

⑻在等差数列中,从第一项起,每一项(有穷数列末项除外)都是它前后两项的等差中项。

⑼当公差d>0时,等差数列中的数随项数的增大而增大;当d<0时,等差数列中的数随项数的减少而减小;d=0时,等差数列中的数等于一个常数。

⑽设a,a,a为等差数列中的三项,且a与a,a与a的项距差之比=(≠—1),则a=。

【等差数列前n项和公式S的基本性质】

⑴数列{a}为等差数列的充要条件是:数列{a}的前n项和S可以写成S=an+bn的形式(其中a、b为常数)。

⑵在等差数列{a}中,当项数为2n(nN)时,S—S=nd,=;当项数为(2n—1)(n)时,S—S=a,=。

⑶若数列{a}为等差数列,则S,S—S,S—S,…仍然成等差数列,公差为、

⑷若两个等差数列{a}、{b}的前n项和分别是S、T(n为奇数),则=。

⑸在等差数列{a}中,S=a,S=b(n>m),则S=(a—b)。

⑹等差数列{a}中,是n的一次函数,且点(n,)均在直线y=x+(a—)上。

⑺记等差数列{a}的前n项和为S、①若a>0,公差d<0,则当a≥0且a≤0时,S;②若a<0,公差d>0,则当a≤0且a≥0时,S最小。

【等比数列的基本性质】

⑴公比为q的等比数列,从中取出等距离的项,构成一个新数列,此数列仍是等比数列,其公比为q(m为等距离的项数之差)。

⑵对任何m、n,在等比数列{a}中有:a=a·q,特别地,当m=1时,便得等比数列的通项公式,此式较等比数列的通项公式更具有普遍性。

⑶一般地,如果t,k,p,…,m,n,r,…皆为自然数,且t+k,p,…,m+…=m+n+r+…(两边的自然数个数相等),那么当{a}为等比数列时,有:a、a、a、…=a、a、a、…。

⑷若{a}是公比为q的等比数列,则{|a|}、{a}、{ka}、{}也是等比数列,其公比分别为|q|}、{q}、{q}、{}。

⑸如果{a}是等比数列,公比为q,那么,a,a,a,…,a,…是以q为公比的等比数列。

⑹如果{a}是等比数列,那么对任意在n,都有a·a=a·q>0。

⑺两个等比数列各对应项的积组成的数列仍是等比数列,且公比等于这两个数列的公比的积。

⑻当q>1且a>0或00且01时,等比数列为递减数列;当q=1时,等比数列为常数列;当q<0时,等比数列为摆动数列。

【集合】

一、集合有关概念

1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。

2、集合的中元素的三个特性:

1、元素的确定性;2、元素的互异性;3、元素的无序性

说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。

(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。

(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。

(4)集合元素的三个特性使集合本身具有了确定性和整体性。

3、集合的表示:{}如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}

1、用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}

2、集合的表示方法:列举法与描述法。

注意啊:常用数集及其记法:

非负整数集(即自然数集)记作:N

正整数集N或N+整数集Z有理数集Q实数集R

关于属于的概念

集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A记作aA,相反,a不属于集合A记作a?A

列举法:把集合中的元素一一列举出来,然后用一个大括号括上、

描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法、用确定的条件表示某些对象是否属于这个集合的方法。

①语言描述法:例:{不是直角三角形的三角形}

②数学式子描述法:例:不等式x—32的解集是{x?R|x—32}或{x|x—32}

4、集合的分类:

1、有限集含有有限个元素的集合

2、无限集含有无限个元素的集合

3、空集不含任何元素的集合例:{x|x2=—5}

二、集合间的基本关系

1、包含关系子集

注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA

2、相等关系(55,且55,则5=5)

实例:设A={x|x2—1=0}B={—1,1}元素相同

结论:对于两个集合A与B,如果集合A的`任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B

①任何一个集合是它本身的子集、AA

②真子集:如果AB,且A1B那就说集合A是集合B的真子集,记作AB(或BA)

③如果AB,BC,那么AC

④如果AB同时BA那么A=B

3、不含任何元素的集合叫做空集,记为

规定:空集是任何集合的子集,空集是任何非空集合的真子集、

三、集合的运算

1、交集的定义:一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集。

记作AB(读作A交B),即AB={x|xA,且xB}、

2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集、记作:AB(读作A并B),即AB={x|xA,或xB}、

3、交集与并集的性质:AA=A,A=,AB=BA,AA=A,A=A,AB=BA。

4、全集与补集

(1)补集:设S是一个集合,A是S的一个子集(即),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)

(2)全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集、通常用xxx表示。

(3)性质:⑴CU(CUA)=A⑵(CUA)⑶(CUA)A=U

【立体几何】

柱、锥、台、球的结构特征

定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱。

几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等

表示:用各顶点字母,如五棱锥

几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分。

分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等

表示:用各顶点字母,如五棱台

几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点

定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体。

几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体。

几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分

几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

定义:以半圆的直径所在直线为旋转轴,半圆面旋转一xxx的几何体

几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。

NO、2空间几何体的三视图

定义三视图

定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)

注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;

俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;

侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。

NO、3空间几何体的直观图——斜二测画法

斜二测画法

斜二测画法特点

①原来与x轴平行的线段仍然与x平行且长度不变;

②原来与y轴平行的线段仍然与y平行,长度为原来的一半。

直线与方程

直线的倾斜角

定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180°

直线的斜率

定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率xxx表示。即。斜率反映直线与轴的倾斜程度。

过两点的直线的斜率公式:

(注意下面四点)

(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;

(2)k与P1、P2的顺序无关;

(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;

(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。

幂函数

形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。

定义域和值域

当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。当x为不同的数值时,幂函数的值域的不同情况如下:在x大于0时,函数的值域总是大于0的实数。在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。而只有a为正数,0才进入函数的值域

对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:

首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。当指数n是负整数时,设a=—k,则x=1/(x^k),显然x≠0,函数的定义域是(—∞,0)∪(0,+∞)、因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:

排除了为0与负数两种可能,即对于x>0,则a可以是任意实数;

排除了为0这种可能,即对于x<0和x>0的所有实数,q不能是偶数;

排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。

指数函数

指数函数

(1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。

(2)指数函数的值域为大于0的实数集合。

(3)函数图形都是下凹的。

(4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。

(5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。

(6)函数总是在某一个方向上无限趋向于X轴,永不相交。

(7)函数总是通过(0,1)这点。

(8)显然指数函数无界。

奇偶性

一般地,对于函数f(x)

(1)如果对于函数定义域内的任意一个x,都有f(—x)=—f(x),那么函数f(x)就叫做奇函数。

(2)如果对于函数定义域内的任意一个x,都有f(—x)=f(x),那么函数f(x)就叫做偶函数。

(3)如果对于函数定义域内的任意一个x,f(—x)=—f(x)与f(—x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。

(4)如果对于函数定义域内的任意一个x,f(—x)=—f(x)与f(—x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。

数学必修五知识点总结 第8篇

⑴公比为q的等比数列,从中取出等距离的项,构成一个新数列,此数列仍是等比数列,其公比为q ( m为等距离的项数之差).

⑵对任何m、n ,在等比数列{ a }中有:a = a · q ,特别地,当m = 1时,便得等比数列的通项公式,此式较等比数列的通项公式更具有普遍性.

⑶一般地,如果t ,k,p,…,m,n,r,…皆为自然数,且t + k,p,…,m + … = m + n + r + … (两边的自然数个数相等),那么当{a }为等比数列时,有:a .a .a .… = a .a .a .…

⑷若{ a }是公比为q的等比数列,则{| a |}、{a }、{ka }、{ }也是等比数列,其公比分别为| q |}、{q }、{q}、{ }.

⑸如果{ a }是等比数列,公比为q,那么,a ,a ,a ,…,a ,…是以q 为公比的等比数列.

⑹如果{ a }是等比数列,那么对任意在n ,都有a ·a = a ·q >

⑺两个等比数列各对应项的积组成的数列仍是等比数列,且公比等于这两个数列的公比的积.

⑻当q>1且a >0或00且01时,等比数列为递减数列;当q = 1时,等比数列为常数列;当q<0时,等比数列为摆动数列.

数学必修五知识点总结 第9篇

数列前n项和与通项公式的关系:

( 数列 的前n项的和为 ).

等差、等比数列公式对比

等差数列等比数列

定义式

( )

通项公式及推广公式

中项公式若 成等差,则

若 成等比,则

运算性质若 ,则

若 ,则

前 项和公式

一个性质 成等差数列

成等比数列

解不等式

(1)、含有绝对值的不等式

当a >0时,有 . [小于取中间]

或 .[大于取两边]

(2)、解一元二次不等式 的步骤:

①求判别式

②求一元二次方程的解: 两相异实根 一个实根 没有实根

③画二次函数 的图象

④结合图象写出解集

解集 R

注: 解集为R 对 xxx

(3)高次不等式:数轴标根法(奇穿偶回,大于取上,小于取下)

(4)分式不等式:先移项通分,化一边为0,再将除变乘,化为整式不等式,求解。

如解分式不等式 :先移项 通分

再除变乘 ,解出。

线性规划:

(1)一条直线将平面分为三部分(如图):

(2)不等式 表示直线

某一侧的平面区域,验证方法:取原点(0,0)代入不

等式,若不等式成立,则平面区域在原点所在的一侧。假如

直线恰好经过原点,则取其它点来验证,例如取点(1,0)。

(3)线性规划求最值问题:一般情况可以求出平面区域各个顶点的坐标,代入目标函数 ,的为值。

数学必修五知识点总结 第10篇

1.等差数列通项公式

an=a1+(n-1)d

n=1时a1=S1

n≥2时an=Sn-Sn-1

an=kn+b(k,b为常数)推导过程:an=dn+a1-d令d=k,a1-d=b则得到an=kn+b

2.等差中项

由三个数a,A,xxx的等差数列可以堪称最简单的等差数列。这时,A叫做a与b的等差中项(arithmeticmean)。

有关系:A=(a+b)÷2

3.前n项和

倒序相加法推导前n项和公式:

Sn=a1+a2+a3+xxx··+an

=a1+(a1+d)+(a1+2d)+xxxxxx+[a1+(n-1)d]①

Sn=an+an-1+an-2+xxxxxx+a1

=an+(an-d)+(an-2d)+xxxxxx+[an-(n-1)d]②

由①+②得2Sn=(a1+an)+(a1+an)+xxxxxx+(a1+an)(n个)=n(a1+an)

∴Sn=n(a1+an)÷2

等差数列的前n项和等于首末两项的和与项数乘积的一半:

Sn=n(a1+an)÷2=na1+n(n-1)d÷2

Sn=dn2÷2+n(a1-d÷2)

亦可得

a1=2sn÷n-an=[sn-n(n-1)d÷2]÷n

an=2sn÷n-a1

有趣的是S2n-1=(2n-1)an,S2n+1=(2n+1)an+1

4.等差数列性质

一、任意两项am,an的关系为:

an=am+(n-m)d

它可以看作等差数列广义的通项公式。

二、从等差数列的定义、通项公式,前n项和公式还可推出:

a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈N

三、若m,n,p,q∈N,且m+n=p+q,则有am+an=ap+aq

四、对任意的k∈N,有

Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…成等差数列。

数学必修五知识点总结 第11篇

(一)、映射、函数、反函数

1、对应、映射、函数三个概念既有共性又有区别,映射是一种特殊的对应,而函数又是一种特殊的映射.

2、对于函数的概念,应注意如下几点:

(1)掌握构成函数的三要素,会判断两个函数是否为同一函数.

(2)掌握三种表示法——列表法、解析法、图象法,能根实际问题寻求变量间的函数关系式,特别是会求分段函数的解析式.

(3)如果y=f(u),u=g(x),那么y=f[g(x)]叫做f和g的复合函数,其中g(x)为内函数,f(u)为外函数.

3、求函数y=f(x)的反函数的一般步骤:

(1)确定原函数的值域,也就是反函数的定义域;

(2)由y=f(x)的解析式求出x=f-1(y);

(3)将x,y对换,得反函数的习惯表达式y=f-1(x),并注明定义域.

注意①:对于分段函数的反函数,先分别求出在各段上的反函数,然后再合并到一起.

②熟悉的应用,求f-1(x0)的值,合理利用这个结论,可以避免求反函数的过程,从而简化运算.

(二)、函数的解析式与定义域

1、函数及其定义域是不可分割的整体,没有定义域的函数是不存在的,因此,要正确地写出函数的解析式,必须是在求出变量间的对应法则的同时,求出函数的定义域.求函数的定义域一般有三种类型:

(1)有时一个函数来自于一个实际问题,这时自变量x有实际意义,求定义域要结合实际意义考虑;

(2)已知一个函数的解析式求其定义域,只要使解析式有意义即可.如:

①分式的分母不得为零;

②偶次xxx的被开方数不小于零;

③对数函数的真数必须大于零;

④指数函数和对数函数的底数必须大于零且不等于1;

⑤三角函数中的正切函数y=tanx(x∈R,且k∈Z),余切函数y=cotx(x∈R,x≠kπ,k∈Z)等.

应注意,一个函数的解析式由几部分组成时,定义域为各部分有意义的自变量取值的公共部分(即交集).

(3)已知一个函数的定义域,求另一个函数的定义域,主要考虑定义域的深刻含义即可.

已知f(x)的定义域是[a,b],求f[g(x)]的定义域是指满足a≤g(x)≤b的x的取值范围,而已知f[g(x)]的定义域[a,b]指的是x∈[a,b],此时f(x)的定义域,即g(x)的值域.

2、求函数的解析式一般有四种情况

(1)根据某实际问题需建立一种函数关系时,必须引入合适的变量,根据数学的有关知识寻求函数的解析式.

(2)有时题设给出函数特征,求函数的解析式,可采用待定系数法.比如函数是一次函数,可设f(x)=ax+b(a≠0),其中a,b为待定系数,根据题设条件,列出方程组,求出a,b即可.

(3)若题设给出复合函数f[g(x)]的表达式时,可用换元法求函数f(x)的表达式,这时必须求出g(x)的值域,这相当于求函数的定义域.

(4)若已知f(x)满足某个等式,这个等式除f(x)是未知量外,还出现其他未知量(如f(-x),等),必须根据已知等式,再构造其他等式组成方程组,利用解方程组法求出f(x)的表达式.

(三)、函数的值域与最值

1、函数的值域取决于定义域和对应法则,不论采用何种方法求函数值域都应先考虑其定义域,求函数值域常用方法如下:

(1)直接法:亦称观察法,对于结构较为简单的函数,可由函数的解析式应用不等式的性质,直接观察得出函数的值域.

(2)换元法:运用代数式或三角换元将所给的复杂函数转化成另一种简单函数再求值域,若函数解析式中含有根式,当根式里一次式时用代数换元,当根式里是二次式时,用三角换元.

(3)反函数法:利用函数f(x)与其反函数f-1(x)的定义域和值域间的关系,通过求反函数的定义域而得到原函数的值域,形如(a≠0)的函数值域可采用此法求得.

(4)配方法:对于二次函数或二次函数有关的函数的值域问题可考虑用配方法.

(5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函数的值域,不过应注意条件“一正二定三相等”有时需用到平方等技巧.

(6)判别式法:把y=f(x)变形为关于x的一元二次方程,利用“△≥0”求值域.其题型特征是解析式中含有根式或分式.

(7)利用函数的单调性求值域:当能确定函数在其定义域上(或某个定义域的子集上)的单调性,可采用单调性法求出函数的值域.

(8)数形结合法求函数的值域:利用函数所表示的几何意义,借助于几何方法或图象,求出函数的值域,即以数形结合求函数的值域.

2、求函数的最值与值域的区别和联系

求函数最值的常用方法和求函数值域的方法基本上是相同的,事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同,因而答题的方式就有所相异.

如函数的值域是(0,16],值是16,无最小值.再如函数的值域是(-∞,-2]∪[2,+∞),但此函数无值和最小值,只有在改变函数定义域后,如x>0时,函数的最小值为可见定义域对函数的值域或最值的影响.

3、函数的最值在实际问题中的应用

函数的最值的应用主要体现在用函数知识求解实际问题上,从文字表述上常常表现为“工程造价最低”,“利润”或“面积(体积)(最小)”等诸多现实问题上,求解时要特别关注实际意义对自变量的制约,以便能正确求得最值.

(四)、函数的奇偶性

1、函数的奇偶性的定义:对于函数f(x),如果对于函数定义域内的任意一个x,都有f(-x)=-f(x)(或f(-x)=f(x)),那么函数f(x)就叫做奇函数(或偶函数).

正确理解奇函数和偶函数的定义,要注意两点:(1)定义域在数轴上关于原点对称是函数f(x)为奇函数或偶函数的必要不充分条件;(2)f(x)=-f(x)或f(-x)=f(x)是定义域上的恒等式.(奇偶性是函数定义域上的整体性质).

2、奇偶函数的定义是判断函数奇偶性的主要依据。为了便于判断函数的奇偶性,有时需要将函数化简或应用定义的等价形式:

注意如下结论的运用:

(1)不论f(x)是奇函数还是偶函数,f(|x|)总是偶函数;

(2)f(x)、g(x)分别是定义域D1、D2上的奇函数,那么在D1∩D2上,f(x)+g(x)是奇函数,f(x)·g(x)是偶函数,类似地有“奇±奇=奇”“奇×奇=偶”,“偶±偶=偶”“偶×偶=偶”“奇×偶=奇”;

(3)奇偶函数的复合函数的奇偶性通常是偶函数;

(4)奇函数的导函数是偶函数,偶函数的导函数是奇函数。

3、有关奇偶性的几个性质及结论

(1)一个函数为奇函数的充要条件是它的图象关于原点对称;一个函数为偶函数的充要条件是它的图象关于y轴对称.

(2)如要函数的定义域关于原点对称且函数值恒为零,那么它既是奇函数又是偶函数.

(3)若奇函数f(x)在x=0处有意义,则f(0)=0成立.

(4)若f(x)是具有奇偶性的区间单调函数,则奇(偶)函数在正负对称区间上的单调性是相同(反)的。

(5)若f(x)的定义域关于原点对称,则F(x)=f(x)+f(-x)是偶函数,G(x)=f(x)-f(-x)是奇函数.

(6)奇偶性的推广

函数y=f(x)对定义域内的任一x都有f(a+x)=f(a-x),则y=f(x)的图象关于直线x=a对称,即y=f(a+x)为偶函数.函数y=f(x)对定义域内的任-x都有f(a+x)=-f(a-x),则y=f(x)的图象关于点(a,0)成中心对称图形,即y=f(a+x)为奇函数。

数学必修五知识点总结 第12篇

排列P------和顺序有关

组合C-------不牵涉到顺序的问题

排列分顺序,组合不分

例如把5本不同的书分给3个人,有几种分法.“排列”

把5本书分给3个人,有几种分法“组合”

1.排列及计算公式

从n个不同元素中,任取m(m≤n)个元素按照一定的顺序xxx一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用xxx(n,m)表示.

p(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!(规定0!=1).

2.组合及计算公式

从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号

c(n,m)表示.

c(n,m)=p(n,m)/m!=n!/((n-m)!_!);c(n,m)=c(n,n-m);

3.其他排列与组合公式

从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!.

n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为

n!/(n1!_2!_.._k!).

k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m).

排列(Pnm(n为下标,m为上标))

Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标)=n!;0!=1;Pn1(n为下标1为上标)=n

组合(Cnm(n为下标,m为上标))

Cnm=Pnm/Pmm;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标)=1;Cn1(n为下标1为上标)=n;Cnm=Cnn-m

-07-0813:30

公式P是指排列,从N个元素取R个进行排列。公式C是指组合,从N个元素取R个,不进行排列。N-元素的总个数R参与选择的元素个数!-阶乘,如9!=9________

从N倒数r个,表达式应该为n_n-1)_n-2)..(n-r+1);

因为从n到(n-r+1)个数为n-(n-r+1)=r

举例:

Q1:有从1到9共计9个号码球,请问,可以组成多少个三位数?

A1:123和213是两个不同的排列数。即对排列顺序有要求的,既属于“排列P”计算范畴。

上问题中,任何一个号码只能用一次,显然不会出现988,997之类的组合,我们可以这么看,百位数有9种可能,十位数则应该有9-1种可能,个位数则应该只有9-1-1种可能,最终共有9__个三位数。计算公式=P(3,9)=9__,(从9倒数3个的乘积)

Q2:有从1到9共计9个号码球,请问,如果三个一组,代表“三国联盟”,可以组合成多少个“三国联盟”?

A2:213组合和312组合,代表同一个组合,只要有三个号码球在一起即可。即不要求顺序的,属于“组合C”计算范畴。

上问题中,将所有的包括排列数的个数去除掉属于重复的个数即为最终组合数C(3,9)=9__/3__

数学必修五知识点总结 第13篇

高一年级数学必修五重点知识点

一、集合有关概念

1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。

2、集合的中元素的三个特性:

1、元素的确定性;2.元素的互异性;3.元素的无序性

说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。

(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。

(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。

(4)集合元素的三个特性使集合本身具有了确定性和整体性。

3、集合的表示:{}如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}

1、用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}

2、集合的表示方法:列举法与描述法。

注意啊:常用数集及其记法:

非负整数集(即自然数集)记作:N

正整数集N.或N+整数集Z有理数集Q实数集R

关于属于的概念

集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A记作aA,相反,a不属于集合A记作a?A

列举法:把集合中的元素一一列举出来,然后用一个大括号括上。

描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表示某些对象是否属于这个集合的方法。

①语言描述法:例:{不是直角三角形的三角形}

②数学式子描述法:例:不等式x-32的解集是{x?R|x-32}或{x|x-32}

高一数学必修五重点知识点

集合间的基本关系

1、包含关系子集

注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA

2、相等关系(55,且55,则5=5)

实例:设A={x|x2-1=0}B={-1,1}元素相同

结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B

①任何一个集合是它本身的子集。AA

②真子集:如果AB,且A1B那就说集合A是集合B的真子集,记作AB(或BA)

③如果AB,BC,那么AC

④如果AB同时BA那么A=B

3、不含任何元素的集合叫做空集,记为

规定:空集是任何集合的子集,空集是任何非空集合的真子集。

三、集合的运算

1、交集的定义:一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集。

记作AB(读作A交B),即AB={x|xA,且xB}。

2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集。记作:AB(读作A并B),即AB={x|xA,或xB}。

3、交集与并集的性质:AA=A,A=,AB=BA,AA=A,

A=A,AB=BA.

4、全集与补集

(1)补集:设S是一个集合,A是S的一个子集(即),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)

(2)全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集。通常用xxx表示。

(3)性质:⑴CU(CUA)=A⑵(CUA)⑶(CUA)A=U

高一年级数学必修五知识点总结

【差数列的基本性质】

⑴公差为d的等差数列,各项同加一数所得数列仍是等差数列,其公差仍为d.

⑵公差为d的等差数列,各项同乘以常数k所得数列仍是等差数列,其公差为kd.

⑶若{a}、{b}为等差数列,则{a±b}与{ka+b}(k、b为非零常数)也是等差数列。

⑷对任何m、n,在等差数列{a}中有:a=a+(n-m)d,特别地,当m=1时,便得等差数列的通项公式,此式较等差数列的通项公式更具有一般性。

⑸、一般地,如果l,k,p,…,m,n,r,…皆为自然数,且l+k+p+…=m+n+r+…(两边的自然数个数相等),那么当{a}为等差数列时,有:a+a+a+…=a+a+a+…。

⑹公差为d的等差数列,从中取出等距离的项,构成一个新数列,此数列仍是等差数列,其公差为kd(k为取出项数之差)。

⑺如果{a}是等差数列,公差为d,那么,a,a,…,a、a也是等差数列,其公差为-d;在等差数列{a}中,a-a=a-a=md.(其中m、k、)

⑻在等差数列中,从第一项起,每一项(有穷数列末项除外)都是它前后两项的等差中项。

⑼当公差d>0时,等差数列中的数随项数的增大而增大;当d<0时,等差数列中的数随项数的减少而减小;d=0时,等差数列中的数等于一个常数。

⑽设a,a,a为等差数列中的三项,且a与a,a与a的项距差之比=(≠-1),则a=。

⑴数列{a}为等差数列的充要条件是:数列{a}的前n项和S可以写成S=an+bn的形式(其中a、b为常数)。

⑵在等差数列{a}中,当项数为2n(nN)时,S-S=nd,=;当项数为(2n-1)(n)时,S-S=a,=。

⑶若数列{a}为等差数列,则S,S-S,S-S,…仍然成等差数列,公差为。

⑷若两个等差数列{a}、{b}的前n项和分别是S、T(n为奇数),则=。

⑸在等差数列{a}中,S=a,S=b(n>m),则S=(a-b)。

⑹等差数列{a}中,是n的一次函数,且点(n,)均在直线y=x+(a-)上。

⑺记等差数列{a}的前n项和为S.①若a>0,公差d<0,则当a≥0且a≤0时,S;②若a0,则当a≤0且a≥0时,S最小。

数学必修五知识点总结 第14篇

等差数列等比数列

定义式

( )

通项公式及推广公式

中项公式若 成等差,则

若 成等比,则

运算性质若 ,则

若 ,则

前 项和公式

一个性质 成等差数列

成等比数列

86、解不等式

(1)、含有绝对值的不等式

当a >0时,有 . [小于取中间]

或 .[大于取两边]

(2)、解一元二次不等式 的步骤:

①求判别式

②求一元二次方程的解: 两相异实根 一个实根 没有实根

③画二次函数 的图象

④结合图象写出解集

解集 R

注: 解集为R 对 xxx

(3)高次不等式:数轴标根法(奇穿偶回,大于取上,小于取下)

(4)分式不等式:先移项通分,化一边为0,再将除变乘,化为整式不等式,求解。

如解分式不等式 :先移项 通分

再除变乘 ,解出。

数学必修五知识点总结 第15篇

1.函数思想:把某变化过程中的一些相互制约的.变量用函数关系表达出来,并研究这些量间的相互制约关系,最后解决问题,这就是函数思想;

2.应用函数思想解题,确立变量之间的函数关系是一关键步骤,大体可分为下面两个步骤:

(1)根据题意建立变量之间的函数关系式,把问题转化为相应的函数问题;

(2)根据需要构造函数,利用函数的相关知识解决问题;

(3)方程思想:在某变化过程中,往往需要根据一些要求,确定某些变量的值,这时常常列出这些变量的方程或(方程组),通过解方程(或方程组)求出它们,这就是方程思想;

3.函数与方程是两个有着密切联系的数学概念,它们之间相互渗透,很多方程的问题需要用函数的知识和方法解决,很多函数的问题也需要用方程的方法的支援,函数与方程之间的辩证关系,形成了函数方程思想。

数学必修五知识点总结 第16篇

●不等式

1、不等式你会解么?你会解么?如果是写解集不要忘记写成集合形式!

2、的解集是(1,3),那么的解集是什么?

3、两类xxx问题图象法——xxx,则=?

★★★★分离变量法——在[1,3]xxx,则=?(必考题)

4、线性规划问题

(1)可行域怎么作(一定要用直尺和铅笔)定界——定域——边界

(2)目标函数改写:(注意分析截距与z的关系)

(3)平行直线系去画

5、基本不等式的形式和变形形式

如a,b为正数,a,b满足,则ab的范围是

6、运用基本不等式求最值要注意:一正二定三相等!

如的最小值是的最小值(不要忘记交代是什么时候取到=!!)

一个非常重要的函数——对勾函数的图象是什么?

运用对勾函数来处理下面问题的最小值是

7、★★两种题型:

和——倒数和(1的代换),如x,y为正数,且,求的最小值?

和——积(直接用基本不等式),如x,y为正数,,则的范围是?

不要忘记x,xy,x2+y2这三者的关系!如x,y为正数,,则的范围是?

数学必修五知识点总结 第17篇

⑴数列{ a }为等差数列的充要条件是:数列{ a }的前n项和S 可以写成S = an + bn的形式(其中a、b为常数).

⑵在等差数列{ a }中,当项数为2n (n N )时,S -S = nd, = ;当项数为(2n-1) (n )时,S -S = a , = .

⑶若数列{ a }为等差数列,则S ,S -S ,S -S ,…仍然成等差数列,公差为 .

⑷若两个等差数列{ a }、{ b }的前n项和分别是S 、T (n为奇数),则 = .

⑸在等差数列{ a }中,S = a,S = b (n>m),则S = (a-b).

⑹等差数列{a }中, 是n的一次函数,且点(n, )均在直线y = x + (a - )上.

⑺记等差数列{a }的前n项和为S .①若a >0,公差d<0,则当a ≥0且a ≤0时,S 最大;②若a <0 ,公差d>0,则当a ≤0且a ≥0时,S 最小.

数学必修五知识点总结 第18篇

1、集合、映射的数学意义是为了阐述两组数据(元素)之间的关系。而函数就是立足于集合。并由此产生的充要条件等知识点。通过这么去理解,你会发现,高中数学基础很快就能掌握。但记住,一定要循序渐进,不能着急。

2、做好高中数学错题笔记,记录容易犯的错误,分析错误原因,找到纠正的办法;不能盲目做题,必须在搞清楚概念的基础上做才是有效的,因为盲目大量做题,有时候错误或者误解也会得到巩固,纠正起来更加困难。

数学必修五知识点总结 第19篇

●解三角形

1. ?

2.解三角形中的基本策略:角 边或边 角。如 ,则三角形的形状?

3.三角形面积公式 ,如三角形的三边是 ,面积是?

4.求角的几种问题: ,求

△面积是 ,求 . ,求cosc

5.一些术语名词:仰角(俯角),方位角,视角分别是什么?

6.三角形的三个内角a,b,xxx等差数列,则 三角形的三边a,b,xxx等差数列,则

三角形的三边a,b,xxx等比数列,则 ,你会证明这三个结论么?

数学必修五知识点总结 第20篇

⑴公比为q的等比数列,从中取出等距离的项,构成一个新数列,此数列仍是等比数列,其公比为q(m为等距离的项数之差)。

⑵对任何m、n,在等比数列{a}中有:a=a·q,特别地,当m=1时,便得等比数列的通项公式,此式较等比数列的通项公式更具有普遍性。

⑶一般地,如果t,k,p,…,m,n,r,…皆为自然数,且t+k,p,…,m+…=m+n+r+…(两边的自然数个数相等),那么当{a}为等比数列时,有:a。a。a。…=a。a。a。…。。

⑷若{a}是公比为q的等比数列,则{|a|}、{a}、{ka}、{}也是等比数列,其公比分别为|q|}、{q}、{q}、{}。

⑸如果{a}是等比数列,公比为q,那么,a,a,a,…,a,…是以q为公比的等比数列。

⑹如果{a}是等比数列,那么对任意在n,都有a·a=a·q>0。

⑺两个等比数列各对应项的积组成的数列仍是等比数列,且公比等于这两个数列的公比的积。

⑻当q>1且a>0或00且01时,等比数列为递减数列;当q=1时,等比数列为常数列;当q<0时,等比数列为摆动数列。

数学必修五知识点总结 第21篇

【差数列的基本性质】

⑴公差为d的等差数列,各项同加一数所得数列仍是等差数列,其公差仍为d.

⑵公差为d的等差数列,各项同乘以常数k所得数列仍是等差数列,其公差为kd.

⑶若{a}、{b}为等差数列,则{a±b}与{ka+b}(k、b为非零常数)也是等差数列.

⑷对任何m、n,在等差数列{a}中有:a=a+(n-m)d,特别地,当m=1时,便得等差数列的通项公式,此式较等差数列的通项公式更具有一般性.

⑸、一般地,如果l,k,p,…,m,n,r,…皆为自然数,且l+k+p+…=m+n+r+…(两边的自然数个数相等),那么当{a}为等差数列时,有:a+a+a+…=a+a+a+….

⑹公差为d的等差数列,从中取出等距离的项,构成一个新数列,此数列仍是等差数列,其公差为kd(k为取出项数之差).

⑺如果{a}是等差数列,公差为d,那么,a,a,…,a、a也是等差数列,其公差为-d;在等差数列{a}中,a-a=a-a=md.(其中m、k、)

⑻在等差数列中,从第一项起,每一项(有穷数列末项除外)都是它前后两项的等差中项.

⑼当公差d>0时,等差数列中的数随项数的增大而增大;当d<0时,等差数列中的数随项数的减少而减小;d=0时,等差数列中的数等于一个常数.

⑽设a,a,a为等差数列中的三项,且a与a,a与a的项距差之比=(≠-1),则a=.

⑴数列{a}为等差数列的充要条件是:数列{a}的前n项和S可以写成S=an+bn的形式(其中a、b为常数).

⑵在等差数列{a}中,当项数为2n(nN)时,S-S=nd,=;当项数为(2n-1)(n)时,S-S=a,=.

⑶若数列{a}为等差数列,则S,S-S,S-S,…仍然成等差数列,公差为.

⑷若两个等差数列{a}、{b}的前n项和分别是S、T(n为奇数),则=.

⑸在等差数列{a}中,S=a,S=b(n>m),则S=(a-b).

⑹等差数列{a}中,是n的一次函数,且点(n,)均在直线y=x+(a-)上.

⑺记等差数列{a}的前n项和为S.①若a>0,公差d<0,则当a≥0且a≤0时,S;②若a<0,公差d>0,则当a≤0且a≥0时,S最小.

【等比数列的基本性质】

⑴公比为q的等比数列,从中取出等距离的项,构成一个新数列,此数列仍是等比数列,其公比为q(m为等距离的项数之差).

⑵对任何m、n,在等比数列{a}中有:a=a·q,特别地,当m=1时,便得等比数列的通项公式,此式较等比数列的通项公式更具有普遍性.

⑶一般地,如果t,k,p,…,m,n,r,…皆为自然数,且t+k,p,…,m+…=m+n+r+…(两边的自然数个数相等),那么当{a}为等比数列时,有:.…=.…..

⑷若{a}是公比为q的等比数列,则{|a|}、{a}、{ka}、{}也是等比数列,其公比分别为|q|}、{q}、{q}、{}.

⑸如果{a}是等比数列,公比为q,那么,a,a,a,…,a,…是以q为公比的等比数列.

⑹如果{a}是等比数列,那么对任意在n,都有a·a=a·q>0.

⑺两个等比数列各对应项的积组成的数列仍是等比数列,且公比等于这两个数列的公比的积.

⑻当q>1且a>0或00且01时,等比数列为递减数列;当q=1时,等比数列为常数列;当q<0时,等比数列为摆动数列.

高中数学必修五:等比数列前n项和公式S的基本性质

⑴如果数列{a}是公比为q的等比数列,那么,它的前n项和公式是S=

也就是说,公比为q的等比数列的前n项和公式是q的分段函数的一系列函数值,分段的界限是在q=1处.因此,使用等比数列的前n项和公式,必须要弄清公比q是可能等于1还是必不等于1,如果q可能等于1,则需分q=1和q≠1进行讨论.

⑵当已知a,q,n时,用公式S=;当已知a,q,a时,用公式S=.

⑶若S是以q为公比的等比数列,则有S=S+qS.⑵

⑷若数列{a}为等比数列,则S,S-S,S-S,…仍然成等比数列.

⑸若项数为3n的等比数列(q≠-1)前n项和与前n项积分别为S与T,次n项和与次n项积分别为S与T,最后n项和与n项积分别为S与T,则S,S,xxx等比数列,T,T,T亦成等比数列

万能公式:sin2α=2tanα/(1+tan^2α)(注:tan^2α是指tan平方α)

cos2α=(1-tan^2α)/(1+tan^2α)tan2α=2tanα/(1-tan^2α)

升幂公式:1+cosα=2cos^2(α/2)1-cosα=2sin^2(α/2)1±sinα=(sin(α/2)±cos(α/2))^2

降幂公式:cos^2α=(1+cos2α)/2sin^2α=(1-cos2α)/21)sin(2kπ+α)=sinα,cos(2kπ+α)=cosα,tan(2kπ+α)=tanα,cot(2kπ+α)=cotα,其中k∈Z;

(2)sin(-α)=-sinα,cos(-α)=cosα,tan(-α)=-tanα,cot(-α)=-cotα

(3)sin(π+α)=-sinα,cos(π+α)=-cosα,tan(π+α)=tanα,cot(π+α)=cotα

(4)sin(π-α)=sinα,cos(π-α)=-cosα,tan(π-α)=-tanα,cot(π-α)=-cotα

(5)sin(π/2-α)=cosα,cos(π/2-α)=sinα,tan(π/2-α)=cotα,cot(π/2-α)=tanα

(6)sin(π/2+α)=cosα,cos(π/2+α)=-sinα,

tan(π/2+α)=-cotα,cot(π/2+α)=-tanα

(7)sin(3π/2+α)=-cosα,cos(3π/2+α)=sinα,

tan(3π/2+α)=-cotα,cot(3π/2+α)=-tanα

(8)sin(3π/2-α)=-cosα,cos(3π/2-α)=-sinα,

tan(3π/2-α)=cotα,cot(3π/2-α)=tanα(k·π/2±α),其中k∈Z

注意:为方便做题,习惯我们把α看成是一个位于第一象限且小于90°的角;

当k是奇数的时候,等式右边的三角函数发生变化,如sin变成cos.偶数则不变;

用角(k·π/2±α)所在的象限确定等式右边三角函数的正负.例:tan(3π/2+α)=-cotα

∵在这个式子中k=3,是奇数,因此等式右边应变为cot

又,∵角(3π/2+α)在第四象限,tan在第四象限为负值,因此为使等式成立,等式右边应为-cotα.三角函数在各象限中的正负分布

sin:第一第二象限中为正;第三第四象限中为负cos:第一第四象限中为正;第二第三象限中为负cot、tan:第一第三象限中为正;第二第四象限中为负。

数学必修五知识点总结 第22篇

排列组合

排列P------和顺序有关

组合C-------不牵涉到顺序的问题

排列分顺序,组合不分

例如把5本不同的书分给3个人,有几种分法._排列_

把5本书分给3个人,有几种分法_组合_

1.排列及计算公式

从n个不同元素中,任取m(m≤n)个元素按照一定的顺序xxx一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用xxx(n,m)表示.

p(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!(规定0!=1).

2.组合及计算公式

从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号

c(n,m)表示.

c(n,m)=p(n,m)/m!=n!/((n-m)!_!);c(n,m)=c(n,n-m);

3.其他排列与组合公式

从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!.

n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为

n!/(n1!_2!_.._k!).

k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m).

排列(Pnm(n为下标,m为上标))

Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标)=n!;0!=1;Pn1(n为下标1为上标)=n

组合(Cnm(n为下标,m为上标))

Cnm=Pnm/Pmm;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标)=1;Cn1(n为下标1为上标)=n;Cnm=Cnn-m

20xx-07-0813:30

公式P是指排列,从N个元素取R个进行排列。公式C是指组合,从N个元素取R个,不进行排列。N-元素的总个数R参与选择的元素个数!-阶乘,如9!=9________

从N倒数r个,表达式应该为n_n-1)_n-2)..(n-r+1);

因为从n到(n-r+1)个数为n-(n-r+1)=r

数学必修五知识点总结 第23篇

等差数列通项公式

an=a1+(n-1)d

n=1时a1=S1

n≥2时an=Sn-Sn-1

an=kn+b(k,b为常数)推导过程:an=dn+a1-d令d=k,a1-d=b则得到an=kn+b

等差中项

由三个数a,A,xxx的等差数列可以堪称最简单的等差数列。这时,A叫做a与b的等差中项(arithmeticmean)。

有关系:A=(a+b)÷2

前n项和

倒序相加法推导前n项和公式:

Sn=a1+a2+a3+xxx··+an

=a1+(a1+d)+(a1+2d)+xxxxxx+[a1+(n-1)d]①

Sn=an+an-1+an-2+xxxxxx+a1

=an+(an-d)+(an-2d)+xxxxxx+[an-(n-1)d]②

由①+②得2Sn=(a1+an)+(a1+an)+xxxxxx+(a1+an)(n个)=n(a1+an)

∴Sn=n(a1+an)÷2

等差数列的前n项和等于首末两项的和与项数乘积的一半:

Sn=n(a1+an)÷2=na1+n(n-1)d÷2

Sn=dn2÷2+n(a1-d÷2)

亦可得

a1=2sn÷n-an=[sn-n(n-1)d÷2]÷n

an=2sn÷n-a1

有趣的是S2n-1=(2n-1)an,S2n+1=(2n+1)an+1

等差数列性质

一、任意两项am,an的关系为:

an=am+(n-m)d

它可以看作等差数列广义的通项公式。

二、从等差数列的定义、通项公式,前n项和公式还可推出:

a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈N_

三、若m,n,p,q∈N_,且m+n=p+q,则有am+an=ap+aq

四、对任意的k∈N_,有

Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…成等差数列。

数学必修五知识点总结 第24篇

1、三角形的性质:

①.A+B+C=?,?

A?B2

?sin

A?B2

?cos

②.在?ABC中, a?b>c , a?bB?sinA>sinB,

A>B?cosAb? A>B

③.若?ABC为锐角?,则A?B>

,B+C >

,A+C >

a2?b2>c2,b2?c2>a2,a2+c2>b2 2、正弦定理与余弦定理: ①.

(2R为?ABC外接圆的直径)

a?2Rsin

A、b?2RsinB、c?2RsinC sinA?

a2R

sinB?

b2R

、sinC?

c2R

acsinB

面积公式:S?ABC?

absinC?

bcsinA?

②.余弦定理:a?b?c?2bccosA、b?a?c?2accosB、c?a?b?2abcosC

b?c?a

2bc

cosA?、cosB?

a?c

2ac

222

、cosC?

a?b?c

2ab

222

数学必修五知识点总结 第25篇

一、集合有关概念

1. 集合的含义

2. 集合的中元素的三个特性:

(1) 元素的确定性,

(2) 元素的互异性,

(3) 元素的无序性,

3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}

(1) 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}

(2) 集合的表示方法:列举法与描述法。

? 注意:常用数集及其记法:

非负整数集(即自然数集) 记作:N

正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R

1) 列举法:{a,b,c……}

2) 描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{x?R| x-3>2} ,{x| x-3>2}

3) 语言描述法:例:{不是直角三角形的三角形}

4) Venn图:

4、集合的分类:

(1) 有限集 含有有限个元素的集合

(2) 无限集 含有无限个元素的集合

(3) 空集 不含任何元素的集合 例:{x|x2=-5}

二、集合间的基本关系

1.“包含”关系—子集

注意: 有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A

2.“相等”关系:A=B (5≥5,且5≤5,则5=5)

实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”

即:① 任何一个集合是它本身的子集。A?A

②真子集:如果A?B,且A? B那就说集合A是集合B的真子集,记作A B(或B A)

③如果 A?B, B?C ,那么 A?C

④ 如果A?B 同时 B?A 那么A=B

3. 不含任何元素的集合叫做空集,记为Φ

规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。

? 有n个元素的集合,含有2n个子集,2n-1个真子集

三、集合的运算

运算类型 交 集 并 集 补 集

定 义 由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A B(读作‘A交B’),即A B={x|x A,且x B}.

由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:A B(读作‘A并B’),即A B ={x|x A,或x B}).

设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)

二、函数的有关概念

1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.

注意:

1.定义域:能使函数式有意义的实数x的集合称为函数的定义域。

求函数的定义域时列不等式组的主要依据是:

(1)分式的分母不等于零;

(2)偶次xxx的被开方数不小于零;

(3)对数式的真数必须大于零;

(4)指数、对数式的底必须大于零且不等于1.

(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.

(6)指数为零底不可以等于零,

(7)实际问题中的函数的定义域还要保证实际问题有意义.

相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致 (两点必须同时具备)

2.值域 : 先考虑其定义域

(1)观察法

(2)配方法

(3)代换法

3. 函数图象知识归纳

(1)定义:在平面直角坐标系中,以函数 y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数 y=f(x),(x ∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 .

(2) 画法

A、 描点法:

B、 图象变换法

常用变换方法有三种

1) 平移变换

2) 伸缩变换

3) 对称变换

4.区间的概念

(1)区间的分类:开区间、闭区间、半开半闭区间

(2)无穷区间

(3)区间的数轴表示.

5.映射

一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A B为从集合A到集合B的一个映射。记作f:A→B

6.分段函数

(1)在定义域的不同部分上有不同的解析表达式的函数。

(2)各部分的.自变量的取值情况.

(3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集.

补充:复合函数

如果y=f(u)(u∈M),u=g(x)(x∈A),则 y=f[g(x)]=F(x)(x∈A) 称为f、g的复合函数。

二.函数的性质

1.函数的单调性(局部性质)

(1)增函数

设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1

如果对于区间D上的任意两个自变量的值x1,x2,当x1f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间.

注意:函数的单调性是函数的局部性质;

(2) 图象的特点

如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.

(3).函数单调区间与单调性的判定方法

(A) 定义法:

○1 xxx1,x2∈D,且x1

○2 作差f(x1)-f(x2);

○3 变形(通常是因式分解和配方);

○4 定号(即判断差f(x1)-f(x2)的正负);

○5 下结论(指出函数f(x)在给定的区间D上的单调性).

(B)图象法(从图象上看升降)

(C)复合函数的单调性

复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减”

注意:函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集.

8.函数的奇偶性(整体性质)

(1)偶函数

一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.

(2).奇函数

一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.

(3)具有奇偶性的函数的图象的特征

偶函数的图象关于y轴对称;奇函数的图象关于原点对称.

利用定义判断函数奇偶性的步骤:

○1首先确定函数的定义域,并判断其是否关于原点对称;

○2确定f(-x)与f(x)的关系;

○3作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数.

(2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1来判定;

(3)利用定理,或借助函数的图象判定 .

9、函数的解析表达式

(1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.

(2)求函数的解析式的主要方法有:

1) 凑配法

2) 待定系数法

3) 换元法

4) 消参法

10.函数最大(小)值(定义见课本p36页)

○1 利用二次函数的性质(配方法)求函数的最大(小)值

○2 利用图象求函数的最大(小)值

○3 利用函数单调性的判断函数的最大(小)值:

如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b);

如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);

数学必修五知识点总结 第26篇

⑴公差为d的等差数列,各项同加一数所得数列仍是等差数列,其公差仍为

⑵公差为d的等差数列,各项同乘以常数k所得数列仍是等差数列,其公差为

⑶若{ a }、{ b }为等差数列,则{ a ±b }与{ka +b}(k、b为非零常数)也是等差数列.

⑷对任何m、n ,在等差数列{ a }中有:a = a + (n-m)d,特别地,当m = 1时,便得等差数列的通项公式,此式较等差数列的通项公式更具有一般性.

⑸、一般地,如果l,k,p,…,m,n,r,…皆为自然数,且l + k + p + … = m + n + r + … (两边的自然数个数相等),那么当{a }为等差数列时,有:a + a + a + … = a + a + a + … .

⑹公差为d的等差数列,从中取出等距离的项,构成一个新数列,此数列仍是等差数列,其公差为kd( k为取出项数之差).

⑺如果{ a }是等差数列,公差为d,那么,a ,a ,…,a 、a 也是等差数列,其公差为-d;在等差数列{ a }中,a -a = a -a = md .(其中m、k、 )

⑻在等差数列中,从第一项起,每一项(有穷数列末项除外)都是它前后两项的等差中项.

⑼当公差d>0时,等差数列中的数随项数的增大而增大;当d<0时,等差数列中的数随项数的减少而减小;d=0时,等差数列中的数等于一个常数.

⑽设a ,a ,a 为等差数列中的三项,且a 与a ,a 与a 的项距差之比 = ( =?-1),则a = .

数学必修五知识点总结 第27篇

人教版数学必修五知识点

正弦、余弦典型例题

1.在△ABC中,∠C=90°,a=1,c=4,则sinA的值为

2.已知α为锐角,且,则α的度数是°°°°

3.在△ABC中,若,∠A,∠B为锐角,则∠C的度数是()°°°°

4.若∠A为锐角,且,则A=()°°°°

5.在△ABC中,AB=AC=2,AD⊥BC,垂足为D,且AD=,E是AC中点,EF⊥BC,垂足为F,求sin∠EBF的值。

正弦、余弦解题诀窍

1、已知两角及一边,或两边及一边的对角(对三角形是否存在要讨论)用正弦定理

2、已知三边,或两边及其夹角用余弦定理

3、余弦定理对于确定三角形形状非常有用,只需要知道角的余弦值为正,为负,还是为零,就可以确定是钝角。直角还是锐角。

排列及计算公式

从n个不同元素中,任取m(m≤n)个元素按照一定的顺序xxx一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用xxx(n,m)表示.

p(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!(规定0!=1).

组合及计算公式

从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的'组合数.用符号

c(n,m)表示.

c(n,m)=p(n,m)/m!=n!/((n-m)!_!);c(n,m)=c(n,n-m);

其他排列与组合公式

从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!.

n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为

n!/(n1!_2!_.._k!).

k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m).

排列(Pnm(n为下标,m为上标))

Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标)=n!;0!=1;Pn1(n为下标1为上标)=n

组合(Cnm(n为下标,m为上标))

Cnm=Pnm/Pmm;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标)=1;Cn1(n为下标1为上标)=n;Cnm=Cnn-m

数学速算技巧

一、充分利用五大定律

教师要扎实开展好现行教材四年级数学下册中计算的五大运算定律的教学(加法交换律、加法结合律、乘法交换律、乘法结合律、乘法分配律),引导学生弄清来龙去脉,不让一个学生掉队,训练每个学生能自觉运用简便办法,能针对不同题型灵活选择简便方法正确而快捷地进行计算。

二、巧妙运用首同末合十

利用首同末合十的方法来训练。首同末合十法是两个两位数,它们的十位数相同,而个位数相加的和是10。利用首同末合十的两个两位数相乘,积的右边的两位数正好是个位数的乘积,积的左面的数正好是十位上的数乘以比它大1的积,合并起来就是它们的乘积。例如,54x56=3024,81x89=7209。

三、留心左右两数合并法

任意的两位数乘上99或任意的三位数乘上999的速算法叫做左右两数合并法。

1.任意两位数乘上99的巧算方法是,将这个任意的两位数减去1,作为积的左面的两位数字,再将100减去这个任意两位数的差作为积的右边两位数,合并起来就是它们的积。例如,62x99=6138,48x99=4752。

2.任意三位数乘上999的巧算方法,就是将这个任意的三位数减去1,作为积的左面的三位数字,再将1000减去这个任意三位数的差作为积的右边的三位数字,合并起来就是它们的积。例如,781x999=780219,396x999=395604。

如何提高数学成绩

一、课内重视听讲,课后及时复习

接受一种新的知识,主要实在课堂上进行的,所以要重视课堂上的学习效率,找到适合自己的学习方法,上课时要跟住老师的思路,积极思考。下课之后要及时复习,遇到不懂的地方要及时去问,在做作业的时候,先把老师课堂上讲解的内容回想一遍,还要牢牢的掌握公式及推理过程,尽量不要去翻书。尽量自己思考,不要急于翻看答案。还要经常性的总结和复习,把知识点结合起来,变成自己的知识体系。

二、多做题,养成良好的解题习惯

要想学好数学,大量做题是必可避免的,熟练地掌握各种题型,这样才能有效的提高数学成绩。刚开始做题的时候先以书上习题为主,答好基础,然后逐渐增加难度,开拓思路,练习各种类型的解题思路,对于容易出现错误的题型,应该记录下来,反复加以联系。在做题的时候应该养成良好的解题习惯,集中注意力,这样才能进入最佳的状态,形成习惯,这样在考试的时候才能运用自如。

三、调整心态,正确对待考试

考试的时候,大部分的题都是基础题,只有少数几道题时比较难的题,所以我们要调整好心态,鼓励自己,在做题的时候认真思考,不要浮躁,在考试之前做好准备,做一做常规的题型,不要为了赶时间而增加做题速度,要有条不紊的进行

数学必修五知识点总结 第28篇

一、不等关系及不等式知识点

不等式的定义

在客观世界中,量与量之间的不等关系是普遍存在的,我们用数学符号、、连接两个数或代数式以表示它们之间的不等关系,含有这些不等号的式子,叫做不等式.

比较两个实数的大小

两个实数的大小是用实数的运算性质来定义的,有a-baa-b=0a-ba0,则有a/baa/b=1a/ba

不等式的性质

(1)对称性:ab

(2)传递性:ab,ba

(3)可加性:aa+cb+c,ab,ca+c

(4)可乘性:ab,cacb0,c0bd;

(5)可乘方:a0bn(nN,n

(6)可开方:a0

(nN,n2).

注意:

一个技巧

作差法变形的技巧:作差法中变形是关键,常进行因式分解或配方.

一种方法

待定系数法:求代数式的范围时,先用已知的代数式表示目标式,再利用多项式相等的法则求出参数,最后利用不等式的性质求出目标式的范围.

数学必修五知识点总结 第29篇

(一)、映射、函数、反函数

1、对应、映射、函数三个概念既有共性又有区别,映射是一种特殊的对应,而函数又是一种特殊的映射。

2、对于函数的概念,应注意如下几点:

(1)掌握构成函数的三要素,会判断两个函数是否为同一函数。

(2)掌握三种表示法——列表法、解析法、图象法,能根实际问题寻求变量间的函数关系式,特别是会求分段函数的解析式。

(3)如果y=f(u),u=g(x),那么y=f[g(x)]叫做f和g的复合函数,其中g(x)为内函数,f(u)为外函数。

3、求函数y=f(x)的反函数的一般步骤:

(1)确定原函数的值域,也就是反函数的定义域;

(2)由y=f(x)的解析式求出x=f—1(y);

(3)将x,y对换,得反函数的习惯表达式y=f—1(x),并注明定义域。

注意①:对于分段函数的反函数,先分别求出在各段上的反函数,然后再合并到一起。

②熟悉的应用,求f—1(x0)的值,合理利用这个结论,可以避免求反函数的过程,从而简化运算。

(二)、函数的解析式与定义域

1、函数及其定义域是不可分割的整体,没有定义域的函数是不存在的,因此,要正确地写出函数的解析式,必须是在求出变量间的对应法则的同时,求出函数的定义域。求函数的定义域一般有三种类型:

(1)有时一个函数来自于一个实际问题,这时自变量x有实际意义,求定义域要结合实际意义考虑;

(2)已知一个函数的解析式求其定义域,只要使解析式有意义即可。如:

①分式的分母不得为零;

②偶次xxx的被开方数不小于零;

③对数函数的真数必须大于零;

④指数函数和对数函数的底数必须大于零且不等于1;

⑤三角函数中的正切函数y=tanx(x∈R,且k∈Z),余切函数y=cotx(x∈R,x≠kπ,k∈Z)等。

应注意,一个函数的解析式由几部分组成时,定义域为各部分有意义的自变量取值的公共部分(即交集)。

(3)已知一个函数的定义域,求另一个函数的定义域,主要考虑定义域的深刻含义即可。

已知f(x)的定义域是[a,b],求f[g(x)]的定义域是指满足a≤g(x)≤b的x的取值范围,而已知f[g(x)]的定义域[a,b]指的是x∈[a,b],此时f(x)的定义域,即g(x)的值域。

2、求函数的解析式一般有四种情况。

(1)根据某实际问题需建立一种函数关系时,必须引入合适的变量,根据数学的有关知识寻求函数的解析式。

(2)有时题设给出函数特征,求函数的解析式,可采用待定系数法。比如函数是一次函数,可设f(x)=ax+b(a≠0),其中a,b为待定系数,根据题设条件,列出方程组,求出a,b即可。

(3)若题设给出复合函数f[g(x)]的表达式时,可用换元法求函数f(x)的表达式,这时必须求出g(x)的值域,这相当于求函数的定义域。

(4)若已知f(x)满足某个等式,这个等式除f(x)是未知量外,还出现其他未知量(如f(—x),等),必须根据已知等式,再构造其他等式组成方程组,利用解方程组法求出f(x)的表达式。

(三)、函数的值域与最值

1、函数的值域取决于定义域和对应法则,不论采用何种方法求函数值域都应先考虑其定义域,求函数值域常用方法如下:

(1)直接法:亦称观察法,对于结构较为简单的函数,可由函数的解析式应用不等式的性质,直接观察得出函数的值域。

(2)换元法:运用代数式或三角换元将所给的复杂函数转化成另一种简单函数再求值域,若函数解析式中含有根式,当根式里一次式时用代数换元,当根式里是二次式时,用三角换元。

(3)反函数法:利用函数f(x)与其反函数f—1(x)的定义域和值域间的关系,通过求反函数的定义域而得到原函数的值域,形如(a≠0)的函数值域可采用此法求得。

(4)配方法:对于二次函数或二次函数有关的函数的值域问题可考虑用配方法。

(5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函数的值域,不过应注意条件“一正二定三相等”有时需用到平方等技巧。

(6)判别式法:把y=f(x)变形为关于x的一元二次方程,利用“△≥0”求值域。其题型特征是解析式中含有根式或分式。

(7)利用函数的单调性求值域:当能确定函数在其定义域上(或某个定义域的子集上)的单调性,可采用单调性法求出函数的值域。

(8)数形结合法求函数的值域:利用函数所表示的几何意义,借助于几何方法或图象,求出函数的值域,即以数形结合求函数的值域。

2、求函数的最值与值域的区别和联系

求函数最值的常用方法和求函数值域的方法基本上是相同的,事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值。因此求函数的最值与值域,其实质是相同的,只是提问的角度不同,因而答题的方式就有所相异。

如函数的值域是(0,16],值是16,无最小值。再如函数的值域是(—∞,—2]∪[2,+∞),但此函数无值和最小值,只有在改变函数定义域后,如x>0时,函数的最小值为2。可见定义域对函数的值域或最值的影响。

3、函数的最值在实际问题中的应用

函数的最值的应用主要体现在用函数知识求解实际问题上,从文字表述上常常表现为“工程造价最低”,“利润”或“面积(体积)(最小)”等诸多现实问题上,求解时要特别关注实际意义对自变量的制约,以便能正确求得最值。

(四)、函数的奇偶性

1、函数的奇偶性的定义:对于函数f(x),如果对于函数定义域内的任意一个x,都有f(—x)=—f(x)(或f(—x)=f(x)),那么函数f(x)就叫做奇函数(或偶函数)。

正确理解奇函数和偶函数的定义,要注意两点:(1)定义域在数轴上关于原点对称是函数f(x)为奇函数或偶函数的必要不充分条件;(2)f(x)=—f(x)或f(—x)=f(x)是定义域上的恒等式。(奇偶性是函数定义域上的整体性质)。

2、奇偶函数的定义是判断函数奇偶性的主要依据。为了便于判断函数的奇偶性,有时需要将函数化简或应用定义的等价形式:

注意如下结论的运用:

(1)不论f(x)是奇函数还是偶函数,f(|x|)总是偶函数;

(2)f(x)、g(x)分别是定义域D1、D2上的奇函数,那么在D1∩D2上,f(x)+g(x)是奇函数,f(x)·g(x)是偶函数,类似地有“奇±奇=奇”“奇×奇=偶”,“偶±偶=偶”“偶×偶=偶”“奇×偶=奇”;

(3)奇偶函数的复合函数的奇偶性通常是偶函数;

(4)奇函数的导函数是偶函数,偶函数的导函数是奇函数。

3、有关奇偶性的几个性质及结论

(1)一个函数为奇函数的充要条件是它的图象关于原点对称;一个函数为偶函数的充要条件是它的图象关于y轴对称。

(2)如要函数的定义域关于原点对称且函数值恒为零,那么它既是奇函数又是偶函数。

(3)若奇函数f(x)在x=0处有意义,则f(0)=0成立。

(4)若f(x)是具有奇偶性的区间单调函数,则奇(偶)函数在正负对称区间上的单调性是相同(反)的。

(5)若f(x)的定义域关于原点对称,则F(x)=f(x)+f(—x)是偶函数,G(x)=f(x)—f(—x)是奇函数。

(6)奇偶性的推广

函数y=f(x)对定义域内的任一x都有f(a+x)=f(a—x),则y=f(x)的图象关于直线x=a对称,即y=f(a+x)为偶函数。函数y=f(x)对定义域内的任—x都有f(a+x)=—f(a—x),则y=f(x)的图象关于点(a,0)成中心对称图形,即y=f(a+x)为奇函数。

学好数学的方法

学好数学第一要养成预习的习惯。这是我多年学习数学的一个好方法,因为提前把老师要讲的知识先学一遍,就知道自己哪里不会,学的时候就有重点。当然,如果完全自学就懂更好了。

第二是书后做练习题。预习完不是目的,有时间可以把例题和课后练习题做了,检查预习情况,如果都会做说明学会了,即使不会还能再听老师讲一遍。

第三个步骤是做老师布置的作业,认真做。做的时候可以把解题过程直接写在题目旁边,比如选择题和填空题,因为解答题有很多空白处可写。这样做的好处就是,老师讲题时能跟上思路,不容易走神。

第四个学好数学的方法是整理错题。每次考试结束后,总会有很多错题,对于这些题目,我们不要以为上课听懂了就会做了,看花容易绣花难,亲手做过了才知道会不会。而且要把错的题目对照书本去看,重新学习知识。

第五个提高数学成绩的方法是查缺补漏。在做了大量习题以后,数学成绩有所提高,但还是存在一些不会做的题目,我们要善于发现哪些类型的题目还存在盲区,然后逐一击破。

下一个方法是提高数学分数段。可能数学学了一段时间,成绩老是上不去,这是要总结差在哪里?基础题还是拔高题,然后对自己提出高要求,基础题目争取不丢分,然后做一些有难度的题目。

第七个数学提分方法是掌握一些数学解题思路。数学很多题目都是有固定的或者是多种解题思想的,大家要善于发现和总结,比如归纳法、分类讨论法等等。

第八个学好数学的方法是“钻”。当遇到难题百思不得其解时,学霸们的做法通常是思考一两天,而学酥的做法则是一扫而过,其中的差别已经很明显了,这也是成绩差异的原因所在。

要想提高数学分数,最明智的做法是,考试遇到不会的题目先放过去,做完其他题目再回过头来重新做难题。但不能连着放过去好几道题目,那就有问题了。

最后一个提分方法就是合理安排答题时间,规定做选择题和大题各多长时间,然后按照既定时间去做,这样才能最有效的提高数学分数。

数学集合知识点

1、集合的含义

2、集合的中元素的三个特性:

(1)元素的确定性如:世界上最高的山

(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}

(3)元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合

3、集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}

(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}

(2)集合的表示方法:列举法与描述法。

注意:常用数集及其记法:

非负整数集(即自然数集)记作:N

正整数集N_或N+整数集Z有理数集Q实数集R

1)列举法:{a,b,c……}

2)描述法:将集合中的元素的公共属性描述出来,写在大

括号内表示集合的方法。{x∈R|x—3>2},{x|x—3>2}

3)语言描述法:例:{不是直角三角形的三角形}

4)Venn图:

4、集合的分类:

(1)有限集含有有限个元素的集合

(2)无限集含有无限个元素的集合

(3)空集不含任何元素的集合例:{x|x2=—5}

数学必修五知识点总结 第30篇

数列:

1.数列的有关概念:

(1)数列:按照一定次序排列的一列数。数列是有序的。数列是定义在自然数N_它的有限子集{1,2,3,…,n}上的函数。

(2)通项公式:数列的第n项an与n之间的函数关系用一个公式来表示,这个公式即是该数列的通项公式。如:。

(3)递推公式:已知数列{an}的第1项(或前几项),且任一项an与他的前一项an-1(或前几项)可以用一个公式来表示,这个公式即是该数列的递推公式。

如:。

2.数列的表示方法:

(1)列举法:如1,3,5,7,9,…(2)图象法:用(n,an)孤立点表示。

(3)解析法:用通项公式表示。(4)递推法:用递推公式表示。

3.数列的分类:

4.数列{an}及前n项和之间的关系:

数学必修五知识点总结 第31篇

一、集合有关概念

1. 集合的含义

2. 集合的中元素的三个特性:

(1) 元素的确定性,

(2) 元素的互异性,

(3) 元素的无序性,

3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}

(1) 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}

(2) 集合的表示方法:列举法与描述法。

? 注意:常用数集及其记法:

非负整数集(即自然数集) 记作:N

正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R

1) 列举法:{a,b,c……}

2) 描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{x?R| x-3>2} ,{x| x-3>2}

3) 语言描述法:例:{不是直角三角形的三角形}

4) Venn图:

4、集合的分类:

(1) 有限集 含有有限个元素的集合

(2) 无限集 含有无限个元素的集合

(3) 空集 不含任何元素的集合 例:{x|x2=-5}

二、集合间的基本关系

1.“包含”关系—子集

注意: 有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A

2.“相等”关系:A=B (5≥5,且5≤5,则5=5)

实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”

即:① 任何一个集合是它本身的子集。A?A

②真子集:如果A?B,且A? B那就说集合A是集合B的真子集,记作A B(或B A)

③如果 A?B, B?C ,那么 A?C

④ 如果A?B 同时 B?A 那么A=B

3. 不含任何元素的集合叫做空集,记为Φ

规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。

有n个元素的集合,含有2n个子集,,2n-1个真子集

三、集合的运算

运算类型 交 集 并 集 补 集

定 义 由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A B(读作‘A交B’),即A B={x|x A,且x B}.

由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:A B(读作‘A并B’),即A B ={x|x A,或x B}).

设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)

四、函数的有关概念

1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.

注意:

1.定义域:能使函数式有意义的实数x的集合称为函数的定义域。

求函数的定义域时列不等式组的主要依据是:

(1)分式的分母不等于零;

(2)偶次xxx的被开方数不小于零;

(3)对数式的真数必须大于零;

(4)指数、对数式的底必须大于零且不等于1.

(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.

(6)指数为零底不可以等于零,

(7)实际问题中的函数的定义域还要保证实际问题有意义.

相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致 (两点必须同时具备)

2.值域 : 先考虑其定义域

(1)观察法

(2)配方法

(3)代换法

3. 函数图象知识归纳

高一数学必修五的知识点总结

数学必修五知识点总结 第32篇

数学必修五知识点归纳

1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.

注意:如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;函数的定义域、值域要写成集合或区间的形式.

定义域补充

能使函数式有意义的实数x的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:

(1)分式的分母不等于零;

(2)偶次xxx的被开方数不小于零;

(3)对数式的真数必须大于零;

(4)指数、对数式的底必须大于零且不等于1.

(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.

(6)指数为零底不可以等于零

2.构成函数的三要素:定义域、对应关系和值域

再注意:

(1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)

(2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。相同函数的判断方法:①表达式相同;②定义域一致(两点必须同时具备)

值域补充

(1)、函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域都应先考虑其定义域.(2).应熟悉掌握一次函数、二次函数、指数、对数函数及各三角函数的值域,它是求解复杂函数值域的基础.(3).求函数值域的常用方法有:直接法、反函数法、换元法、配方法、均值不等式法、判别式法、单调性法等.

3.函数图象知识归纳

(1)定义:在平面直角坐标系中,以函数y=f(x),(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x∈A)的图象.

C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上.即记为C={P(x,y)|y=f(x),x∈A}

图象C一般的是一条光滑的连续曲线(或直线),也可能是由与任意平行与Y轴的直线最多只有一个交点的若干条曲线或离散点组成.

(2)画法

A、描点法:根据函数解析式和定义域,求出x,y的一些对应值并列表,以(x,y)为坐标在坐标系内描出相应的点P(x,y),最后用平滑的曲线将这些点连接起来.

B、图象变换法(请参考必修4三角函数)

常用变换方法有三种,即平移变换、伸缩变换和对称变换

(3)作用:

1、直观的看出函数的性质;2、利用数形结合的方法分析解题的思路。提高解题的速度。

发现解题中的错误。

4.快去了解区间的概念

(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示.

5.什么叫做映射

一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有确定的元素y与之对应,那么就称对应f:AB为从集合A到集合B的一个映射。记作“f:AB”

给定一个集合A到B的映射,如果a∈A,b∈B.且元素a和元素b对应,那么,我们把元素b叫做元素a的象,元素a叫做元素b的原象

说明:函数是一种特殊的映射,映射是一种特殊的对应,①集合A、B及对应法则f是确定的;②对应法则有“方向性”,即强调从集合A到集合B的对应,它与从B到A的对应关系一般是不同的;③对于映射f:A→B来说,则应满足:(Ⅰ)集合A中的每一个元素,在集合B中都有象,并且象是的;(Ⅱ)集合A中不同的元素,在集合B中对应的象可以是同一个;(Ⅲ)不要求集合B中的每一个元素在集合A中都有原象。

常用的函数表示法及各自的优点:

函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等,注意判断一个图形是否是函数图象的依据;解析法:必须注明函数的定义域;图象法:描点法作图要注意:确定函数的定义域;化简函数的解析式;观察函数的特征;列表法:选取的自变量要有代表性,应能反映定义域的特征.

注意啊:解析法:便于算出函数值。列表法:便于查出函数值。图象法:便于量出函数值

补充一:分段函数(参见课本P24-25)

在定义域的不同部分上有不同的解析表达式的函数。在不同的范围里求函数值时必须把自变量代入相应的表达式。分段函数的解析式不能写成几个不同的方程,而就写函数值几种不同的表达式并用一个左大括号括起来,并分别注明各部分的自变量的取值情况.(1)分段函数是一个函数,不要把它误认为是几个函数;(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集.

数学集合间的基本关系知识点

1.“包含”关系—子集

注意:A?B有两种可能(1)A是B的一部分;(2)A与B是同一集合。

反之:集合A不包含于集合B,或集合B不包含集合A,记作A?/B或B?/A

2.“相等”关系:A=B(5≥5,且5≤5,则5=5)

实例:设A={x|x2

-1=0}B={-1,1}“元素相同则两集合相等”即:①任何一个集合是它本身的子集。A?A

②真子集:如果A?B,且A≠B那就说集合A是集合B的真子集,记作AB(或BA)

③如果A?B,B?C,那么A?C

④如果A?B同时B?A那么A=B

3.不含任何元素的集合叫做空集,记为Φ

规定:空集是任何集合的子集,空集是任何非空集合的真子集。

有n个元素的集合,含有2n个子集,2n-1个真子集

二·一般我们把不含任何元素的集合叫做空集。

高中数学快速解题法 7大数学万能解题方法

方法1、在解题的过程中,是一个思维的过程。一些基本的、常见的问题,前人已经总结出了一些基本的解题思路和常用的解题程序,只要顺着这些解题的思路,就可以很容易的找到习题的答案。

方法2、做一道题目时,最重要的就是审题。审题的第一步就是读题。读题时要慢,一边读、一边思考,要特别注意每一句话的内在含义,并从中找出隐含条件。很多人并没有养成这种习惯,结果常常会在做题的时候漏掉一些信息,所以在解题的时候要特别注意审题。

方法3、在做了一定数量的习题后,就会对所涉及到的知识、解题方法有比较清晰的了解。这个时候就需要将这些知识进行归纳总结,以便以后的解题思路更加清晰,达到举一反三的效果,这样做数学题的速度就会大大提升了。

方法4、做题只是学习过程中的一部分,所以不能为了解题而解题。解题时,脑海中的概念越清晰、对公式、定理越熟悉,解题的速度就越快。所以在解题时,应该先回归课本,熟悉基本内容,理解其正确的含义,接着再做后面的练习。

方法5、有些题目,尤其是几何体,一定要学会画图。画图是一个把抽象思维变成形象思维的过程,会大大降低解题的难度。很多题目,只要分析图画出来之后,其中的关系就会变得一目了然。所以学会画图,对于提高解题速度非常重要。

方法6、人对事物的认知总是会有一个从易到难的过程,简单的问题做多了,概念清晰了,对解题的步骤熟悉了,解题时就会形成跳跃思维,解题的速度也会大大的提高。所以在学习时,要根据自己的能力,去解那些看似简单,却比较重要的习题,来不断提高解题速度和解题能力。随着速度和能力的提高,在逐渐的去增加难度,就会事半功倍了。

方法7、习惯很重要,很多同学做题速度慢就是平时做作业的时候习惯了拖延时间,从而导致了不好的解题习惯。所以想要提高做题速度,就要先改变拖沓的习惯。比较有效的方法是限时答题,在平常做作业的时候,给自己规定一个时间,先不管正确率,首先要保证在规定时间内完成数学作业,然后在去改正错误。时间长了之后,自然会改正拖延时间的坏毛病。

数学必修五知识点总结 第33篇

1、在注重基础的同时,又要将高中数学合理分类。分类其实很简单,就是按照课本大章节进行分类即可。高中数学复习过程中,速度快、容量大、方法多,特别是基础不好的同学,会有听了没办法记,记了来不及听的无所适从现象,但是做好笔记又是不容忽视的重要环节,那就应该记关键思路和结论,不要面面俱到,课后整理笔记,因为这也是再学习的过程。

2、再谈做题,做题大家都认为是高三复习的主旋律,其实不是的。不论对于哪种层次的学生,看题思考才是复习数学的主旋律。看高中数学题主要是看你不会做的题,做错的题,尤其是卡住你的那一个步骤。为什么答案中这道题这个步骤这么写,为什么用这个公式。这个公式是从那几个条件确立的,它的出现时为了解决什么问题。这是思考方向。

数学必修五知识点总结 第34篇

(一)解三角形:

1、正弦定理:在中,、、分别为角、、的对边,,则有

(为的外接圆的半径)

2、正弦定理的变形公式:①,,;

②,,;③;

3、三角形面积公式:.

4、余弦定理:在中,有,推论:

(二)数列:

1.数列的有关概念:

(1)数列:按照一定次序排列的一列数。数列是有序的。数列是定义在自然数N_它的有限子集{1,2,3,…,n}上的函数。

(2)通项公式:数列的第n项an与n之间的函数关系用一个公式来表示,这个公式即是该数列的通项公式。如:。

(3)递推公式:已知数列{an}的第1项(或前几项),且任一项an与他的前一项an-1(或前几项)可以用一个公式来表示,这个公式即是该数列的递推公式。

如:。

2.数列的表示方法:

(1)列举法:如1,3,5,7,9,…(2)图象法:用(n,an)孤立点表示。

(3)解析法:用通项公式表示。(4)递推法:用递推公式表示。

3.数列的分类:

4.数列{an}及前n项和之间的关系:

5.等差数列与等比数列对比小结:

数学必修五知识点总结 第35篇

等差数列等比数列

一、定义

二、公式1.

三、性质1.,

称为与的等差中项

2.若(、、、),则

3.,,成等差数列

1.,

称为与的等比中项

2.若(、、、),则

3.,,成等比数列

(三)不等式

1、;;.

2、不等式的性质:①;②;③;

④,;⑤;

⑥;⑦;

小结:代数式的大小比较或证明通常用作差比较法:作差、化积(商)、判断、结论。

在字母比较的选择或填空题中,常采用特值法验证。

数学必修五知识点总结 第36篇

【差数列的基本性质】

⑴公差为d的等差数列,各项同加一数所得数列仍是等差数列,其公差仍为

⑵公差为d的等差数列,各项同乘以常数k所得数列仍是等差数列,其公差为

⑶若{a}、{b}为等差数列,则{a±b}与{ka+b}(k、b为非零常数)也是等差数列.

⑷对任何m、n,在等差数列{a}中有:a=a+(n-m)d,特别地,当m=1时,便得等差数列的通项公式,此式较等差数列的通项公式更具有一般性.

⑸、一般地,如果l,k,p,…,m,n,r,…皆为自然数,且l+k+p+…=m+n+r+…(两边的自然数个数相等),那么当{a}为等差数列时,有:a+a+a+…=a+a+a+….

⑹公差为d的等差数列,从中取出等距离的项,构成一个新数列,此数列仍是等差数列,其公差为kd(k为取出项数之差).

⑺如果{a}是等差数列,公差为d,那么,a,a,…,a、a也是等差数列,其公差为-d;在等差数列{a}中,(其中m、k、)

⑻在等差数列中,从第一项起,每一项(有穷数列末项除外)都是它前后两项的等差中项.

⑼当公差d>0时,等差数列中的数随项数的增大而增大;当d<0时,等差数列中的数随项数的减少而减小;d=0时,等差数列中的数等于一个常数.

⑽设a,a,a为等差数列中的三项,且a与a,a与a的项距差之比=(≠-1),则

⑴数列{a}为等差数列的充要条件是:数列{a}的前n项和S可以写成S=an+bn的形式(其中a、b为常数).

⑵在等差数列{a}中,当项数为2n(nN)时,S-S=nd,=;当项数为(2n-1)(n)时,S-S=a,

⑶若数列{a}为等差数列,则S,S-S,S-S,…仍然成等差数列,公差为.

⑷若两个等差数列{a}、{b}的前n项和分别是S、T(n为奇数),则

⑸在等差数列{a}中,S=a,S=b(n>m),则S=(a-b).

⑹等差数列{a}中,是n的一次函数,且点(n,)均在直线y=x+(a-)上.

⑺记等差数列{a}的前n项和为①若a>0,公差d<0,则当a≥0且a≤0时,S;②若a<0,公差d>0,则当a≤0且a≥0时,S最小.

【等比数列的基本性质】

⑴公比为q的等比数列,从中取出等距离的项,构成一个新数列,此数列仍是等比数列,其公比为q(m为等距离的项数之差).

⑵对任何m、n,在等比数列{a}中有:a=a·q,特别地,当m=1时,便得等比数列的通项公式,此式较等比数列的通项公式更具有普遍性.

⑶一般地,如果t,k,p,…,m,n,r,…皆为自然数,且t+k,p,…,m+…=m+n+r+…(两边的自然数个数相等),那么当{a}为等比数列时,有:……

⑷若{a}是公比为q的等比数列,则{|a|}、{a}、{ka}、{}也是等比数列,其公比分别为|q|}、{q}、{q}、{}.

⑸如果{a}是等比数列,公比为q,那么,a,a,a,…,a,…是以q为公比的等比数列.

⑹如果{a}是等比数列,那么对任意在n,都有a·a=a·q>

⑺两个等比数列各对应项的积组成的数列仍是等比数列,且公比等于这两个数列的公比的积.

⑻当q>1且a>0或00且01时,等比数列为递减数列;当q=1时,等比数列为常数列;当q<0时,等比数列为摆动数列.

高中数学必修五:等比数列前n项和公式S的基本性质

⑴如果数列{a}是公比为q的等比数列,那么,它的前n项和公式是S=

也就是说,公比为q的等比数列的前n项和公式是q的分段函数的一系列函数值,分段的界限是在q=1处.因此,使用等比数列的前n项和公式,必须要弄清公比q是可能等于1还是必不等于1,如果q可能等于1,则需分q=1和q≠1进行讨论.

⑵当已知a,q,n时,用公式S=;当已知a,q,a时,用公式

⑶若S是以q为公比的等比数列,则有S=S+⑵

⑷若数列{a}为等比数列,则S,S-S,S-S,…仍然成等比数列.

⑸若项数为3n的等比数列(q≠-1)前n项和与前n项积分别为S与T,次n项和与次n项积分别为S与T,最后n项和与n项积分别为S与T,则S,S,xxx等比数列,T,T,T亦成等比数列

万能公式:sin2α=2tanα/(1+tan^2α)(注:tan^2α是指tan平方α)

cos2α=(1-tan^2α)/(1+tan^2α)tan2α=2tanα/(1-tan^2α)

升幂公式:1+cosα=2cos^2(α/2)1-cosα=2sin^2(α/2)1±sinα=(sin(α/2)±cos(α/2))^2

降幂公式:cos^2α=(1+cos2α)/2sin^2α=(1-cos2α)/21)sin(2kπ+α)=sinα,cos(2kπ+α)=cosα,tan(2kπ+α)=tanα,cot(2kπ+α)=cotα,其中k∈Z;

(2)sin(-α)=-sinα,cos(-α)=cosα,tan(-α)=-tanα,cot(-α)=-cotα

(3)sin(π+α)=-sinα,cos(π+α)=-cosα,tan(π+α)=tanα,cot(π+α)=cotα

(4)sin(π-α)=sinα,cos(π-α)=-cosα,tan(π-α)=-tanα,cot(π-α)=-cotα

(5)sin(π/2-α)=cosα,cos(π/2-α)=sinα,tan(π/2-α)=cotα,cot(π/2-α)=tanα

(6)sin(π/2+α)=cosα,cos(π/2+α)=-sinα,

tan(π/2+α)=-cotα,cot(π/2+α)=-tanα

(7)sin(3π/2+α)=-cosα,cos(3π/2+α)=sinα,

tan(3π/2+α)=-cotα,cot(3π/2+α)=-tanα

(8)sin(3π/2-α)=-cosα,cos(3π/2-α)=-sinα,

tan(3π/2-α)=cotα,cot(3π/2-α)=tanα(k·π/2±α),其中k∈Z

注意:为方便做题,习惯我们把α看成是一个位于第一象限且小于90°的角;

当k是奇数的时候,等式右边的三角函数发生变化,如sin变成偶数则不变;

用角(k·π/2±α)所在的象限确定等式右边三角函数的正负.例:tan(3π/2+α)=-cotα

∵在这个式子中k=3,是奇数,因此等式右边应变为cot

又,∵角(3π/2+α)在第四象限,tan在第四象限为负值,因此为使等式成立,等式右边应为-cotα.三角函数在各象限中的正负分布

sin:第一第二象限中为正;第三第四象限中为负cos:第一第四象限中为正;第二第三象限中为负cot、tan:第一第三象限中为正;第二第四象限中为负。

数学必修五知识点总结 第37篇

1、数形结合法,由题目条件,作出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。高中数学数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。

2、递推归纳法,通过题目条件进行推理,寻找规律,从而归纳出正确答案的方法。

3、顺推破解法,利用高中数学定理、公式、法则、定义和题意,通过直接演算推理得出结果的方法。

4、逆推验证法将选择支代入题干进行验证,从而否定错误选择支而得出正确选择支的方法。

数学必修五知识点总结 第38篇

1.数列的函数理解:

①数列是一种特殊的函数。其特殊性主要表现在其定义域和值域上。数列可以看作一个定义域为正整数集N_其有限子集{1,2,3,…,n}的函数,其中的{1,2,3,…,n}不能省略。②用函数的观点认识数列是重要的思想方法,一般情况下函数有三种表示方法,数列也不例外,通常也有三种表示方法:a.列表法;b。图像法;c.解析法。其中解析法包括以通项公式给出数列和以递推公式给出数列。③函数不一定有解析式,同样数列也并非都有通项公式。

2.通项公式:数列的第N项an与项的序数n之间的关系可以用一个公式an=f(n)来表示,这个公式就叫做这个数列的通项公式(注:通项公式不)。

数列通项公式的特点:

(1)有些数列的通项公式可以有不同形式,即不。

(2)有些数列没有通项公式(如:素数由小到大xxx一列2,3,5,7,11,...)。

3.递推公式:如果数列{an}的第n项与它前一项或几项的关系可以用一个式子来表示,那么这个公式叫做这个数列的递推公式。

数列递推公式特点:

(1)有些数列的递推公式可以有不同形式,即不。

(2)有些数列没有递推公式。

有递推公式不一定有通项公式。

数学必修五知识点总结 第39篇

1.数列的定义

按一定次序排列的一列数叫做数列,数列中的每一个数都叫做数列的项.

(1)从数列定义可以看出,数列的数是按一定次序排列的,如果组成数列的数相同而排列次序不同,那么它们就不是同一数列,例如数列1,2,3,4,5与数列5,4,3,2,1是不同的数列.

(2)在数列的定义中并没有规定数列中的数必须不同,因此,在同一数列中可以出现多个相同的数字,如:-1的1次幂,2次幂,3次幂,4次幂,…构成数列:-1,1,-1,1,….

(4)数列的项与它的项数是不同的,数列的项是指这个数列中的某一个确定的数,是一个函数值,也就是相当于f(n),而项数是指这个数在数列中的位置序号,它是自变量的值,相当于f(n)中的n.

(5)次序对于数列来讲是十分重要的,有几个相同的数,由于它们的排列次序不同,构成的数列就不是一个相同的数列,显然数列与数集有本质的区别.如:2,3,4,5,6这5个数按不同的次序排列时,就会得到不同的数列,而{2,3,4,5,6}中元素不论按怎样的次序排列都是同一个集合.

2.数列的分类

(1)根据数列的项数多少可以对数列进行分类,分为有穷数列和无穷数列.在写数列时,对于有穷数列,要把末项写出,例如数列1,3,5,7,9,…,2n-1表示有穷数列,如果把数列写成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示无穷数列.

(2)按照项与项之间的大小关系或数列的增减性可以分为以下几类:递增数列、递减数列、摆动数列、常数列.

3.数列的通项公式

数列是按一定次序排列的一列数,其内涵的本质属性是确定这一列数的规律,这个规律通常是用式子f(n)来表示的,

这两个通项公式形式上虽然不同,但表示同一个数列,正像每个函数关系不都能用解析式表达出来一样,也不是每个数列都能写出它的通项公式;有的数列虽然有通项公式,但在形式上,又不一定是的,仅仅知道一个数列前面的有限项,无其他说明,数列是不能确定的,通项公式更非.如:数列1,2,3,4,…,

由公式写出的后续项就不一样了,因此,通项公式的归纳不仅要看它的前几项,更要依据数列的构成规律,多观察分析,真正找到数列的内在规律,由数列前几项写出其通项公式,没有通用的方法可循.

再强调对于数列通项公式的理解注意以下几点:

(1)数列的通项公式实际上是一个以正整数集N_或它的有限子集{1,2,…,n}为定义域的函数的表达式.

(2)如果知道了数列的通项公式,那么依次用1,2,3,…去替代公式中的n就可以求出这个数列的各项;同时,用数列的通项公式也可判断某数是否是某数列中的一项,如果是的话,是第几项.

(3)如所有的函数关系不一定都有解析式一样,并不是所有的数列都有通项公式.

如2的不足近似值,精确到1,,,, 1,…所构成的数列1,,,, 2,…就没有通项公式.

(4)有的数列的通项公式,形式上不一定是的,正如举例中的:

(5)有些数列,只给出它的前几项,并没有给出它的构成规律,那么仅由前面几项归纳出的数列通项公式并不.

数学必修五知识点总结 第40篇

【不等关系及不等式】

一、不等关系及不等式知识点

1.不等式的定义

在客观世界中,量与量之间的不等关系是普遍存在的,我们用数学符号、、连接两个数或代数式以表示它们之间的.不等关系,含有这些不等号的式子,叫做不等式.

2.比较两个实数的大小

两个实数的大小是用实数的运算性质来定义的,有a-baa-b=0a-ba0,则有a/baa/b=1a/ba

3.不等式的性质

(1)对称性:ab

(2)传递性:ab,ba

(3)可加性:aa+cb+c,ab,ca+c

(4)可乘性:ab,cacb0,c0bd;

(5)可乘方:a0bn(nN,n

(6)可开方:a0

(nN,n2).

注意:

一个技巧

作差法变形的技巧:作差法中变形是关键,常进行因式分解或配方.

一种方法

待定系数法:求代数式的范围时,先用已知的代数式表示目标式,再利用多项式相等的法则求出参数,最后利用不等式的性质求出目标式的范围.

数学必修五知识点总结 第41篇

【差数列的基本性质】

⑴公差为d的等差数列,各项同加一数所得数列仍是等差数列,其公差仍为d。

⑵公差为d的等差数列,各项同乘以常数k所得数列仍是等差数列,其公差为kd。

⑶若{a}、{b}为等差数列,则{a±b}与{ka+b}(k、b为非零常数)也是等差数列。

⑷对任何m、n,在等差数列{a}中有:a=a+(n—m)d,特别地,当m=1时,便得等差数列的通项公式,此式较等差数列的通项公式更具有一般性、

⑸、一般地,如果l,k,p,…,m,n,r,…皆为自然数,且l+k+p+…=m+n+r+…(两边的自然数个数相等),那么当{a}为等差数列时,有:a+a+a+…=a+a+a+…。

⑹公差为d的等差数列,从中取出等距离的项,构成一个新数列,此数列仍是等差数列,其公差为kd(k为取出项数之差)。

⑺如果{a}是等差数列,公差为d,那么,a,a,…,a、a也是等差数列,其公差为—d;在等差数列{a}中,a—a=a—a=md、(其中m、k、)

⑻在等差数列中,从第一项起,每一项(有穷数列末项除外)都是它前后两项的等差中项。

⑼当公差d>0时,等差数列中的数随项数的增大而增大;当d<0时,等差数列中的数随项数的减少而减小;d=0时,等差数列中的数等于一个常数。

⑽设a,a,a为等差数列中的三项,且a与a,a与a的项距差之比=(≠—1),则a=。

【等差数列前n项和公式S的基本性质】

⑴数列{a}为等差数列的充要条件是:数列{a}的前n项和S可以写成S=an+bn的形式(其中a、b为常数)。

⑵在等差数列{a}中,当项数为2n(nN)时,S—S=nd,=;当项数为(2n—1)(n)时,S—S=a,=。

⑶若数列{a}为等差数列,则S,S—S,S—S,…仍然成等差数列,公差为、

⑷若两个等差数列{a}、{b}的前n项和分别是S、T(n为奇数),则=。

⑸在等差数列{a}中,S=a,S=b(n>m),则S=(a—b)。

⑹等差数列{a}中,是n的一次函数,且点(n,)均在直线y=x+(a—)上。

⑺记等差数列{a}的前n项和为S、①若a>0,公差d<0,则当a≥0且a≤0时,S;②若a0,则当a≤0且a≥0时,S最小。

【等比数列的基本性质】

⑴公比为q的等比数列,从中取出等距离的项,构成一个新数列,此数列仍是等比数列,其公比为q(m为等距离的项数之差)。

⑵对任何m、n,在等比数列{a}中有:a=a·q,特别地,当m=1时,便得等比数列的通项公式,此式较等比数列的通项公式更具有普遍性。

⑶一般地,如果t,k,p,…,m,n,r,…皆为自然数,且t+k,p,…,m+…=m+n+r+…(两边的自然数个数相等),那么当{a}为等比数列时,有:a、a、a、…=a、a、a、…。

⑷若{a}是公比为q的等比数列,则{|a|}、{a}、{ka}、{}也是等比数列,其公比分别为|q|}、{q}、{q}、{}。

⑸如果{a}是等比数列,公比为q,那么,a,a,a,…,a,…是以q为公比的等比数列。

⑹如果{a}是等比数列,那么对任意在n,都有a·a=a·q>0。

⑺两个等比数列各对应项的积组成的数列仍是等比数列,且公比等于这两个数列的公比的积。

⑻当q>1且a>0或00且01时,等比数列为递减数列;当q=1时,等比数列为常数列;当q<0时,等比数列为摆动数列。

【集合】

一、集合有关概念

1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。

2、集合的中元素的三个特性:

1、元素的确定性;2、元素的互异性;3、元素的无序性

说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。

(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。

(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。

(4)集合元素的三个特性使集合本身具有了确定性和整体性。

3、集合的表示:{}如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}

1、用拉丁字母表示集合:A={我校的篮球队员},B ={1,2,3,4,5}

2、集合的表示方法:列举法与描述法。

注意啊:常用数集及其记法:

非负整数集(即自然数集)记作:N

正整数集N或N+整数集Z有理数集Q实数集R

关于属于的概念

集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A记作aA,相反,a不属于集合A记作a?A

列举法:把集合中的元素一一列举出来,然后用一个大括号括上、

描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法、用确定的条件表示某些对象是否属于这个集合的方法。

①语言描述法:例:{不是直角三角形的三角形}

②数学式子描述法:例:不等式x—32的解集是{x?R|x—32}或{x|x—32}

4、集合的分类:

1、有限集含有有限个元素的集合

2、无限集含有无限个元素的集合

3、空集不含任何元素的集合例:{x|x2=—5}

二、集合间的基本关系

1、包含关系子集

注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA

2、相等关系(55,且55,则5=5)

实例:设A={x|x2—1=0}B={—1,1}元素相同

结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B

①任何一个集合是它本身的子集、AA

②真子集:如果AB,且A1B那就说集合A是集合B的真子集,记作AB(或BA)

③如果AB,BC,那么AC

④如果AB同时BA那么A=B

3、不含任何元素的集合叫做空集,记为

规定:空集是任何集合的子集,空集是任何非空集合的真子集、

三、集合的运算

1、交集的定义:一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集。

记作AB(读作A交B),即AB={x|xA,且xB}、

2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集、记作:AB(读作A并B),即AB={x|xA,或xB}、

3、交集与并集的性质:AA=A,A=,AB=BA,AA=A,A=A,AB=BA。

4、全集与补集

(1)补集:设S是一个集合,A是S的一个子集(即),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)

(2)全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集、通常用xxx表示。

(3)性质:⑴CU(CUA)=A⑵(CUA)⑶(CUA)A=U

【立体几何】

柱、锥、台、球的结构特征

定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱。

几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等

表示:用各顶点字母,如五棱锥

几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分。

分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等

表示:用各顶点字母,如五棱台

几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点

定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体。

几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体。

几何特征:①底面是一个圆;②母线交于圆锥的。顶点;③侧面展开图是一个扇形。

定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分

几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

定义:以半圆的直径所在直线为旋转轴,半圆面旋转一xxx的几何体

几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。

NO、2空间几何体的三视图

定义三视图

定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)

注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;

俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;

侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。

NO、3空间几何体的直观图——斜二测画法

斜二测画法

斜二测画法特点

①原来与x轴平行的线段仍然与x平行且长度不变;

②原来与y轴平行的线段仍然与y平行,长度为原来的一半。

直线与方程

直线的倾斜角

定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180°

直线的斜率

定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率xxx表示。即。斜率反映直线与轴的倾斜程度。

过两点的直线的斜率公式:

(注意下面四点)

(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;

(2)k与P1、P2的顺序无关;

(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;

(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。

幂函数

形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。

定义域和值域

当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。当x为不同的数值时,幂函数的值域的不同情况如下:在x大于0时,函数的值域总是大于0的实数。在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。而只有a为正数,0才进入函数的值域

对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:

首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。当指数n是负整数时,设a=—k,则x=1/(x^k),显然x≠0,函数的定义域是(—∞,0)∪(0,+∞)、因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:

排除了为0与负数两种可能,即对于x>0,则a可以是任意实数;

排除了为0这种可能,即对于x0的所有实数,q不能是偶数;

排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。

指数函数

指数函数

(1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。

(2)指数函数的值域为大于0的实数集合。

(3)函数图形都是下凹的。

(4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。

(5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。

(6)函数总是在某一个方向上无限趋向于X轴,永不相交。

(7)函数总是通过(0,1)这点。

(8)显然指数函数无界。

奇偶性

一般地,对于函数f(x)

(1)如果对于函数定义域内的任意一个x,都有f(—x)=—f(x),那么函数f(x)就叫做奇函数。

(2)如果对于函数定义域内的任意一个x,都有f(—x)=f(x),那么函数f(x)就叫做偶函数。

(3)如果对于函数定义域内的任意一个x,f(—x)=—f(x)与f(—x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。

(4)如果对于函数定义域内的任意一个x,f(—x)=—f(x)与f(—x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。

数学必修五知识点总结 第42篇

必修五第二章数学知识点总结

1.数列概念

①数列是一种特殊的函数。其特殊性主要表现在其定义域和值域上。数列可以看作一个定义域为正整数集Nx或其有限子集{1,2,3,…,n}的函数,其中的{1,2,3,…,n}不能省略。

②用函数的观点认识数列是重要的思想方法,一般情况下函数有三种表示方法,数列也不例外,通常也有三种表示方法:a.列表法;b。图像法;c.解析法。其中解析法包括以通项公式给出数列和以递推公式给出数列。

③函数不一定有解析式,同样数列也并非都有通项公式。

等差数列

1.等差数列通项公式

an=a1+(n-1)d

n=1时a1=S1

n≥2时an=Sn-Sn-1

an=kn+b(k,b为常数)推导过程:an=dn+a1-d令d=k,a1-d=b则得到an=kn+b

2.等差中项

由三个数a,A,xxx的等差数列可以堪称最简单的等差数列。这时,A叫做a与b的等差中项(arithmeticmean)。

有关系:A=(a+b)÷2

3.前n项和

倒序相加法推导前n项和公式:

Sn=a1+a2+a3+xxx··+an

=a1+(a1+d)+(a1+2d)+xxxxxx+[a1+(n-1)d]①

Sn=an+an-1+an-2+xxxxxx+a1

=an+(an-d)+(an-2d)+xxxxxx+[an-(n-1)d]②

由①+②得2Sn=(a1+an)+(a1+an)+xxxxxx+(a1+an)(n个)=n(a1+an)

∴Sn=n(a1+an)÷2

等差数列的前n项和等于首末两项的和与项数乘积的一半:

Sn=n(a1+an)÷2=na1+n(n-1)d÷2

Sn=dn2÷2+n(a1-d÷2)

亦可得

a1=2sn÷n-an=[sn-n(n-1)d÷2]÷n

an=2sn÷n-a1

有趣的是S2n-1=(2n-1)an,S2n+1=(2n+1)an+1

4.等差数列性质

一、任意两项am,an的关系为:

an=am+(n-m)d

它可以看作等差数列广义的通项公式。

二、从等差数列的定义、通项公式,前n项和公式还可推出:

a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈Nx

三、若m,n,p,q∈Nx,且m+n=p+q,则有am+an=ap+aq

四、对任意的k∈Nx,有

Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…成等差数列。

等比数列

1.等比中项

如果在a与b中间插入一个数G,使a,G,xxx等比数列,那么G叫做a与b的等比中项。

有关系:

注:两个非零同号的实数的等比中项有两个,它们互为相反数,所以G2=ab是a,G,b三数成等比数列的必要不充分条件。

2.等比数列通项公式

an=a1xq’(n-1)(其中首项是a1,公比是q)

an=Sn-S(n-1)(n≥2)

前n项和

当q≠1时,等比数列的前n项和的公式为

Sn=a1(1-q’n)/(1-q)=(a1-a1xq’n)/(1-q)(q≠1)

当q=1时,等比数列的前n项和的公式为

Sn=na1

3.等比数列前n项和与通项的关系

an=a1=s1(n=1)

an=sn-s(n-1)(n≥2)

4.等比数列性质

(1)若m、n、p、q∈Nx,且m+n=p+q,则am·an=ap·aq;

(2)在等比数列中,依次每k项之和xxx等比数列。

(3)从等比数列的定义、通项公式、前n项和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}

(4)等比中项:q、r、xxx等比数列,则aq·ap=ar2,ar则为ap,aq等比中项。

记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1

另外,一个各项均为正数的等比数列各项取同底指数幂后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。

(5)等比数列前n项之和Sn=a1(1-q’n)/(1-q)

(6)任意两项am,an的关系为an=am·q’(n-m)

(7)在等比数列中,首项a1与公比q都不为零。

注意:上述公式中a’n表示a的n次方。

数学三角形斜边计算公式

斜边是指直角三角形中最长的那条边,也指不是构成直角的那条边。在勾股定理中,斜边称作“弦”。

三角形斜边长等于根号下两直角边的平方和,即斜边c=√(a^2+b^2)

解答过程如下:

(1)在直角三角形中满足勾股定理—在平面上的一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方。数学表达式:a²+b²=c²

(2)a²+b²=c²求c,因为c是一条边,所以就是求大于0的一个根。即c=√(a²+b²)。

在几何中,斜边是直角三角形的最长边,与直角相对。 直角三角形的斜边的长度可以使用xxx拉斯定理找到,该定理表示斜边长度的平方等于另外两边长度的平方和。 例如,如果其中一方的长度为3(平方,9),另一方的长度为4(平方,16),那么它们的正方形加起来为25。斜边的长度为平xxx25,即5。

提高数学成绩的窍门是什么

找漏洞

学生如何找自己学科上的漏洞呢?主要就是要在预习时找漏洞。上课学生的学习目标明确,注意力才会集中,听课效率才会高。除了预习,做题 也是一种很好的找漏洞的方式。

多做题不等于提高分数,只有多补漏洞,才能提高分数

题目千千万,我们是做不完的。做题的是为了掌握、巩固知识点,如果已经掌握了,就没有必要再做了。学生应该把时间放在补漏洞上,预习也要引起高度重视。

不要轻易放过一道错题

对于学生错误的习题,教师会讲评一遍,学生更正一遍之后就了事,但这种态度是不正确的。从哪里倒下就在哪里爬起来,“错题是个宝,天天少不了,每天都在找,积累为大考。”这就要求学生反思三点,一、问题到底出在哪里?二、产生错误的根本是什么?三、如何做才能避免下次犯同样的错误?如果每道错题都利用好的,还怕成绩不能提高吗?

落实的关键是检测和重复

落实就是硬道理。看自己补漏洞的效果如何最好的方式就是检测,多次检测没有问题了,那么这个漏洞就不上了。补漏洞也不是一次、两次就能解决,需要一定的重复。

既要“亡羊补牢”,更要“未雨绸缪”

考试后,教师逐题分析错题、失分原因——找漏洞;制定切实有效的改进措施——想办法;有针对性地加强专项训练——补漏洞。有时“亡羊补牢”已经晚了,我们更应该“未雨绸缪”。每天把学习上的问题记录下来并解决落实好。考前的模拟测试,也是一个好办法。

数学必修五知识点总结 第43篇

⑴公差为d的等差数列,各项同加一数所得数列仍是等差数列,其公差仍为d。

⑵公差为d的等差数列,各项同乘以常数k所得数列仍是等差数列,其公差为kd。

⑶若{a}、{b}为等差数列,则{a±b}与{ka+b}(k、b为非零常数)也是等差数列。

⑷对任何m、n,在等差数列{a}中有:a=a+(n—m)d,特别地,当m=1时,便得等差数列的通项公式,此式较等差数列的通项公式更具有一般性。

⑸、一般地,如果l,k,p,…,m,n,r,…皆为自然数,且l+k+p+…=m+n+r+…(两边的自然数个数相等),那么当{a}为等差数列时,有:a+a+a+…=a+a+a+…。

⑹公差为d的等差数列,从中取出等距离的项,构成一个新数列,此数列仍是等差数列,其公差为kd(k为取出项数之差)。

⑺如果{a}是等差数列,公差为d,那么,a,a,…,a、a也是等差数列,其公差为—d;在等差数列{a}中,a—a=a—a=md。(其中m、k、)

⑻在等差数列中,从第一项起,每一项(有穷数列末项除外)都是它前后两项的等差中项。

⑼当公差d>0时,等差数列中的数随项数的增大而增大;当d<0时,等差数列中的数随项数的减少而减小;d=0时,等差数列中的数等于一个常数。

⑽设a,a,a为等差数列中的三项,且a与a,a与a的项距差之比=(≠—1),则a=。

⑴数列{a}为等差数列的充要条件是:数列{a}的前n项和S可以写成S=an+bn的形式(其中a、b为常数)。

⑵在等差数列{a}中,当项数为2n(nN)时,S—S=nd,=;当项数为(2n—1)(n)时,S—S=a,=。

⑶若数列{a}为等差数列,则S,S—S,S—S,…仍然成等差数列,公差为。

⑷若两个等差数列{a}、{b}的前n项和分别是S、T(n为奇数),则=。

⑸在等差数列{a}中,S=a,S=b(n>m),则S=(a—b)。

⑹等差数列{a}中,是n的一次函数,且点(n,)均在直线y=x+(a—)上。

⑺记等差数列{a}的前n项和为S。①若a>0,公差d<0,则当a≥0且a≤0时,S;②若a<0,公差d>0,则当a≤0且a≥0时,S最小。