榆树范文网

小学数学知识点总结大全(推荐33篇)

126

小学数学知识点总结大全 第1篇

1、上、下

(1)在具体场景中理解上、下的含义及其相对性。

(2)能比较准确地确定物体上下的方位,会用上、下描述物体的相对位置。

(3)培养学生初步的空间观念。

2、前、后

(1)在具体场景中理解前、后、最×的含义,以及前后的相对性。

(2)能比较准确地确定物体前后的方位,会用前、后、最前、最后描述物体的相对位置。

(3)培养学生初步的空间观念。

加减法

(二)各课知识点:

有几枝铅笔(加法的认识)

知识点:

1、初步了解加法的含义,会读、写加法算式,感悟把两个数合并在一起求一共是多少,用加法计算;

2、初步尝试选择恰当的方法进行5以内的加法口算。

3、第一次出现了图形应用题,要让学生学会看图形应用型题目,理解题目的意思。

有几辆车(初步认识加法的交换律)

3、左、右(1)在具体场景中理解左、右的含义及其相对性。

(2)能比较准确地确定物体左右的方位,会用左、右描述物体的位置。

(3)培养学生初步的空间观念。

4、位置

(1)明确“横为行、竖为列”,并知道“第几行第几个”、“第几组第几个”的含义。

(2)在具体情境中,会用2个数据(2个维度)描述人或物体的具体位置。

(3)在具体情境中,能依据2个维度的数据找到人或物体的具体位置。

小学数学知识点总结大全 第2篇

一、认识数

(一)、有趣的“0”“一年级0”可以表示没有,“0”可以参加计算,“0”在数中起到占位作用,“0”可以表示起点,表示0度。

(二)、基数与序数表示物体的多少时,用的是基数;表示物体排列的次序时,用的是序数。基数与序数不同,基数表示物体的多少,序数表示物体的排列次序。

二、数一数

(一)、数简单图形数零乱放置的物体或数某一类图形的个数时,应先将所有物体依次标上序号,可以按照序号,顺序观察,数准指定的图形。注意对于同一个物体,从不同的角度去观察,观察的结果也会不同。因此在数简单图形时,要善于从不同的角度观察问题、分析问题。

(二)、数复杂图形数复杂图形时可以按大小分类来数。

(三)、数数按条件的要求去数。

三、比较数列

比一比当比较的2个对象整齐的排列时,很容易采用连线比的方法比较出谁多谁少。如果比较的2个对象是杂乱排列的,可以通过数数目的方法进行比较。也可以采用分段比的方法。

四、动手做

(一)、摆一摆要善于寻找不同的方法。

(二)、xxx移

五、找规律

(一)、图形变化的规律观察图形的变化,可以从图形的形状、位置、方向、数量、大小、颜色等方面入手,从中寻找规律。

(二)、数列的规律数列就是按一定规律排成的一列数。怎样寻找已知数列的规律,并按规律填出指定的某个数是解题的关键。

(三)、数表的规律把一些数按照一定的规律,填在一个图形固定的位置上,再把按照这一规律填出的图形排列起来。从给出的图形中寻找规律,按照规律填图是解题的关键。

六、填一填

(一)、填数字给出的算式是一组,不同算式中相同图形中所填的数字是相同的。在做这些题时,不要为只填出一个答案而满足,应找出所有的答案。如果不必要一一列出时,应给以说明,这才是完整、正确的解答。

(二)、填符号比较2个数的大小,首先要比较2个数的位数,位数多的数大;其次,当2个数的位数相同时,从高位比起,相同数位上的数大的那个数就大。当2个数各个相同数位上的数都分别相同时,这2个数相等。

七、比较2个算式的大小的方法是:

(1)同一个数分别加上(或减去)1个相等的数,所得的结果相等;

(2)同一个数分别加上2个不同的数,所加的哪个数大,那个算式的结果就大;

(3)同一个数分别减去2个不同的数,所减的哪个数小,那个算式的结果就大;

(4)2个不同的数减去同一个数,哪个被减数大,那个算式的结果就大。七、说道理做数学题,每一步都要有理由,要把道理想清楚,说出来。

八、总结

应用题一道简单的应用题,是由已知条件和所求问题组成的。一般先说题意,再列算式。

小学数学知识点总结大全 第3篇

1.认识人民币的单位元、角、分和它们的十进关系,认识各种面值的人民币,能看懂物品的单价,会进行简单的计算。

2.结合自己的生活经验和已经掌握的xxx以内数的知识,学习、认识人民币,一方面初步知道人民币的基本知识和懂得如何使用人民币,提高社会实践能力;另一方面加深对xxx以内数的概念的理解。

3.体会数概念与现实生活的密切联系。

4.认识各种面值的人民币,并会进行简单的计算。

5.使学生认识人民币的单位元、角、分,知道1元=10角,1角=10分。

6.通过购物活动,使学生初步体会人民币在社会生活、商品交换中的功能和作用并知道爱护人民币。

小学数学知识点总结大全 第4篇

1、用竖式计算两位数加法时:①相同数位对齐,加号写在高位下行之前。

②用尺子画横线。

③从个位加起

④如果个位满10,向十位进1,写在个位、十位之间,

不进位不写1

用竖式计算两位数减法时:①相同数位对齐,减号写在高位下行之前。

②用尺子画横线。

③从个位减起

④如果个位不够减,从十位退1,到个位作10再减(借一要在头上写点),计算时十位要记得减去退掉的1。不借位不写点

⑤得数写在横式上

2、估算:把一个接近整十整百的数看作整十整百来计算。

方法:个位小于5的少看,个位等于或大于5的多看,看成最为接近的整十或整百数。“四舍五入”

如:49+42≈9028+45+24≈xxx98—17≈80

50 4030 50 20xxx 20更深一步的估计是能够估出比80大

注:当问题里出现“大约”两个字时,就需要估算。

3、求“一个已知数”比“另一个已知数”多多少、少多少?用减法计算,用“比”字两边的较大数减去较小数。

4、多几、少几已知的问题。比谁少几,就用谁减去几;未知数比谁多几,就用谁加上几。

方法:①根据已知,判断出与要求的未知,谁多谁少②求多的用加法,求少的用减法

基数和序数的区别

一、意思不同

基数是集合论中刻画任意集合大小的一个概念。两个能够建立元素间一一对应的集合称为互相对等集合。例如3个人的集合和3匹马的集合可以建立一一对应,是两个对等的集合。序数是在基数的基础上再增加一层意思。

二、用处不同

基数可以比较大小,可以进行运算。

例如:

设|A|=a,|B|=β,定义a+β=|{(a,0):a∈A}∪{(b,1):b∈B}|。另,a与β的积规定为|AxB|,A×B为A与B的笛卡儿积。

序数,汉语表示序数的方法较多。通常是在整数前加“第”,如:第一,第二。也有单用基数的。如:五行:一曰水,二曰火,三曰木,四曰金,五曰土。

三、写法

基数:1、2、3

序数:第1、第2、第3

数与计算知识点

1、分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。

2、分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。但分子分母不能为零。

3、分数乘法意义分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。一个数与分数相乘,可以看作是求这个数的几分之几是多少。

4、分数乘整数:数形结合、转化化归

5、倒数:乘积是1的两个数叫做互为倒数。

小学数学知识点总结大全 第5篇

一生活中的数

(二)各课知识点:

可爱的校园(数数)

知识点:

1、按一定顺序手口一致地数出每种物体的个数。

2、能用1-10各数正确地表述物体的数量。

快乐的家园(10以内数的认识)

知识点:

1、能形象理解数“1”既可以表示单个物体,也可以表示一个集合。

2、在数数过程中认识1-10数的符号表示方法。

3、理解1~10各数除了表示几个,还可以表示第几个,从而认识基数与序数的联系与区别:基数表示数量的多少,序数表示数量的顺序。

玩具(1~5的认识与书写)

知识点:

1、能正确数出5以内物体的个数。

2、会正确书写1-5的数字。

小猫钓鱼(0的认识)

知识点:

1、认识“0”的产生,理解“0”的含义,0即可以表示一个物体也没有,也可以表示起点和分界点。

2、学会读、写“0”。

文具(6~10的认识与书写)

知识点:

1、能正确数出数量是6-10的物体的个数。

2、会读写6—10的数字。

小学数学知识点总结大全 第6篇

时分秒

1、xxx有3根针,它们是(时针)、(分针)、(秒针),其中走得最快的是(秒针),走得最慢的是(时针)。

2、xxx有(12)个数字,(12)个大格,(60)个小格;每两个数间是(1)个大格,也就是(5)个小格。

3、时针走1大格是(1)小时;分针走1大格是(5)分钟,走1小格是( 1)分钟;秒针走1大格是(5)秒钟,走1小格是(1)秒钟。

4、时针走1大格,分针正好走(1)圈,分针走1圈是(60)分,也就是(1)小时。时针走1圈,分针要走(12)圈。

5、分针走1小格,秒针正好走(1)圈,秒针走1圈是(60)秒,也就是(1)分钟。

6、时针从一个数走到下一个数是(1小时)。分针从一个数走到下一个数是(5分钟)。秒针从一个数走到下一个数是(5秒钟)。

7、xxx时针和分针正好成直角的时间有:(3点整)、(9点整)。

8、公式。(每两个相邻的时间单位之间的进率是60)

1时=60分1分=60秒

半时=30分60分=1时

60秒=1分30分=半时

万以内的加法和减法

1、认识整千数(记忆:10个一千是一万)

2、读数和写数(读数时写汉字写数时写阿拉伯数字)

①一个数的末尾不管有一个0或几个0,这个0都不读。

②一个数的中间有一个0或连续的两个0,都只读一个0。

3、数的大小比较:

①位数不同的数比较大小,位数多的数大。

②位数相同的数比较大小,先比较这两个数的最高位上的数,如果最高位上的数相同,就比较下一位,以此类推。

4、求一个数的近似数:

记忆:看最位的后面一位,如果是0-4则用四舍法,如果是5-9就用五入法。

最大的三位数是位999,最小的三位数是xxx,最大的四位数是9999,最小的四位数是xxx0。最大的三位数比最小的四位数小1。

5、被减数是三位数的连续退位减法的运算步骤:

①列竖式时相同数位一定要对齐;

②减法时,哪一位上的数不够减,从前一位退1;如果前一位是0,则再从前一位退1。

6、在做题时,我们要注意中间的0,因为是连续退位的,所以从百位退1到十位当10后,还要从十位退1当10,借给个位,那么十位只剩下9,而不是10。(两个三位数相加的和:可能是三位数,也有可能是四位数。)

7、公式

和=加数+另一个加数

加数=和-另一个加数

减数=被减数-差

被减数=减数+差

差=被减数-减数

1、在生活中,量比较短的物品,可以用(毫米、厘米、分米)做单位;量比较长的物体,常用(米)做单位;测量比较长的路程一般用(千米)做单位,千米也叫(公里)。

2、1厘米的长度里有(10)小格,每小格的长度(相等),都是(1)毫米。

3、1枚1分的硬币、尺子、磁卡、小纽扣、钥匙的厚度大约是1毫米。

4、在计算长度时,只有相同的长度单位才能相加减。

小技巧:换算长度单位时,把大单位换成小单位就在数字的末尾添加0(关系式中有几个0,就添几个0);把小单位换成大单位就在数字的末尾去掉0(关系式中有几个0,就去掉几个0)。

5、长度单位的关系式有:(每两个相邻的长度单位之间的进率是10 )

①进率是10:

1米=10分米, 1分米=10厘米,

1厘米=10毫米, 10分米=1米,

10厘米=1分米, 10毫米=1厘米,

②进率是xxx:

1米=xxx厘米, 1分米=xxx毫米,

xxx厘米=1米, xxx毫米=1分米

③进率是xxx0:

1千米=xxx0米, 1公里==xxx0米,

xxx0米=1千米, xxx0米=1公里

6、当我们表示物体有多重时,通常要用到(质量单位)。在生活中,称比较轻的物品的质量,可以用(克)做单位;称一般物品的质量,常用(千克)做单位;计量较重的或大宗物品的质量,通常用(吨)做单位。

小技巧:在“吨”与“千克”的换算中,把吨换算成千克,是在数字的末尾加上3个0;

把千克换算成吨,是在数字的末尾去掉3个0。

7、相邻两个质量单位进率是xxx0。

1吨=xxx0千克1千克=xxx0克

xxx0千克= 1吨xxx0克=1千克

倍的认识

1、求一个数是另一个数的几倍用除法:一个数÷另一个数=倍数

2、求一个数的几倍是多少用乘法:这个数×倍数=这个数的几倍

多位数乘一位数

1、估算。(先求出多位数的近似数,再进行计算。如497×7≈3500)

2、① 0和任何数相乘都得0;② 1和任何不是0的数相乘还得原来的数。

3、因数末尾有几个0,就在积的末尾添上几个0。

4、三位数乘一位数:积有可能是三位数,也有可能是四位数。

公式:速度×时间=路程

每节车厢的人数×车厢的数量=全车的人数

5、(关于“大约)应用题:

①条件中出现“大约”,而问题中没有“大约”,求准确数。→(=)

②条件中没有,而问题中出现“大约”。求近似数,用估算。→(≈)

③条件和问题中都有“大约”,求近似数,用估算。→(≈)

四边形

1、有4条直的边和4个角封闭图形我们叫它四边形。

2、四边形的特点:有四条直的边,有四个角。

3、长方形的特点:长方形有两条长,两条宽,四个直角,对边相等。

4、正方形的特点:有4个直角,4条边相等。

5、长方形和正方形是特殊的平行四边形。

6、平行四边形的特点:

①对边相等、对角相等。

②平行四边形容易变形。(三角形不容易变形)

7、封闭图形一周的长度,就是它的周长。

8、公式。

正方形的周长=边长×4

正方形的边长=周长÷4,

长方形的周长=(长+宽)×2

长方形的长=周长÷2-宽,

长方形的宽=周长÷2-长

分数的初步认识

1、把一个物体或一个图形平均分成几份,取其中的几份,就是这个物体或图形的几分之几。

2、把一个整体平均分得的份数越多,它的每一份所表示的数就越小。

3、①分子相同,分母小的分数反而大,分母大的分数反而小。

②分母相同,分子大的分数就大,分子小的分数就小。

4、①相同分母的分数相加、减:分母不变,只和分子相加、减。

② 1与分数相减:1可以看作是与减数分母相同的,同分子分母的分数。

小学数学知识点总结大全 第7篇

(一)口算除法

1、整十数除整十数或几百几十的数的口算方法。

(1)算除法,想乘法;比如60÷30=( )就可以想(2)×30=60

(2)利用表内除法计算。利用除法运算的性质:将被除数和除数同时扩大或缩小相同的倍数,商不变。如:200÷50想20÷5=4,所以200÷50=4。

2、两位数除两位数或三位数的估算方法:除法估算一般是把算式中不是整十数或几百几十的数用“四舍五入”法估算成整十数或几百几十的数,再进行口算。注意结果用“≈”号。

(二)笔算除法

1、除数是两位数的笔算除法计算方法:从被除数的高位除起,先用除数试除被除数的前两位,如果前两位数比除数小,就看前三位。除到被除数的哪一位,商就写在那一位的上面。每次除后余下的数必须比除数小。

2、除数不是整十数的两位数的除法的试商方法:如果除数是一个接近整十数的两位数,就用“四舍五入”法把除数看做与它接近的整十数试商,也可以把除数看做与它接近的几十五,再利用一位数的乘法直接确定商。

3、商一位数:

(1)两位数除以整十数,如:62÷30;

(2)三位数除以整十数,如:364÷70

(3)两位数除以两位数,如:90÷29(把29看做30来试商)

(4)三位数除以两位数,如:324÷81(把81看做80来试商)

(5)三位数除以两位数,如:104÷26(把26看做25来试商)

(6)同头无除商八、九,如:404÷42(被除数的位和除数的位一样,即“同头”,被除数的前两位除以除数不够除,即“无除”,不是商8就是商9。)

(7)除数折半商四五,如:252÷48(除数48的一半24,和被除数的前两位25很接近,不是商4就是商5。)

4、商两位数:(三位数除以两位数)

(1)前两位有xxx,如:576÷18

(2)前两位没有xxx,如:930÷31

5、判断商的位数的方法:

被除数的前两位除以除数不够除,商是一位数;被除数的前两位除以除数够除,商是两位数。

(三)商的变化规律

1、商变化:

(1)被除数不变,除数乘(或除以)几(0除外),商就除以(或乘)相同的数。

(2)除数不变,被除数乘(或除以)几(0除外)商也乘(或除以)相同的数。

2、商不变:被除数和除数同时乘(或除以)相同的数(0除外),商不变。

(四)简便计算:同时去掉同样多的0,如9xxx÷700=91÷7=13

小学数学知识点总结大全 第8篇

一、学习目标:

1.知道生活中有比万大的.数;认识计数单位“万、十万、百万、千万和亿”,类推每相邻两个计数单位之间的关系,知道数级、数位;

2使学生认识射线,直线,能识别射线、直线和线段三个概念之间的联系和区别;认识角和角的表示方法,知道角的各部分名称;

3,在理解的基础上,掌握整数乘法的口算方法;培养类推迁移的能力和口算的能力;

4.结合生活情境,通过自主探究活动,初步认识平行线、垂线;独立思考能力与合作精神得到和谐发展;

5.在理解的基础上,掌握用整十数除商是一位数的口算方法;培养类推迁移的能力和抽象概括的能力。

二、学习难点:

1.认识计数单位“万、十万、百万、千万和亿”;掌握每相邻两个计数单位之间的关系;

2.角的意义;射线、直线和线段三者之间的关系;

3.掌握整数乘法的口算方法;培养学生养成认真思考的良好学习习惯;

4.初步认识平行线与垂线;理解永不相交的含义;

5.掌握用整十数除商是一位数的口算方法;培养学生养成认真计算的良好学习习惯。

三、知识点概括总结:

1.亿以内的数的认识:

十万:10个一万;

一百万:10个十万;

一千万:10个一百万;

一亿:10个一千万。

2.数级:数级是为便于人们记读阿拉伯数的一种识读方法,在位值制(数位顺序)的基础上,以三位或四位分级的原则,把数读,写出来。

通常在阿拉伯数的书写上,以小数点或者空格作为各个数级的标识,从右向左把数分开。

3.数级分类:

(1)四位分级法:即以四位数为一个数级的分级方法。

我国读数的习惯,就是按这种方法读的。如:万(数字后面4个0)、亿(数字后面8个0)、兆(数字后面12个0,这是中法计数)……。这些级分别叫做个级,万级,亿级……。

(2)三位分级法:即以三位数为一个数级的分级方法。

这西方的分级方法,这种分级方法也是国际通行的分级方法。如:千,数字后面3个0、百万,数字后面6个0、十亿,数字后面9个0……。

4.数位:数位是指写数时,把数字并列排成横列,一个数字占有一个位置,这些位置,都叫做数位。

从右端算起,第一位是“个位”,第二位是“十位”,第三位是“百位”,第四位是“千位”,第五位是“万位”,等等。

这就说明计数单位和数位的概念是不同的。

5.数的产生:

阿拉伯数字的由来:古代印度人创造了阿拉伯数字后,大约到了公元7世纪的时候,这些数字传到了阿拉伯地区。到13世纪时,意大利数学家斐波那契写出了《算盘书》,在这本书里,他对阿拉伯数字做了详细的介绍。后来,这些数字又从阿拉伯地区传到了欧洲,欧洲人只知道这些数字是从阿拉伯地区传入的,所以便把这些数字叫做阿拉伯数字。以后,这些数字又从欧洲传到世界各国。

阿拉伯数字传入我国,大约是13到14世纪。由于我国古代有一种数字叫“筹码”,写起来比较方便,所以阿拉伯数字当时在我国没有得到及时的推广运用。本世纪初,随着我国对外国数学成就的吸收和引进,阿拉伯数字在我国才开始慢慢使用,阿拉伯数字在我国推广使用才有xxx多年的历史。阿拉伯数字现在已成为人们学习、生活和交往中最常用的数字了。

小学数学知识点总结大全 第9篇

1.奇偶性

奇+奇=偶奇×奇=奇

奇+偶=奇奇×偶=偶

偶+偶=偶偶×偶=偶

2.位值原则

形如:abc=xxxa+10b+c

3.数的整除特征:

整除数特征

2末尾是0、2、4、6、8

3各数位上数字的和是3的倍数

5末尾是0或5

9各数位上数字的和是9的倍数

11奇数位上数字的和与偶数位上数字的和,两者之差是11的倍数

4和25末两位数是4(或25)的倍数

8和125末三位数是8(或125)的倍数

7、11、13末三位数与前几位数的差是7(或11或13)的倍数

4.整除性质

①如果c|a、c|b,那么c|(ab)。

②如果bc|a,那么b|a,c|a。

③如果b|a,c|a,且(b,c)=1,那么bc|a。

④如果c|b,b|a,那么c|a.

⑤a个连续自然数中必恰有一个数能被a整除。

5.带余除法

一般地,如果a是整数,b是整数(b≠0),那么一定有另外两个整数q和r,0≤r

当r=0时,我们称a能被b整除。

当r≠0时,我们称a不能被b整除,r为a除以b的xxx,q为a除以b的不完全商(亦简称为商)。用带xxx除式又可以表示为a÷b=q……r,0≤r

小学生奥数知识点

数列求和:

等差数列:在一列数中,任意相邻两个数的差是一定的,这样的一列数,就叫做等差数列。

基本概念:首项:等差数列的第一个数,一般用a1表示;

项数:等差数列的所有数的个数,一般用n表示;

公差:数列中任意相邻两个数的差,一般用d表示;

通项:表示数列中每一个数的公式,一般用an表示;

数列的和:这一数列全部数字的和,一般用Sn表示。

基本思路:等差数列中涉及五个量:a1,an,d,n,sn,通项公式中涉及四个量,如果己知其中三个,就可求出第四个;求和公式中涉及四个量,如果己知其中三个,就可以求这第四个。

基本公式:通项公式:an=a1+(n-1)d;

通项=首项+(项数一1)×公差;

数列和公式:sn,=(a1+an)×n÷2;

数列和=(首项+末项)×项数÷2;

项数公式:n=(an+a1)÷d+1;

项数=(末项-首项)÷公差+1;

公差公式:d=(an-a1))÷(n-1);

公差=(末项-首项)÷(项数-1);

关键问题:确定已知量和未知量,确定使用的公式

小学奥数几何知识点整理

鸟头定理即共角定理。

燕尾定理即共边定理的一种。

共角定理:

若两三角形有一组对应角相等或互补,则它们的面积比等于对应角两边乘积的比。

共边定理:

有一条公共边的三角形叫做共边三角形。

共边定理:设直线AB与PQ交与M则S△PAB/S△QAB=PM/QM

这几个定理大都利用了相似图形的方法,但小学阶段没有学过相似图形,而小学奥数中,常常要引入这些,实在有点难为孩子。

为了避开相似,我们用相应的底,高的比来推出三角形面积的比。

例如燕尾定理,一个三角形ABC中,D是BC上三等分点,靠近B点。连接AD,E是AD上一点,连接EB和EC,就能得到四个三角形。

很显然,三角形ABD和ACD面积之比是1:2

因为共边,所以两个对应高之比是1:2

而四个小三角形也会存在类似关系

三角形ABE和三角形ACE的面积比是1:2

三角形BED和三角形CED的面积比也是1:2

所以三角形ABE和三角形ACE的面积比等于三角形BED和三角形CED的面积比,这就是传说中的燕尾定理。

以上是根据共边后,高之比等于三角形面积之比证明所得。

必须要强记,只要理解,到时候如何变形,你都能会做。至于鸟头定理,也不要死记硬背,掌握原理,用起来就会得心应手。

小学数学知识点总结大全 第10篇

1、已经学过的面积单位有平方厘米(cm2)、平方分米(dm2)、平方米(m2)、公顷、平方千米(km2)。

2、(1)边长是1厘米的正方形,面积是1平方厘米。

(2)边长是1分米的正方形,面积是1平方分米。

(3)边长是1米的正方形,面积是1平方米。

(4)边长是xxx米的正方形,面积是1公顷。1公顷=xxx00平方米

测量土地的面积,可以用公顷作单位。

例如:鸟巢的占地面积约1公顷。400跑道围起来的部分的面积大约是1公顷。

(5)边长是xxx0米的正方形,面积是1平方千米。

1平方千米=xxx公顷=xxx0000平方米

我国陆地领土面积约为960万平方千米。

3、面积单位之间的换算:

(1)首先要记住它们之间的进率:

1平方千米=xxx公顷=xxx0000平方米

1公顷=xxx00平方米

1平方米=xxx平方分米

1平方分米=xxx平方厘米

1平方米=xxx00平方厘米

(2)换算方法:

○1把高级单位化为低级单位,要用乘法计算,只要用高级单位前面的数去乘这两个单位之间的进率。(即高化低,乘进率,小数点向右移,移几位,看进率。)

○2把低级单位聚成高低级单位,要用除法计算,只要用低级单位前面的数去除以这两个单位之间的进率。(即低化高,除以进率,小数点向左移,移几位,看进率。)

a、把公顷转化为平方米,只要在公顷前面的数据后面直接添写4个0。

b、把平方米转化为公顷,只要在平方米前面的数据后面直接去掉4个0。

c、把平方千米转化为公顷,只要在平方千米前面的数据后面直接添写2个0。

d、把平方千米转化为平方米,只要在平方千米前面的数据后面直接添写6个0。

e、把平方米转化为平方千米,只要在平方米前面的数据后面直接去掉6个0。

4、填写面积单位的规律:

(1)国土面积、省份(含直辖市)面积、省会城市面积、州(市)面积、县、乡镇面积、村委会、村庄面积、一般要用“平方千米”作单位。

(2)公园、院(校)园、体育场(馆)等,一般要用“公顷”作单位。

(3)房屋(建筑)面积、教室面积、校园绿化面积等,一般要用“平方米”作单位。

小学数学知识点总结大全 第11篇

■比和比例应用题

在工业生产和日常生活中,常常要把一个数量按照一定的比例来进行分配,这种分配方法通常叫“按比例分配”.

■解题策略

按比例分配的有关习题,在解答时,要善于找准分配的总量和分配的比,然后把分配的比转化成分数或份数来进行解答

■正、反比例应用题的解题策略

1、审题,找出题中相关联的两个量

2、分析,判断题中相关联的两个量是成正比例关系还是成反比例关系.

3、设未知数,列比例式

4、解比例式

5、检验,写答语

小学数学知识点总结大全 第12篇

一、长度单位和角的知识点 [会按要求画线段和角。]

1、尺子是测量物体长度的工具,常用的长度单位有:米和厘米。食指的宽度约有1厘米,伸开双臂大约1米。1米=xxx厘米 xxx厘米=1米。

2、测量较短物体通常用厘米作单位,测量较长物体通常用米作单位。

3、测量物体长度时:把尺的“0”刻度对准物体的左端,再看右端对着刻度几,就是几厘米。物体长度=较大数-较小数,例如:从刻度“0”到刻度“6”之间是6厘米(6-0=6),从刻度“6”到刻度“9”之间是3厘米(9-6=3);还可以用数一数的方法数出物体的长度。(算,数)

4、线段是直的,可以量出长度。

5、画线段的方法:从尺子的“0”刻度开始画起,长度是几就画到几。(找点画线;有时还要先算出长度再画线。如画一条比6厘米短2厘米的线段。)

6、角有1个顶点,2条直边。锐角比直角小,钝角比直角大,钝角比锐角大。锐角<直角<钝角(钝角>直角>锐角)。

7、用三角板可以画出直角,直角要标出直角符号(也叫垂足符号)。

8、所有的直角都一样大。要知道一个角是不是直角,可以用三角板上的直角比一比。长方形和正方形都有4个角,4个都是直角。

9、角的大小与两条边的长短无关,与两条边叉开的大小有关。

10、每一个三角板上都有3个角,其中有1个是直角,另外2个是锐角。

11、角的画法:从一个点起,用尺子向不同的方向画两条笔直的线,就画成一个角。(从一点引出两条射线所组成的图形叫作角。)

练习:

1、1米21厘米=( )厘米 53厘米-18厘米=( )厘米;一棵大树高10()。

2、我的身高是( )米( )厘米。

3、一个角有( )个顶点和( )条边;一本书宽15()。

4、三角板中有三个角,有()个直角。

5、角的两条边越长,角就越大。( )

二、xxx以内的笔算加法和减法知识点:

1、用竖式计算两位数加法时:要把相同数位对齐。从个位加起。如果个位满10,向十位进1。

2、用竖式计算两位数减法时:要把相同数位对齐。从个位减起。如果个位不够减,从十位退1和个位组成两位数再减,计算十位时要记得减去退掉的1。

3、加减混合运算,按从左往右的顺序计算,有小括号的,先算小括号里的,用分步式计算。

4、求“一个已知数”比“另一个已知数”多多少、少多少?用减法计算,如70比25多多少?19比46少多少?

5、多几的问题。未知数比谁多几,就用谁加上几。如:比29多17的数是多少?(29+17=46)

三、表内乘法知识点[一定要熟记乘法口诀并能熟练运用。]

1、求几个相同加数的和,用乘法表示更加简便。求几个相同加数的和的简便运算叫做乘法。

2、加法和乘法的改写,如:5+5+5+5xxx乘法算式:5×4或4×5 ;反之,乘法也可改xxx加法。如:8×4=8+8+8+8 (在忘记乘法口诀或口诀记不准时,可把乘法算式改xxx加法算式来计算。) 加法xxx乘法时,加法的和与乘法的积相同。

3、2×7=14 读作:2乘7等于14;3乘4等于12写作:3×4=12。

4、乘法算式中,两个乘数(因数)交换位置,积不变。如:8×4=4×8

5、看图,写乘加、乘减算式时:

乘加:先把相同的部分用乘法表示,再加上不相同的部分。先算相同再加不同。 乘减:先把每一份数都当作相同的数来算,xxx乘法,再把多算进去的数减去。如:加法:5+5+5+5+3=23 乘加:5×4+3=23 乘减:5×5-3=23

6、“求几个几相加的和是多少”和“求一个数的几倍是多少”用乘法计算,如:7的3倍是多少?(7×3=21),5个8相加的和是多少?(8×5=40)

练习:

1、5个6相加写作乘法算式是()或( )。

2、先看图,再填空

(1)求一共有多少个的加法算式是: ;

(2)求一共有多少个的乘法算式是: ;

(3)第二行画是4个3:

第一行:第二行:

(5)在8×6=48中,8和6都叫做( ),48叫做( )。

(6)先把乘法口诀填完整,再写出两个相应的乘法算式。

(1)( )八二十四 (乘法口诀要大写)

(2)七( )六十三 (乘法算式要小写)

3、根据算式写出乘法口诀。8×7() 6×9( )

4、5+5+5+4=( )或( ) 8+8+8+8-7=( )或( )

四、观察物体知识点[从正面、侧面、上面看。]

1、从正面看一个立体图形,看到的是长方形,这个立体图形可能是长方体,还可能是圆柱。

2、看到的立体图形的一个面是正方形,这个立体图形可能是正方体,还可能是长方体。

3、看到的立体图形的一个面圆形,这个立体图形可能是球,还可能是圆柱,圆锥。

4、面对面看到的物体形状一样,但方向相反。

5、观察组合物体的表面时,与物体的高矮和是否对齐无关。

6、练习

(1)在不同的位置观察同一个物体,看到的形状一定不同。(×)(球)

(2)在同一位置观察同一个物体,最多只能看到3个面。(√)

(3)从正面看一个正方体,看到一个长方形。(×)

(4)xxx从一个物体的上面看到一个正方形,那么这个物体一定是正方形。(×)

(5)从一个长方体的任何一面观察,都不可能看到正方形。(×)

(6)从不同的位置看同一个物体,看到的形状(不一定)相同。

(7)从正面看一个正方体,只能看到一个(正方)形。

(8)从一个物体的上面看到一个正方形,它是一个(长方体或正方体)。

(9)从一个长方体的任何一个面看,不可能看到(圆)。

五、认识时间知识点

1、1时=(60)分

2、xxx游(12)个数,这些数把钟面分成了(12)个相等的大格,每个大格又分成了(5)个相等的小格,xxx一共有(60)个小格。

3、xxx有(2)根针,短粗一点的针叫(时)针,细长一点的针叫(分)针。分针走1小格是(1)分,走1大格是(5)分,时针走1大格是(1)时。分针从12走到6,走了(30)分;时针从12走到6,走了(6)小时;时针从12开始绕了一圈,又走回了12,走了(12)时。

4、(30)分也可以说成半小时,(15)分也可以说成一刻钟。如8时30分是8时半,9时15分是9时一刻。

5、(3或9)时整,xxx时针和分针成直角。

6、写出xxx的时间,画分针:教材P101第3题,P105第12题。

小学数学知识点总结大全 第13篇

第一单元 数据整理与收集

1.学会用“正”字记录数据。

2.会数“正”,知道一个“正”字代表数量5。

3.根据统计表,会解决问题。

4.数据收集---整理---分析表格。

第二单元 表内除法(一)

1.平均分的含义:把一些物品分成几份,每份分得同样的多,叫做平均分。

除法就是用来解决平均分问题的。

2.平均分里有两种情况:

(1)把一些东西平均分成几份,求每份是多少;用除法计算,

总数÷份数=每份数

例:24本练习本,平均分给6人,每人分多少本?

列式:24÷6=4

(2)包含除(求一个数里面有几个几)把一个数量按每份是多少分成一份,求能平均分成几份;用除法计算,总数÷每份数=份数

例:24本练习本,每人4本,能分给多少人?

列式:24÷4=6

3、除法算式的含义:只要是平均分的过程,就可以用除法算式表示。

除法算式的读法:从左到右的顺序读,“÷”读作除以,“=”读作等于,其他数字不变。

例如:12÷4=3读作(12除以4等于3)

例:42÷7=6 42是(被除数),7是(除数),6是(商;这个算式读作(42除以7等xxx )。

4、除法算式各部分名称:在除法算式中,除号前面的数就被除数,除号后面的数叫除数,所得的数叫商。

被除数÷除数=商。变式:被除数÷商=除数(如何求被除数,想:除数×商=被除数。)

5.用2~6的乘法口诀求商

1、求商的方法:

(1)用平均分的方法求商。

(2)用乘法算式求商。

(3)用乘法口诀求商。

2、用乘法口诀求商时,想除数和几相乘的被除数。

一句口诀可以写四个算式。(乘数相同的除外)。

例:用“三八二十四”这句口诀

A、24÷3=8 B、3×8=24

C、24÷3=8 D、24÷8=3

计算方法:12÷4=( )时,想:( )四十二,所以商是( ).

6.解决问题

1、解决有关平均分问题的方法:

总数÷每份数=份数、总数÷份数=每份数、

因数×因数=积、一个因数=积÷另一个因数

2、用乘法和除法两步计算解决实际问题的`方法:

(1)所求问题要求求出总数,用乘法计算;

(2)所求问题要求求出份数或每份数,用除法计算。

(3)8个果冻,每2个一份,能分成几份?求8里有几个2,用除法计算。

(4)24里面有( )个4,,20里面有( )个5。(用除法计算。)

(5)最小公倍数问题:一堆水果,3个人正好分完,4个人也正好分完,问这堆水果最少有几个?

第三单元 图形的运动

1、轴对称图形:沿一条直线对折,两边完全重合。对折后能够完全重合的图形是轴对称图形,折痕所在的直线叫对称轴。

成轴对称图形的汉字:

小学数学知识点总结大全 第14篇

一 图形的变换

轴对称: 如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形, 这条直线叫做对称轴。(正方形,长方形,三角形,平行四边形,圆)

旋转:在平面内,一个图形绕着一个顶点旋转一定的角度得到另一个图形的变化较做旋转,定点O叫做旋转中心,旋转的角度叫做旋转角,原图形上的一点旋转后成为的另一点成为对应点。

旋转的性质:图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动;其中对应点到旋转中心的距离相等;旋转前后图形的大小和形状没有改变;两组对应点非别与旋转中心的连线所成的角相等,都等于旋转角;旋转中心是唯一不动的点。

知识点连接:平移、轴对称、旋转的区别联系

二 因数和倍数

1、整除:被除数、除数和商都是自然数,并且没有xxx。

大数能被小数整除时,大数是小数的倍数,小数是大数的因数。

找因数的方法:

一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。

一个数的倍数的个数是无限的,最小的倍数是它本身。

因数与倍数是相对存在,不能脱离开来:2是4的因数,4是2的倍数

因数与倍数指的通常是整数,不能针对小数。×5=12,所以5是12的因数(×)

2、自然数按能不能被2整除来分:奇数 偶数

奇数:不能被2整除的数

偶数:能被2整除的数。

最小的奇数是1,最小的偶数是0.

个位上是0,2,4,6,8的数都是2的倍数。

个位上是0或5的数,是5的倍数。

一个数各位上的数的和是3的倍数,这个数就是3的倍数。

能同时被2、3、5整除的最大的两位数是90,最小的三位数是120。

3、自然数按因数的个数来分:质数、合数、1.

质数:有且只有两个因数,1和它本身

合数:至少有三个因数,1、它本身、别的因数

1: 只有1个因数。“1”既不是质数,也不是合数。

最小的质数是2,最小的合数是4。

20以内的质数:有8个(2、3、5、7、11、13、17、19)

4、分解质因数

用短除法分解质因数 (一个合数xxx几个质数相乘的形式)

5、公因数、最xxx数

几个数公有的因数叫这些数的公因数。其中最大的那个就叫它们的最xxx数。

用短除法求两个数或三个数的最xxx数 (除到互质为止,把所有的除数连乘起来)

几个数的公因数只有1,就说这几个数互质。

两数互质的特殊情况:

⑴1和任何自然数互质;⑵相邻两个自然数互质; ⑶两个质数一定互质;

⑷2和所有奇数互质; ⑸质数与比它小的合数互质;

如果两数是倍数关系时,那么较小的数就是它们的最xxx数。

如果两数互质时,那么1就是它们的最xxx数。

0、1、2、3、4

6、公倍数、最小公倍数

几个数公有的倍数叫这些数的公倍数。其中最小的那个就叫它们的最小公倍数。

用短除法求两个数的最小公倍数(除到互质为止,把所有的除数和商连乘起来)

用短除法求三个数的最小公倍数(除到两两互质为止,把所有的除数和商连乘起来)

如果两数是倍数关系时,那么较大的数就是它们的最小公倍数。

如果两数互质时,那么它们的积就是它们的最小公倍数。

1. 跑圈问题

2. 公交问题

3.最xxx数

三 长方体和正方体

【概念】

1、由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体。在一个长方体中,相对面完全相同,相对的棱长度相等。

2、两个面相交的边叫做棱。三条棱相交的点叫做顶点。相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。

3、由6个完全相同的正方形围成的立体图形叫做正方体(也叫做立方体)。正方体有12条棱,它们的长度都相等,所有的面都完全相同。

4、长方体和正方体的面、棱和顶点的数目都一样,只是正方体的棱长都相等,正方体可以说是长、宽、高都相等的长方体,它是一种特殊的长方体。

5、长方体有6个面,8个顶点,112条棱,相对的面的面积相等,相对的棱的长度相等。一个长方体最多有6个面是长方形,最少有4个面是长方形,最多有2个面是正方形。正方体有6个面,每个面都是正方形,每个面的面积都相等,有12条棱,每条的棱的长度都相等。

长方体的棱长总和=(长+宽+高)×4 L=(a+b+h)×4

长=棱长总和÷4-宽 xxx a=L÷4-b-h

宽=棱长总和÷4-长 xxx b=L÷4-a-h

高=棱长总和÷4-长 -宽 h=L÷4-a-b

正方体的棱长总和=棱长×12 L=a×12

正方体的棱长=棱长总和÷12 a=L÷12

6、长方体或正方体6个面和总面积叫做它的表面积。

长方体的表面积=(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)

无底(或无盖)长方体表面积= 长×宽+(长×高+宽×高)×2

S=2(ab+ah+bh)-ab S=2(ah+bh)+ab

无底又无盖长方体表面积=(长×高+宽×高)×2 S=2(ah+bh)

正方体的表面积=棱长×棱长×6 S=a×a×6

6、物体所占空间的大小叫做物体的体积。

长方体的体积=长×宽×高 V=abh

长=体积÷宽÷高 a=V÷b÷h

宽=体积÷长÷高 b=V÷a÷h

高=体积÷长÷宽 h= V÷a÷b

正方体的体积=棱长×棱长×棱长 V=a×a×a

7、箱子、油桶、仓库等所能容纳物体的体积,通常叫做他们的容积。

常用的容积单位有升和毫升也可以xxxL和ml。

xxx=1立方分米 1毫升=1立方厘米 xxx=xxx0毫升

8、a3读作“a的立方”表示3个a相乘,(即a·a·a)

小学数学知识点总结大全 第15篇

(一)数与计算

(1)20以内数的认识。加法和减法。数数。数的组成、顺序、大小、读法和写法。加法和减法。连加、连减和加减混合式题

(2)xxx以内数的认识。加法和减法。数数。个位、十位。数的顺序、大小、读法和写法。两位数加、减整十数和两位数加、减一位数的口算。两步计算的加减式题。

(二)量与计量

钟面的认识(整时)。人民币的认识和简单计算。

(三)几何初步知识

长方体、正方体、圆柱和球的直观认识。

长方形、正方形、三角形和圆的直观认识。

(四)应用题

比较容易的加法、减法一步计算的应用题。多和少的应用题(抓有效信息的能力)

(五)实践活动

选择与生活密切联系的内容。例如根据本班男、女生人数,每组人数分布情况,想到哪些数学问题。

小学数学知识点总结大全 第16篇

加法交换律 a+b=b+a

结合律 (a+b)+c=a+(b+c)

减法性质 a-b-c=a-(b+c)

a-(b-c)=a-b+c

乘法交换律 a×b=b×a

结合律 (a×b)×c=a×(b×c)

分配律 (a+b)×c=a×c+b×c

除法性质 a÷(b×c)=a÷b÷c

a÷(b÷c)=a÷b×c

(a+b)÷c=a÷c+b÷c

(a-b)÷c=a÷c-b÷c

商不变性质m≠0 a÷b=(a×m)÷(b×m) =(a÷m)÷(b÷m)

■积的变化规律:在乘法中,一个因数不变,另一个因数扩大(或缩小)若干倍,积也扩大(或缩小)相同的倍数.

推广:一个因数扩大A倍,另一个因数扩_倍,积扩大AB倍.

一个因数缩小A倍,另一个因数缩小B倍,积缩小AB倍.

■商不变规律:在除法中,被除数和除数同时扩大(或缩小)相同的倍数,商不变.

推广:被除数扩大(或缩小)A倍,除数不变,商也扩大(或缩小)A倍.

被除数不变,除数扩大(或缩小)A倍,商反而缩小(或扩大)A倍.

■利用积的变化规律和商不变规律性质可以使一些计算简便.但在有xxx的除法中要注意xxx.

如:8500÷200= 可以把被除数、除数同时缩小xxx倍来除,即85÷2= ,商不变,但此时的xxx1是被缩小xxx被后的,所以还原成原来的xxx应该是xxx.

小学数学知识点总结大全 第17篇

1.分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。

2.分数单位:把单位“1”平均分成若干份,表示其中一份的数,叫做分数单位。

3.分数和除法的联系:分数的分子就是除法中的被除数,分母就是除法中的除数。

分数和小数的联系:小数实际上就是分母是10、xxx、xxx0……的分数。

分数和比的联系:分数的分子就是比的前项,分数的分母就是比的后项。

4.分数的分类:分数可以分为真分数和假分数。

5.真分数:分子小于分母的分数叫做真分数。真分数小于1。

假分数:分子大于或等于分母的分数叫做假分数。假分数大于或者等于1。

6.最简分数:分子与分母互质的分数叫做最简分数。

7.分数的基本性质:分数的分子和分母同时乘或除以相同的数(零除外),分数的大小不变。

8.这样的分数可以化成有限小数:前提是这

个分数要是最简分数,如果分母只含有2、5这2个质因数,这样的分数就能化成有限小数。

9.百分数:表示一个数是另一个数的百分之几的数叫做百分数。百分数也叫做百分率或者百分比。百分数通常用“%”来表示。

小学数学知识点总结大全 第18篇

(一)分数乘法意义:

1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

“分数乘整数”指的是第二个因数必须是整数,不能是分数。

2、一个数乘分数的意义就是求一个数的几分之几是多少。

“一个数乘分数”指的是第二个因数必须是分数,不能是整数。(第一个因数是什么都可以)

(二)分数乘法计算法则:

1、分数乘整数的计算方法:用分子乘整数的积作分子,分母不变。能约分的可以先约分,再计算。

(1)为了计算简便能约分的可先约分再计算。(整数和分母约分)

(2)约分是用整数和下面的分母约掉公因数。(整数千万不能与分母相乘,计算结果必须是最简分数)。

2、分数乘分数的计算方法是:用分子相乘的积做分子,用分母相乘的积作分母。(分子乘分子,分母乘分母)

(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。

(2)分数化简的方法是:分子、分母同时除以它们的公因数。

(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。

(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。

(三)积与因数的关系:

一个数(0除外)乘大于1的数,积大于这个数。a×b=c,当b>1时,c>a。

一个数(0除外)乘小于1的数,积小于这个数。a×b=c,当b<1时,c

一个数(0除外)乘等于1的数,积等于这个数。a×b=c,当b=1时,c=a。

在进行因数与积的大小比较时,要注意因数为0时的特殊情况。

(四)分数混合运算

1、分数混合运算的运算顺序与整数混合运算的运算顺序相同,先算乘法,后算加减法,有括号的先算括号里面的,再算括号外面的。

2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。

乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)

乘法分配律:a×(b±c)=a×b±a×c

(五)分数乘法应用题——用分数乘法解决问题

1、求一个数的几分之几是多少?(用乘法)

已知单位“1”的量,求单位“1”的量的几分之几是多少,用单位“1”的量与分数相乘。

2、巧找单位“1”的量:在含有分数(分率)的语句中,分率前面的量就是单位“1”对应的量,或者“占”“是”“比”字后面的量是单位“1”。

3、求比一个数多(或少)几分之几的数是多少的解题方法

(1)单位“1”的量+(-)单位“1”的量×这个数量比单位“1”的量多(或少)的几分之几=这个数量;

(2)单位“1”的量×[1+这个数量比单位“1”的量多(或少)的几分之几]=这个数量。

小学数学知识点总结大全 第19篇

1、线

⑴直线

直线没有端点;长度无限;过一点可以画无数条,过两点只能画一条直线。

⑵射线

射线只有一个端点;长度无限。

⑶线段

线段有两个端点,它是直线的一部分;长度有限;两点的连线中,线段为最短。

两点之间线段的长度就是两点间的距离。

直线射线线段的联系:都是直的,射线和线段都是直线的一部分。

⑷同一平面内两条直线的位置关系有平行和相交两种。

⑸平行线

【定义】在同一平面内,不相交的两条直线叫做平行线。直线a平行于b,直线b也平行于a。

【性质】过直线外一点只能画一条直线与已知直线平行。

两条平行线之间的垂直线段有无数条,长度都相等。平行线间垂直线段处处相等。

【画法】一合,二靠,三移,四画。

⑹垂线

【定义】两条直线相交成直角时,这两条直线叫做互相垂直,其中一条直线叫做另一条直线的垂线,相交的点叫做垂足。

【性质】

过一点(直线上或直线外)只能画一条直线与已知直线垂直。

从直线外一点到这条直线所画的垂直线段最短,它的长度叫做点到直线的距离

【画法】一合,二过,三画,四标。

2、角

(1)角的定义从一点引出两条射线,所组成的图形叫做角。这个点叫做角的顶点,这两条射线叫做角的边。

(2)角的度量角的计量单位是_度_,用符号_°_表示。把xxx分成180等份,每一份所对的角的大小是1度。记作_1°_。

(3)角的大小比较角的大小与角的两边画出的长短没有关系。角的大小要看两条边叉开的大小,叉开得越大,角越大。

(4)角的画法一画线,二量角,三连线,四标注。一副三角板可以画出的角的度数是15的倍数。

小学数学知识点总结大全 第20篇

1、在生活中,量比较短的物品,可以用(毫米、厘米、分米)做单位;量比较长的物体,常用(米)做单位;测量比较长的路程一般用(千米)做单位,千米也叫(公里)。

2、1厘米的长度里有(10)小格,每小格的长度(相等),都是(1)毫米。

3、1枚1分的硬币、尺子、磁卡、小纽扣、钥匙的厚度大约是1毫米。

4、在计算长度时,只有相同的长度单位才能相加减。

小技巧:换算长度单位时,把大单位换成小单位就在数字的末尾添加0(关系式中有几个0,就添几个0);把小单位换成大单位就在数字的末尾去掉0(关系式中有几个0,就去掉几个0)。

5、长度单位的关系式有:(每两个相邻的长度单位之间的进率是10)

①进率是10:1米=10分米,1分米=10厘米,1厘米=10毫米,

10分米=1米,10厘米=1分米,10毫米=1厘米,

②进率是xxx:1米=xxx厘米,1分米=xxx毫米,xxx厘米=1米,xxx毫米=1分米

③进率是xxx0:1千米=xxx0米,1公里==xxx0米,xxx0米=1千米,xxx0米=1公里

6、当我们表示物体有多重时,通常要用到(质量单位)。在生活中,称比较轻的物品的质量,可以用(克)做单位;称一般物品的质量,常用(千克)做单位;计量较重的或大宗物品的质量,通常用(吨)做单位。

小技巧:在“吨”与“千克”的换算中,把吨换算成千克,是在数字的末尾加上3个0;

把千克换算成吨,是在数字的末尾去掉3个0。

7、相邻两个质量单位进率是xxx0。

1吨=xxx0千克1千克=xxx0克xxx0千克=1吨xxx0克=1千克

万以内的加法和减法

1、认识整千数(记忆:10个一千是一万)

2、读数和写数(读数时写汉字写数时写阿拉伯数字)

①一个数的末尾不管有一个0或几个0,这个0都不读。

②一个数的中间有一个0或连续的两个0,都只读一个0。

3、数的大小比较:

①位数不同的数比较大小,位数多的数大。

②位数相同的数比较大小,先比较这两个数的位上的数,如果位上的数相同,就比较下一位,以此类推。

4、求一个数的近似数:

记忆:看最位的后面一位,如果是0—4则用四舍法,如果是5—9就用五入法。

的三位数是位999,最小的三位数是xxx,的四位数是9999,最小的四位数是xxx0。

的三位数比最小的四位数小1。

5、被减数是三位数的连续退位减法的运算步骤:

①列竖式时相同数位一定要对齐;

②减法时,哪一位上的数不够减,从前一位退1;如果前一位是0,则再从前一位退1。

6、在做题时,我们要注意中间的0,因为是连续退位的,所以从百位退1到十位当10后,还要从十位退1当10,借给个位,那么十位只剩下9,而不是10。(两个三位数相加的和:可能是三位数,也有可能是四位数。)

7、公式被减数=减数+差

和=加数+另一个加数

减数=被减数—差

加数=和—另一个加数

差=被减数—减数

符号/是什么意思数学

/在数学中是“除”的意思。例如:4/5我们可以说4除以5或者四分之五。数学符号的发明及使用比数字要晚,但其数量却超过了数字。现代数学常用的数学符号已超过了200个,其中,每一个符号都有一段有趣的经历。

实数知识点

平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。③一个正数有2个平方根/0的平方根为0/负数没有平方根。④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。

立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。②正数的立方根是正数、0的立方根是0、负数的立方根是负数。③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。

实数:①实数分有理数和无理数。②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。③每一个实数都可以在数轴上的一个点来表示。

小学数学知识点总结大全 第21篇

第一单元 数据整理与收集

1.学会用“正”字记录数据。

2.会数“正”,知道一个“正”字代表数量5。

3.根据统计表,会解决问题。

4.数据收集---整理---分析表格。

第二单元 表内除法(一)

1.平均分的含义:把一些物品分成几份,每份分得同样的多,叫做平均分。

除法就是用来解决平均分问题的。

2.平均分里有两种情况:

(1)把一些东西平均分成几份,求每份是多少;用除法计算,

总数÷份数=每份数

例:24本练习本,平均分给6人,每人分多少本?

列式:24÷6=4

(2)包含除(求一个数里面有几个几)把一个数量按每份是多少分成一份,求能平均分成几份;用除法计算,总数÷每份数=份数

例:24本练习本,每人4本,能分给多少人?

列式:24÷4=6

3、除法算式的含义:只要是平均分的过程,就可以用除法算式表示。

除法算式的读法:从左到右的顺序读,“÷”读作除以,“=”读作等于,其他数字不变。

例如:12÷4=3读作(12除以4等于3)

例:42÷7=6 42是(被除数),7是(除数),6是(商;这个算式读作(42除以7等xxx )。

4、除法算式各部分名称:在除法算式中,除号前面的数就被除数,除号后面的数叫除数,所得的数叫商。

被除数÷除数=商。变式:被除数÷商=除数(如何求被除数,想:除数×商=被除数。)

5.用2~6的乘法口诀求商

1、求商的方法:

(1)用平均分的方法求商。

(2)用乘法算式求商。

(3)用乘法口诀求商。

2、用乘法口诀求商时,想除数和几相乘的被除数。

一句口诀可以写四个算式。(乘数相同的除外)。

例:用“三八二十四”这句口诀

A、24÷3=8 B、3×8=24

C、24÷3=8 D、24÷8=3

计算方法:12÷4=( )时,想:( )四十二,所以商是( ).

6.解决问题

1、解决有关平均分问题的方法:

总数÷每份数=份数、总数÷份数=每份数、

因数×因数=积、一个因数=积÷另一个因数

2、用乘法和除法两步计算解决实际问题的方法:

(1)所求问题要求求出总数,用乘法计算;

(2)所求问题要求求出份数或每份数,用除法计算。

(3)8个果冻,每2个一份,能分成几份?求8里有几个2,用除法计算。

(4)24里面有( )个4,,20里面有( )个5。(用除法计算。)

(5)最小公倍数问题:一堆水果,3个人正好分完,4个人也正好分完,问这堆水果最少有几个?

第三单元 图形的运动

1、轴对称图形:沿一条直线对折,两边完全重合。对折后能够完全重合的图形是轴对称图形,折痕所在的直线叫对称轴。

成轴对称图形的汉字:

小学数学知识点总结大全 第22篇

准备课

1、数一数

数数:数数时,按一定的顺序数,从1开始,数到最后一个物体所对应的那个数,即最后数到几,就是这种物体的总个数。

2、比多少

同样多:当两种物体一一对应后,都没有剩余时,就说这两种物体的数量同样多。

比多少:当两种物体一一对应后,其中一种物体有剩余,有剩余的那种物体多,没有剩余的那种物体少。

比较两种物体的多或少时,可以用一一对应的方法。

位置

1、认识上、下

体会上、下的含义:从两个物体的位置理解:上是指在高处的物体,下是指在低处的物体。

2、认识前、后

体会前、后的含义:一般指面对的方向就是前,背对的方向就是后。

同一物体,相对于不同的参照物,前后位置关系也会发生变化。

从而得出:确定两个以上物体的前后位置关系时,要找准参照物,选择的参照物不同,相对的前后位置关系也会发生变化。

3、认识左、右

以自己的左手、右手所在的位置为标准,确定左边和右边。右手所在的一边为右边,左手所在的一边为左边。

要点提示:在确定左右时,除特殊要求,一般以观察者的左右为准。

学好数学的方法和技巧总结

主动预习

预习的目的是主动获取新知识的过程,有助于调动学习积极主动性,新知识在未讲解之前,认真阅读教材,养成主动预习的习惯,是获得数学知识的重要手段。

因此,要注意培养自学能力,学会看书。如自学例题时,要弄清例题讲的什么内容,告诉了哪些条件,求什么,书上怎么解答的,为什么要这样解答,还有没有新的解法,解题步骤是怎样的。抓住这些重要问题,动脑思考,步步深入,学会运用已有的知识去独立探究新的知识。

让数学课学与练结合

在数学课上,光听是没用的。自己也要在草稿纸上练。当遇到不懂的难题时,一定要提出来,不能不懂装懂,否则考试遇到类似的题目就可能不会做。听老师讲课时一定要全神贯注,要注意细节问题。应抓住听课中的主要矛盾和问题,在听讲时尽可能与老师的讲解同步思考,必要时做好笔记。每堂课结束以后应深思一下进行归纳,做到一课一得。

单项式书写格式

1、数字写在字母的前面,应省略乘。[5a]、[16xy]等。

2、π是常数,因此也可以作为系数。它不是未知数。

3、若系数是带分数,xxx假分数。

4、当一个单项式的系数是1或—1时,“1”通常省略不写,如[(—1)ab]xxx[—ab]等。

5、在单项式中字母不可以做分母,分子可以。

6、单独的数“0”的系数是零,次数也是零。

7、常数的系数是它本身,次数为零。

8、如果是分数的多项式,那么他的系数就是他的分数常数,次数为最高次幂。

小学数学知识点总结大全 第23篇

第一单元长度单位

1、常用的长度单位:米、厘米。

2、测量较短物体通常用厘米作单位,测量较长物体通常用米作单位。

3、测量物体长度的方法:将物体的左端对准直尺的“0”刻度,看物体的右端对着直尺上的刻度是几,这个物体的长度就是几厘米。

4、米和厘米的关系:1米=xxx厘米xxx厘米=1米

5、线段

⑴线段的特点:①线段是直的;②线段有两个端点;③线段有长有短,是可以量出长度的。

⑵画线段的方法:先用笔对准尺子的’0”刻度,在它的上面点一个点,再对准要画到的长度的厘米刻度,在它的上面也点一个点,然后把这两个点连起来,写出线段的长度。

⑶测量物体的长度时,当不是从“0”刻度量起时,要用终点的刻度数减去起点的刻度数。

6、填上合适的长度单位。

xxx身高1(米)30(厘米)

练习本宽13(厘米)

铅笔长17(厘米)

黑板长2(米)图钉长1(厘米)

一张床长2(米)一口井深3(米)

学校进行xxx(米)赛跑

教学楼高25(米)宝宝身高80(厘米)

跳绳长2(米)一棵树高3(米)

一把钥匙长5(厘米)

一个文具盒长24(厘米)

讲台高90(厘米)

门高2(米)教室长12(米)

筷子长20(厘米)

一棵小树苗高1(米)

小朋友的头围48厘米

爸爸的身高1米75厘米或175厘米

小朋友的身高120厘米或1米20厘米

第二单元xxx以内的加法和减法

一、两位数加两位数

1、两位数加两位数不进位加法的计算法则:把相同数位对齐列竖式,在把相同数位上的数相加。

2、两位数加两位数进位加法的计算法则:①相同数位对齐;②从个位加起;③个位满十向十位进1。

3、笔算两位数加两位数时,相同数位要对齐,从个位加起,个位满十要向十位进“1”,十位上的数相加时,不要遗漏进上来的“1”。

4、和=加数+加数

一个加数=和-另一个加数

二、两位数减两位数

1、两位数减两位数不退位减的笔算:相同数位对齐列竖式,再把相同数位上的数相减

2、两位数减两位数退位减的笔算法则:①相同数位对齐;②从个位减起;③个位不够减,从十位退1,在个位上加10再减。

3、笔算两位数减两位数时,相同数位要对齐,从个位减起,个位不够减,从十位退1,个位加10再减,十位计算时要先减去退走的1再算。

4、差=被减数-减数

被减数=减数+差

减数=被减数+差

三、连加、连减和加减混合

1、连加、连减

连加、连减的笔算顺序和连加、连减的口算顺序一样,都是从左往右依次计算。

①连加计算可以分步计算,也可以xxx一个竖式计算,计算方法与两个数相加一样,都要把相同数位对齐,从个位加起。

②连减运算可以分步计算,也可以xxx一个竖式计算,计算方法与两个数相减一样,都要把相同数位对齐,从个位减起。

2、加减混合

加、减混合算式,其运算顺序、竖式写法都与连加、连减相同。

3、加减混合运算写竖式时可以分步计算,方法与两个数相加(减)一样,要把相同数位对齐,从个位算起;也可以用简便的写法,列成一个竖式,先完成第一步计算,再用第一步的结果加(减)第二个数。

四、解决问题(应用题)

1、步骤:xxx读题②列横式,写结果,千万别忘记写单位(单位为:多少或者几后面的那个字或词)③作答。

2、求“一个已知数”比“另一个已知数”多多少、少多少?用减法计算。用“比”字两边的较大数减去较小数。

3、比一个数多几、少几,求这个数的问题。先通过关键句分析,“比”字前面是大数还是小数,“比”字后面是大数还是小数,问题里面要求大数还是小数,求大数用加法,求小数用减法。

4、关于提问题的题目,可以这样提问:

①…….和……一共…….?

②……比……..多多少/几……?

③……比……..少多少/几……?

第三单元元角的初步认识

1、角的初步认识

(1)角是由一个顶点和两条边组成的;

(2)画角的方法:从一个点起,用尺子向不同的方向画两条直线。

(3)角的大小与边的长短没有关系,与角的两条边张开的大小有关,角的两条边张开得越大,角就越大,角的两条边张开得越小,角就越小。

2、直角的初步认识

(1)直角的判断方法:用三角尺上的直角比一比(顶点对顶点,一边对一边,再看另一条边是否重合)。

(2)画直角的方法:xxx画一个顶点,再从这个点出发画一条直线②用三角尺上的直角顶点对齐这个点,一条直角边对齐这条线③再从这点出发沿着三角尺上的另一条直角边画一条线④最后标出直角标志。

(3)比直角小的是锐角,比直角大的是钝角:锐角<直角<钝角。

(4)所有的直角都一样大

(5)每个三角尺上都有1个直角,两个锐角。红领巾上有3个角,其中一个是钝角,两个是锐角。一个长方形中和正方形中都是有4个直角。

小学数学知识点总结大全 第24篇

一、圆的特征

1、圆是平面内封闭曲线围成的平面图形。

2、圆的特征:外形美观,易滚动。

3、圆心O:圆中心的点叫做圆心.圆心一般用字母O表示。

圆多次对折之后,折痕的相交于圆的中心即圆心。圆心确定圆的位置。

半径r:连接圆心到圆上任意一点的线段叫做半径。在同一个圆里,有无数条半径,且所有的半径都相等。半径确定圆的大小。

直径d:通过圆心且两端都在圆上的线段叫做直径。在同一个圆里,有无数条直径,且所有的直径都相等。直径是圆内最长的线段。

同圆或等圆内直径是半径的2倍:d=2r或r=d÷2

4、等圆:半径相等的圆叫做同心圆,等圆通过平移可以完全重合。同心圆:圆心重合、半径不等的两个圆叫做同心圆。

5、圆是轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。折痕所在的直线叫做对称轴。

有一条对称轴的图形:xxx、扇形、等腰梯形、等腰三角形、角。

有二条对称轴的图形:长方形

有三条对称轴的图形:等边三角形

有四条对称轴的图形:正方形

有无条对称轴的图形:圆,圆环

6、画圆

(1)圆规两脚间的距离是圆的半径。(2)画圆步骤:定半径、定圆心、旋转一周。

二、圆的周长:

围成圆的曲线的长度叫做圆的周长,周长用字母C表示。

1、圆的周长总是直径的三倍多一些。

2、圆周率:圆的周长与直径的比值是一个固定值,叫做圆周率,用字母π表示。

即:圆周率π=周长÷直径≈

所以,圆的周长(c)=直径(d)×圆周率(π)—周长公式:c=πd,c=2πr

圆周率π是一个无限不循环小数,是近似值。

3、周长的变化的规律:半径扩大多少倍直径也扩大多少倍,周长扩大的倍数与半径、直径扩大的倍数相同。

4、xxx周长=圆周长一半+直径=πr+d

三、圆的面积s

1、圆面积公式的推导

如图把一个圆沿直径等分成若干份,剪开拼成长方形,份数越多拼成的图像越接近长方形。

圆的半径=长方形的宽

圆的周长的一半=长方形的长

长方形面积=长×宽

所以:圆的面积=圆的周长的一半(πr)×圆的半径(r)

S圆=πr×r=πr2

2、几种图形,在面积相等的情况下,圆的周长最短,而长方形的周长最长;反之,在周长相等的情况下,圆的面积则,而长方形的面积则最小。

周长相同时,圆面积,利用这一特点,篮子、盘子做成圆形。

3、圆面积的变化的规律:半径扩大多少倍,直径、周长也同时扩大多少倍,圆面积扩大的倍数是半径、直径扩大的倍数的平方倍。

4、环形面积=大圆–小圆=πR2-πr2

扇形面积=πr2×n÷360(n表示扇形圆心角的度数)

5、跑道:每条跑道的周长等于两xxx跑道合成的圆的周长加上两条直跑道的和。因为两条直跑道长度相等,所以,起跑线不同,相邻两条跑道起跑线也不同,间隔的距离是:2×π×跑道宽度。

一个圆的半径增加a厘米,周长就增加2πa厘米。

一个圆的直径增加b厘米,周长就增加πb厘米。

6、任意一个正方形的内切圆即圆的直径是正方形的边长,它们的面积比是4∶π。

7、常用数据

π= 2π= 3π= 4π= 5π=

小学数学知识点总结大全 第25篇

■用字母表示数

用字母表示数是代数的基本特点.既简单明了,又能表达数量关系的一般规律.

■用字母表示数的注意事项

1、数字与字母、字母和字母相乘时,乘号可以简xxx““或省略不写.数与数相乘,乘号不能省略.

2、当1和xxx母相乘时,“ 1” 省略不写.

3、数字和字母相乘时,将数字写在字母前面.

■含有字母的式子及求值

求含有字母的式子的值或利用公式求值,应注意书写格式

■等式与方程

表示相等关系的式子叫等式.

含有未知数的等式叫方程.

判断一个式子是不是方程应具备两个条件:一是含有未知数;二是等式.所以,方程一定是等式,但等式不一定是方程.

■方程的解和解方程

使方程左右两边相等的未知数的值,叫方程的解.

求方程的解的过程叫解方程.

■在列方程解文字题时,如果题中要求的未知数已经用字母表示,解答时就不需要写设,否则首先演将所求的未知数设为x.

■解方程的方法

1、直接运用四则运算中各部分之间的关系去解.如x-8=12

加数+加数=和 一个加数=和-另一个加数

被减数-减数=差 减数=被减数-差 被减数=差+减数

被乘数×乘数=积 一个因数=积÷另一个因数

被除数÷除数=商 除数=被除数÷商 被除数=除数×商

2、先把含有未知数x的项看作一个数,然后再解.如3x+20=41

先把3x看作一个数,然后再解.

3、按四则运算顺序先计算,使方程变形,然后再解.如×4-x=,

要先求出×4的积,使方程变形为10-x=,然后再解.

4、利用运算定律或性质,使方程变形,然后再解.如:

先利用运算定律或性质使方程变形为()x=20,然后计算括号里面使方程变形为10x=20,最后再解.

小学数学知识点总结大全 第26篇

【时分秒】

1、xxx有3根针,它们是时针、分针、秒针,其中走得最快的是秒针,走得最慢的是时针。时针最短,秒针最长。

2、xxx有12个数字,12个大格,60个小格;每两个数之间是1个大格,也就是5个小格。

3、时针走1大格是1小时;分针走1大格是5分钟,走1小格是1分钟;秒针走1大格是5秒钟,走1小格是1秒钟。

4、分针走1小格,秒针正好走1圈,秒针走1圈是60秒,也就是1分钟。

5、时针从一个数走到下一个数是1小时。分针从一个数走到下一个数是5分钟。秒针从一个数走到下一个数是5秒钟。

6、公式(每两个相邻的时间单位之间的进率是60):

1时=60分

1分=60秒

7、常用的时间单位:时、分、秒、年、月、日、世纪等。

1世纪=xxx年

1年=12个月

【分数的初步认识】

1、几分之一:把一个物体或一个图形平均分成几份,每一份就是它的几分之一。

几分之几:把一个物体或一个图形平均分成几份,取其中的几份,就是这个物体或图形的几分之几。

2、把一个整体平均分得的份数越多,它的每一份所表示的数就越小。

3、比较大小的方法:

①分子相同,分母小的分数反而大,分母大的分数反而小。

②分母相同,分子大的分数就大,分子小的分数就小。

4、分数加减法:

①同分母的分数加、减法的计算方法:同分母分数相加减,分母不变,分子相加、减。

②计算1减几分之几时,先把1xxx与减数分母相同的分数,再计算。

5、分数的意义:把一个整体平均分成若干份,表示几份就是这个整体的几分之几,所分的份数作分母,所取的份数作分子。

6、求一个数是另一个数的几分之几是多少的计算方法:先用这个数除以分母(求出1份的数量是多少),再用商乘分子(求出其中几份是多少)。

小学数学知识点总结大全 第27篇

角:

(1)角的静态定义:具有公共端点的两条不重合的射线组成的图形叫做角。

这个公共端点叫做角的顶点,这两条射线叫做角的两条边。

(2)角的动态定义:一条射线绕着它的端点从一个位置旋转到另一个位置所形成的图形叫做角。

所旋转射线的端点叫做角的顶点,开始位置的射线叫做角的始边,终止位置的射线叫做角的终边

角的符号:∠

角的种类:角的大小与边的长短没有关系;角的大小决定于角的两条边张开的程度,张开的越大,角就越大,相反,张开的越小,角则越小。

在动态定义中,取决于旋转的方向与角度。

角可以分为锐角、直角、钝角、平角、周角、负角、正角、优角、劣角、0角这10种。

以度、分、秒为单位的角的度量制称为角度制。此外,还有密位制、弧度制等。

(1)锐角:大于0°,小于90°的角叫做锐角。

(2)直角:等于90°的角叫做直角。

(3)钝角:大于90°而小于180°的角叫做钝角。

乘法:

乘法是指一个数或量,增加了多少倍。例如4乘5,就是4增加了5倍率,也可以说成5个4连加。

乘法算式中各数的名称:

“×”是乘号,乘号前面和后面的数叫做因数,“=”是等于号,等于号后面的数叫做积。

例:10(因数)×(乘号)200(因数)=(等于号)20xx(积)

平行:

在平面上两条直线、空间的两个平面或空间的一条直线与一平面之间没有任何公共点时,称它们平行。如图直线AB平行于直线CD,记作AB∥CD。平行线永不相交。

垂直:

两条直线、两个平面相交,或一条直线与一个平面相交,如果交角成直角,叫做互相垂直。

平行四边形:

在同一平面内有两组对边分别平行的四边形叫做平行四边形。

梯形:

梯形是指一组对边平行而另一组对边不平行的四边形。

平行的两边叫做梯形的底边,其中长边叫下底,短边叫上底;也可以单纯的认为上面的一条叫上底,下面一条叫下底。不平行的两边叫腰;夹在两底之间的垂线段叫梯形的高。

除法:

除法法则:除数是几位,先看被除数的前几位,前几位不够除,多看一位,除到哪位,商就写在哪位上面,不够商一,0占位。xxx要比除数小,如果商是小数,商的小数点要和被除数的小数点对齐;如果除数是小数,xxx除数是整数的除法再计算。

小学数学知识点总结大全 第28篇

第一单元 方程

1、表示相等关系的式子叫做等式。

2、含有未知数的等式是方程。

3、方程一定是等式;等式不一定是方程。等式方程

4、等式两边同时加上或减去同一个数,所得结果仍然是等式。这是等式的性质。

等式两边同时乘或除以同一个不等于0的数,所得结果仍然是等式。这也是等式的性质。

5、求方程中未知数的过程,叫做解方程。

解方程时常用的关系式:

一个加数=和-另一个加数 减数=被减数-差 被减数=减数+差

一个因数=积另一个因数 除数=被除数商 被除数=商除数

注意:解完方程,要养成检验的好习惯。

6、五个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间的一个数的5倍。奇数个连续的自然数(或连续的奇数,连续的偶数)的和个数=中间数

7、4个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间两个数或首尾两个数的和个数2(高斯求和公式)

8、列方程解应用题的思路:A、审题并弄懂题目的已知条件和所求问题。B、理清题目的等量关系。C、设未知数,一般是把所求的数用X表示。D、根据等量关系列出xxx、解方程F、检验G、作答。

第二单元 确定位置

1、确定位置时,竖排叫做列,横排叫做行。确定第几列一般从左往右数,确定第几行一般从前往后数。

2、数对(x,y)第1个数表示第几列(x),第2个数表示第几行(y),写数对时,是先写列数,再写行数。

3、从地球仪上看,连接北极和南极两点的是经线,垂直于经线的线圈是纬线,经线和纬线、分别按一定的顺序编排表示经度和纬度,经度和纬度都用度()、分()、秒()表示。

4、将某个点向左右平移几格,只是列(x)上的数字发生加减变化,向左减,向右加,行(y)上的数字不变。举例:将点(6,3)的位置向右平移2个单位后的位置是(8,3),列6+2=8;将点(6,3)的位置向左平移2个单位后的位置是(4,3),列6-2=4。

5、将某个点向上下平移几格,只是行(y)上的数字发生加减变化,向上减,向下加,列(x)上的数字不变。举例:将点(6,3)的位置向上平移2个单位后的位置是(6,5),行3+2=5;将点(6,3)的位置向下平移2个单位后的位置是(6,1),列3-2=1。

第三单元 公倍数和公因数

1、一个数最小的因数是1,最大的因数是它本身,一个数因数的个数是有限的。

一个数最小的倍数是它本身,没有最大的倍数。一个数倍数的个数是无限的。

一个数最大的因数等于这个数最小的倍数。

2、几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,用符号[ ,]表示。几个数的公倍数也是无限的。

3、两个数公有的因数,叫做这两个数的公因数,其中最大的一个,叫做这两个数的最xxx数,用符号( , )。两个数的公因数也是有限的。

4、两个素数的积一定是合数。举例:35=15,15是合数。

5、两个数的最小公倍数一定是它们的最xxx数的倍数。举例:[6,8]=24,(6,8)=2,24是2的倍数。

6、求最xxx数和最小公倍数的方法:

倍数关系的两个数,最xxx数是较小的数,最小公倍数是较大的数。举例:15和5,[15,5]=15,(15,5)=5

素数关系的两个数,最xxx数是1,最小公倍数是它们的乘积。举例:[3,7]=21,(3,7)=1

一个素数和一个合数,最xxx数是1,最小公倍数是它们的乘积。[5,8]=40,(5,8)=1

相邻关系的两个数,最xxx数是1,最小公倍数是它们的乘积。[9,8]=72,(9,8)=1

特殊关系的数(两个都是合数,一个是奇数,一个是偶数,但他们之间只有一个公因数1),比如4和9、4和15、10和21,最xxx数是1,最小公倍数是它们的乘积。

一般关系的两个数,求最xxx数用列举法或短除法,求最小公倍数用大数翻倍法或短除法。(详见课本31页内容)

第四单元 认识分数

1、一个物体、一个计量单位或由许多物体组成的一个整体,都可以用自然数1来表示,通常我们把它叫做单位1。把单位1平均分成若干份,表示这样的一份或几份的数叫做分数。表示其中一份的数,叫做分数单位。一个分数的分母是几,它的分数单位就是几分之一。

2、分母越大,分数单位越小,最大的分数单位是2(1)。

3、举例说明一个分数的意义:7(3)表示把单位1平均分成7份,表示这样的3份.还表示把3平均分成7份,表示这样的1份。7(3)吨表示把1吨平均分成7份,表示这样的3份.还表示把3吨平均分成7份,表示这样的1份。

4、4米的5(1)和1米的5(4)同样长。

5、分子比分母小的分数叫做真分数;分子比分母大或者分子和分母相等的分数叫做假分数。6、真分数小于1。假分数大于或等于1。真分数总是小于假分数。

7、男生人数是女生人数的4(3),则女生人数是男生人数的3(4)。

8、分数与除法的关系:被除数相当于分数的分子,除数相当于分数的分母。

被除数除数= 除数(被除数)如果用a表示被除数,b表示除数,可以xxxab=b(a)(b0)

9、能化成整数的假分数,它们的分子都是分母的倍数。反过来,分子是分母倍数的假分数,都能化成整数。(用分子除以分母)

10、分子不是分母倍数的假分数,可以xxx整数和真分数合成的数,通常叫做带分数。带分数是假分数的另一种形式。例如,3(4)就可以看作是3(3)(就是1)和3(1)合成的数,写作

1 3(1),读作一又三分之一。带分数都大于真分数,同时也都大于1。

11、把分数化成小数的方法:用分数的分子除以分母。

12、把小数化成分数的方法:如果是一位小数就xxxxxx几,是两位小数就xxx百分之几,是三位小数就xxx千分之几,

13、把假分数转化成整数或带分数的方法:分子除以分母,如果分子是分母的倍数,可以化成整数;如果分子不是分母的倍数,可以化成带分数,除得的商作为带分数的整数部分,xxx作为分数部分的分子,分母不变。

14、把带分数化成假分数的方法:把整数乘分母加分子作为假分数的分子,分母不变。

15、把不是0的整数化成假分数的方法:用整数与分母相乘的积作分子。

16、大于7(3)而小于7(5)的分数有无数个;分数单位是7(1)只有7(4)一个。

17、分数大小比较的应用题:工作效率大的快,工作时间小的快。

18、一些特殊分数的值:

2(1) = 4(1) = 4(3) = 5(1) = 5(2) = 5(3) =

5(4) = 8(1) = 8(3) = 8(5) = 8(7) = 10(1) = 16(1) =

16(3) = 16(5) = 20(1) = 25(1) = 50(1) = xxx(1) =

19、求一个数是(占)另一个数的几分之几,用除法列算式计算。

第五单元 找规律

1、单向平移求不同的和的个数规律:

方格的总个数每次框出的个数+1=得到不同和的个数

2、双向平移

如果平移的方向既有横又有纵,我们只要分别探究出两个方向上各有几种不同的排列方法(和单向平移的规律一样),相乘的积是多少一共就有多少种不同的排列方法。

一共有多少种贴法=沿着长的贴法沿着宽的贴法

3、中间的数框出的个数=框出的每个数的和

框出的每个数的和框出的个数=中间的数

(注意:有些数字的和是不能框出来的,(1)是框出的每个数的和框出的个数中间的数;(2)是虽然框出的每个数的和框出的个数=中间的数,但中间的数在边上;(3)出现有空白方格。)

第六单元 分数的基本性质

1、分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变,这是分数的基本性质。它和整数除法中的商不变规律类似。

2、分子和分母只有公因数1,这样的分数叫最简分数。约分时,通常要约成最简分数。

3、把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。

约分方法:直接除以分子、分母的最xxx数。 例如:

4、把几个分母不同的分数(也叫做异分母分数)分别化成和原来分数相等的同分母分数,叫做通分。通分过程中,相同的分母叫做这几个分数的公分母。通分时,一般用原来几个分母的最小公倍数作公分母。

5、比较异分母分数大小的方法:(1)先通分转化成同分母的分数再比较。(2)化成小数后再比较。(3)先通分转化成同分子的分数再比较。(4)十字相乘法。

球的反弹实验

球的反弹高度实验的结论:

(1)用同一种球从不同高度下落,表示反弹高度与下落高度关系的分数大致不变,这说明同一种球的弹性是一样的。

(2)用不同的球从同一个高度下落,表示反弹高度与下落高度关系的分数是不一样的,这说明不同的球的弹性是不一样的。

第七单元 统计

1、从复式折线统计图中,不仅能看出数量的多少和数量增减变化的情况,而且便于这两组相关数据进行比较。

2、作复式折线统计图步骤:

①写标题和统计时间;

②注明图例(实线和xxx表示);

③分别描点、标数;

④实线和xxx的区分(画线用直尺)。

注意:先画表示实线的统计图,再画xxx统计图。不能同时描点画线,以免混淆。(也可以先画xxx的统计图)

第八单元 分数加法和减法

1、计算异分母分数加减法时,要先通分,再按同分母分数加减法计算;计算结果能约分要约成最简分数,是假分数的要化为带分数;计算后要验算。

2、分母的最xxx数是1,分子都是1的分数相加,得数的分母是两个分母的积,分子是两个分母的和。分母的最xxx数是1,分子都是1的分数相减,得数的分母是两个分母的积,分子是两个分母的差。

3、分母分子相差越大,分数就越接近0;分子接近分母的一半,分数就接近2(1);分子分母越接近,分数就越接近1。

4、分数加、减法混合运算顺序与整数、小数加减混合运算顺序相同。没有小括号,从左往右,依次运算;有小括号,先算小括号里的算式。

5、整数加法的运算律,整数减法的运算性质同样可以在分数加、减法中运用,使计算简便。乘法分配律也适用分数的简便计算。

6、裂项公式(用于特殊的简便计算)

1、由线段围成的图形(三角形、长方形、正方形、梯形、平行四边形)能够密铺

2、由曲线围成的图形(圆)不能够密铺。

第九单元 解决问题策略

1、倒推法是一种非常重要的数学思考方法,在计算、图形转换、时间推算等许多实际问题中都有应用。倒推时还用到一些反义词呢

2、要正确解决多次倒推的策略就是对题目先进行整理,通过整理过程来理清思路,再倒推回去或列方程解答。

3、对于条件出现一半的复杂倒推题目,通常通过画线段图帮助分析列算式来解决。

第十单元 圆

1、圆是由一条曲线围成的平面图形。(以前所学的图形如长方形、梯形等都是由几条线段围成的平面图形)

2、画圆时,针尖固定的一点是圆心,通常用字母O表示;连接圆心和圆上任意一点的线段是半径,通常用字母r表示;通过圆心并且两端都在圆上的线段是直径,通常用字母d表示。在同一个圆里,有无数条半径和直径。在同一个圆里,所有半径的长度都相等,所有直径的长度都相等。

3、用圆规画圆的过程:先两脚叉开,再固定针尖,最后旋转成圆。画圆时要注意:针尖必须固定在一点,不可移动;两脚间的距离必须保持不变;要旋转一周。

4、在同一个圆里,半径是直径的一半,直径是半径的2倍。(d=2r, r=d2)

5、圆是轴对称图形,有无数条对称轴,对称轴就是直径。

6、圆心决定圆的位置,半径决定圆的大小。所以要比较两圆的大小,就是比较两个圆的直径或半径。

7、正方形里最大的圆。两者联系:边长=直径

画法:(1)画出正方形的两条对角线;(2)以对角线交点为圆心,以边长为直径画圆。

8、长方形里最大的圆。两者联系:宽=直径

画法:(1)画出长方形的两条对角线;(2)以对角线交点为圆心,以边长为直径画圆。

9、同一个圆内的所有线段中,圆的直径是最长的。

10、车轮滚动一周前进的路程就是车轮的周长。

每分前进米数(速度)=车轮的周长转数

11、任何一个圆的周长除以它直径的商都是一个固定的数,我们把它叫做圆周率。

用字母(读pi)表示。是一个无限不循环小数。=

我们在计算时,一般保留两位小数,取它的近似值。

12、如果用C表示圆的周长,那么C=d或C = 2r

13、求圆的半径或直径的方法:d = C圆 r= C圆 2= C圆2

14、xxx的周长等于圆周长的一半加一条直径。 Cxxx= r+2r Cxxx= d2+d

15、常用的的倍数:

16、圆的面积公式:S圆=r2。圆的面积是半径平方的倍。

17、圆的面积推导:圆可以切拼成近似的长方形,长方形的面积与圆的面积相等(即S长方形=S圆);长方形的宽是圆的半径(即b=r);长方形的长是圆周长的一半(即a=2(C)=r)。即:S长方形= a b

S圆 = r r

= r2

S圆 = r2

注意:切拼后的长方形的周长比圆的周长多了两条半径。C长方形=2r+2r=C圆+d

18、xxx的面积是圆面积的一半。Sxxx=r22

19、大小两个圆比较,半径的倍数=直径的倍数=周长的倍数,

面积的倍数=半径的倍数2

20、周长相等的平面图形中,圆的面积最大;面积相等的平面图形中,圆的周长最短。

21、求圆环的面积一般是用外圆的面积减去内圆的面积,还可以利用乘法分配律进行简便计算。S圆环=r2=(R2-r2)

22、常用的平方数:112=121 122=144 132=169 142=196 152=225 162=256 172=289 182=324 192=361 202=400

小学数学知识点总结大全 第29篇

第一单元小数乘法

1、小数乘整数:意义——求几个相同加数的和的简便运算。

如:×3表示的3倍是多少或3个是多少。

计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

2、小数乘小数:意义——就是求这个数的几分之几是多少。

如:×(整数部分是0)就是求的xxx八是多少。

×(整数部分不是0)就是求的'倍是多少。

计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。

3、规律:一个数(0除外)乘大于1的数,积比原来的数大;一个数(0除外)乘小于1的数,积比原来的数小。

4、求近似数的方法一般有三种:

⑴四舍五入法;⑵进一法;⑶去尾法

5、计算钱数,保留两位小数,表示计算到分。保留一位小数,表示计算到角。

6、小数四则运算顺序跟整数是一样的。

7、运算定律和性质:

加法:加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)

乘法:乘法交换律:a×b=b×a

乘法结合律:(a×b)×c=a×(b×c)见找4或,见找8或

乘法分配律:(a+b)×c=a×c+b×c或a×c+b×c=(a+b)×c(b=1时,省略b)

变式:(a-b)×c=a×c-b×c或a×c-b×c=(a-b)×c

减法:减法性质:a-b-c=a-(b+c)

除法:除法性质:a÷b÷c=a÷(b×c)

【第二单元位置】

8、确定物体的位置,要用到数对(先列:即竖,后行即横排)。用数对要能解决两个问题:一是给出一对数对,要能在坐标途中标出物体所在位置的点。二是给出坐标中的一个点,要能用数对表示。

【第三单元小数除法】

9、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。如:÷表示已知两个因数的积,一个因数是,求另一个因数是多少。

10、小数除以整数的计算方法:小数除以整数,按整数除法的方法去除,商的小数点要和被除数的小数点对齐。整数部分不够除,商0,点上小数点。如果有xxx,要添0再除。

11、除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按“除数是整数的小数除法”的法则进行计算。

注意:如果被除数的位数不够,在被除数的末尾用0补足。

12、在实际应用中,小数除法所得的商也可以根据需要用“四舍五入”法保留一定的小数位数,求出商的近似数。

13、除法中的变化规律:

①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。

②除数不变,被除数扩大(缩小),商随着扩大(缩小)。

③被除数不变,除数缩小,商反而扩大;被除数不变,除数扩大,商反而缩小。

14、(P28)循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。循环节:一个循环小数的小数部分,依次不断重复出现的数字。如……的循环节是32.简写作。

15、小数部分的位数是有限的小数,叫做有限小数。小数部分的位数是无限的小数,叫做无限小数。小数分为有限小数和无限小数

小学数学知识点总结大全 第30篇

一、百分数的意义:

表示一个数是另一个数的百分之几的数叫做百分数。百分数又叫百分比或百分率,百分数不能带单位。

注意:百分数是专门用来表示一种特殊的倍比关系的,表示两个数的比。

1、百分数和分数的区别和联系:

(1)联系:都可以用来表示两个量的倍比关系。

(2)区别:意义不同:百分数只表示倍比关系,不表示具体数量,所以不能带单位。分数不仅表示倍比关系,还能带单位表示具体数量。百分数的分子可以是小数,分数的分子只可以是整数。

注意:百分数在生活中应用广泛,所涉及问题基本和分数问题相同,分母是xxx的分数并不是百分数,必须把分母xxx“%”才是百分数,所以“分母是xxx的分数就是百分数”这句话是错误的。“%”的两个0要小写,不要与百分数前面的数混淆。一般来讲,出勤率、成活率、合格率、正确率能达到xxx%,出米率、出油率达不到xxx%,完成率、增长了百分之几等可以超过xxx%。一般出粉率在70%、80%,出油率在30%、40%。

2、小数、分数、百分数之间的互化

(1)百分数化小数:小数点向左移动两位,去掉“%”。

(2)小数化百分数:小数点向右移动两位,添上“%”。

(3)百分数化分数:先把百分数xxx分母是xxx的分数,然后再化简成最简分数。

(4)分数化百分数:分子除以分母得到小数,(除不尽的保留三位小数)然后化成百分数。

(5)小数化分数:把小数成分母是10、xxx、xxx0等的分数再化简。

(6)分数化小数:分子除以分母。

二、百分数应用题

1、求常见的百分率,如:达标率、及格率、成活率、发芽率、出勤率等求百分率就是求一个数是另一个数的百分之几。

2、求一个数比另一个数多(或少)百分之几,实际生活中,人们常用增加了百分之几、减少了百分之几、节约了百分之几等来表示增加、或减少的幅度。

求甲比乙多百分之几:(甲-乙)÷乙

求乙比甲少百分之几:(甲-乙)÷甲

3、求一个数的百分之几是多少。一个数(单位“1”)×百分率

4、已知一个数的百分之几是多少,求这个数。

部分量÷百分率=一个数(单位“1”)

5、折扣、打折的意义:几折就是xxx几也就是百分之几十

折扣、成数=几分之几、百分之几、小数

八折=八成=xxx八=百分之八十=

八五折=八成五=xxx八点五=百分之八十五=

五折=五成=xxx五=百分之五十=半价

6、利率

(1)存入银行的钱叫做本金。

(2)取款时银行多支付的钱叫做利息。

(3)利息与本金的比值叫做利率。

利息=本金×利率×时间

税后利息=利息-利息的应纳税额=利息-利息×5%

注:国债和教育储蓄的利息不纳税

7、百分数应用题型分类

(1)求甲是乙的百分之几——(甲÷乙)×xxx%=百分之几

(2)求甲比乙多百分之几——(甲-乙)÷乙×xxx%

(3)求甲比乙少百分之几——(乙-甲)÷乙×xxx%

小学数学知识点总结大全 第31篇

第一章————除法

1、用乘法口诀做除法,xxx一定要比除数小;

2、应用题中,除数和xxx的单位不一样;

商的单位是问题的单位,xxx的单位和被除数的单位相同;

3、解决生活问题,如提的问题是“至少需要几条船?”,用进一法(用商加1)”,乘船、坐车、坐板凳等,读懂题目再作答。

第二章————方向与位置(认识方向)

1、地图上的方向口诀:上北下南,左西右东;

辨认方向时要画方向标。

2、“小猫在小狗的()方,()在小狗的东面”,是以小狗家为中心点,画出方位坐标,确定方向;

“小猪在xxx的()方”,“xxx的()方是小猪”,是以xxx家为中心点,画出方位坐标,确定方向。

3、太阳早上从东边升起,西边落下;

指南针一头指着(),一头指着()。xxx早上面向太阳时,他的前面是(),后面是(),左面是(),右面是()

4、当吹东南风时,红旗往()飘;

吹西北风时,红旗往()飘。

第三章————生活中的大数(认识xxx00以内的数)

1、计数器上从右边数起第一位是()位,第二位是()位,第三位是()位,第四位是()位,千位的左边是()位,右边是()位。

2、一个四位数最高位是()位,它的千位是5,个位是2,其他的数位是0,它是()。

3、在8536中,8在()位上,表示()。5在()位上,表示()。3在()位上,表示()。6在()位上,表示()。

4、由三个千,五个一组成的数是(),由9个一,两个百和一个千组成的数是()。

5、读数时,要从高读起,中间有一个或两个0,都只读一个0个“零”;

末尾不管有几个“0”,都不读;

写数,末尾不管有几个0,都不读。写数时,从高位写起,按照数位顺序表写,中间或末尾哪一位上没有数,就写“0”占位。

6、10个十是(),10个一百是(),10个一千是(),xxx个一百是()。xxx00里面有()个百,xxx0里面有()个十。

7、最大的三位数是(),最小的三位数是()。最大的四位数是(),最小的四位数是()。

8、比较大小时,先比较位数,位数多的数就大,位数少的数就小;

位数相同时,从最高位开始比较,最高位上的数字相同的,就比下一位,直到比出大小。从大到小用“>”,从小到大用“<”。

第四章————测量1、毫米(mm)、厘米(cm)、分米(dm)、米(m),相邻单位之间的进率是“10”;

2、1米=10分米,1分米=10厘米,1厘米=10毫米,1米=xxx厘米,1分米=xxx毫米,xxx0米=1千米;

3、长度单位比较大小,首先要观察单位,换成统一的单位之后才能比较;

4、长度单位的加减法,米加米,分米加分米.......就是把相同的单位进行加减。

第五章————加与减1、口算整百加减整百时,想成几个百加减几个百,加减整十数的算理也相同。

2、计算时要注意:(1)、相同数位要对齐,从个位算起。(2)、计算加法时,哪一位相加满十,要向前一位“进一”。(3)、计算减法时,哪一位不够减时,要向前一位“借1”,但是不要忘记退位时要减1;

3、在估算中,如果估算到百位,就看十位数是多少,如果十位上的数大于5,则百位进1,十位和个位舍去,变为0,如估算678,就变为700;

如果十位上的数小于5,则百位不变,十位和个位舍去,变为0,如估算607,就变为600;

4、加数+加数=和一个加数=和-另一个加数如:()+156=368(用368-156计算)280+()=760(用760-280计算)

5、被减数-减数=差被减数=减数+差减数=被减数-差如:()-156=368(用156+368计算)

980-()=760(用980-760计算)

6、加法的验算方法:(1)交换加数的位置,看和是否相同,(2)用和减去其中一个加数,看是否等于另一个加数;

7、减法的验算方法:(1)用被减数减去差,看结果是否等于减数,(2)用减数加上差,看结果是否等于被减数。注意:运算时不要抄错数,也不要直接把验算结果抄上。

第六章————认识角1、每个角都是由1个顶点和2条边组成;

2、按角的大小,将角分为锐角、直角、钝角,所有的直角都相等,比直角小的是锐角,比直角大的是钝角。要知道一个角是什么角,可以用三角板上的直角比一比。

3、比较角的大小时要注意:角的大小与边的长短无关,与角的xxx大小有关,xxx越大角就越大;

4、正方形有四个直角,四条边都相等;

长方形有四条边,四个直角,长方形的对边相等;

5、平行四边形有四条边,有2个锐角,2个钝角,对边相等,对角相等。

第七章————时、分、秒1、xxx有12个大格,每个大格里有5个小格,一共有60个小格;

2、秒针走一小格是1秒,走一大格是5秒,走一圈是60秒,就是1分钟;

3、分针走一小格是1分,走一大格是5分,走一圈是60分,也就是1小时;

4、时针走一大格是1小时,走一圈是12小时;

5、时、分、秒相邻单位的进率是60;

1时=60分1分=60秒6、比较时间,首先要观察,统一单位之后再比较大小。

7、时间的加减:分减分,时减时,当分不够减时,要向前一位借1,化成60,再相加减;

第八章————统计1、记录并学会计算,谁多,谁少。

小学数学知识点总结大全 第32篇

一、学习目标:

1.知道生活中有比万大的数;认识计数单位“万、十万、百万、千万和亿”,类推每相邻两个计数单位之间的关系,知道数级、数位;

2使学生认识射线,直线,能识别射线、直线和线段三个概念之间的联系和区别;认识角和角的表示方法,知道角的各部分名称;

3,在理解的基础上,掌握整数乘法的口算方法;培养类推迁移的能力和口算的能力;

4.结合生活情境,通过自主探究活动,初步认识平行线、垂线;独立思考能力与合作精神得到和谐发展;

5.在理解的基础上,掌握用整十数除商是一位数的口算方法;培养类推迁移的能力和抽象概括的能力。

二、学习难点:

1.认识计数单位“万、十万、百万、千万和亿”;掌握每相邻两个计数单位之间的关系;

2.角的意义;射线、直线和线段三者之间的关系;

3.掌握整数乘法的口算方法;培养学生养成认真思考的良好学习习惯;

4.初步认识平行线与垂线;理解永不相交的含义;

5.掌握用整十数除商是一位数的口算方法;培养学生养成认真计算的良好学习习惯。

三、知识点概括总结:

1.亿以内的数的认识:

十万:10个一万;

一百万:10个十万;

一千万:10个一百万;

一亿:10个一千万。

2.数级:数级是为便于人们记读阿拉伯数的一种识读方法,在位值制(数位顺序)的基础上,以三位或四位分级的原则,把数读,写出来。

通常在阿拉伯数的书写上,以小数点或者空格作为各个数级的标识,从右向左把数分开。

3.数级分类:

(1)四位分级法:即以四位数为一个数级的分级方法。

我国读数的习惯,就是按这种方法读的。如:万(数字后面4个0)、亿(数字后面8个0)、兆(数字后面12个0,这是中法计数)……。这些级分别叫做个级,万级,亿级……。

(2)三位分级法:即以三位数为一个数级的分级方法。

这西方的分级方法,这种分级方法也是国际通行的分级方法。如:千,数字后面3个0、百万,数字后面6个0、十亿,数字后面9个0……。

4.数位:数位是指写数时,把数字并列排成横列,一个数字占有一个位置,这些位置,都叫做数位。

从右端算起,第一位是“个位”,第二位是“十位”,第三位是“百位”,第四位是“千位”,第五位是“万位”,等等。

这就说明计数单位和数位的概念是不同的。

5.数的产生:

阿拉伯数字的由来:古代印度人创造了阿拉伯数字后,大约到了公元7世纪的时候,这些数字传到了阿拉伯地区。到13世纪时,意大利数学家斐波那契写出了《算盘书》,在这本书里,他对阿拉伯数字做了详细的介绍。后来,这些数字又从阿拉伯地区传到了欧洲,欧洲人只知道这些数字是从阿拉伯地区传入的,所以便把这些数字叫做阿拉伯数字。以后,这些数字又从欧洲传到世界各国。

阿拉伯数字传入我国,大约是13到14世纪。由于我国古代有一种数字叫“筹码”,写起来比较方便,所以阿拉伯数字当时在我国没有得到及时的推广运用。本世纪初,随着我国对外国数学成就的吸收和引进,阿拉伯数字在我国才开始慢慢使用,阿拉伯数字在我国推广使用才有xxx多年的历史。阿拉伯数字现在已成为人们学习、生活和交往中最常用的数字了。

小学数学知识点总结大全 第33篇

角:

(1)角的静态定义:具有公共端点的两条不重合的射线组成的图形叫做角。

这个公共端点叫做角的顶点,这两条射线叫做角的两条边。

(2)角的动态定义:一条射线绕着它的端点从一个位置旋转到另一个位置所形成的图形叫做角。

所旋转射线的端点叫做角的顶点,开始位置的射线叫做角的始边,终止位置的射线叫做角的终边

角的符号:∠

角的种类:角的大小与边的长短没有关系;角的大小决定于角的两条边张开的程度,张开的越大,角就越大,相反,张开的越小,角则越小。

在动态定义中,取决于旋转的方向与角度。

角可以分为锐角、直角、钝角、平角、周角、负角、正角、优角、劣角、0角这10种。

以度、分、秒为单位的角的度量制称为角度制。此外,还有密位制、弧度制等。

(1)锐角:大于0°,小于90°的角叫做锐角。

(2)直角:等于90°的角叫做直角。

(3)钝角:大于90°而小于180°的角叫做钝角。

乘法:

乘法是指一个数或量,增加了多少倍。例如4乘5,就是4增加了5倍率,也可以说成5个4连加。

乘法算式中各数的名称:

“×”是乘号,乘号前面和后面的数叫做因数,“=”是等于号,等于号后面的数叫做积。

例:10(因数)×(乘号)200(因数)=(等于号)2000(积)

平行:

在平面上两条直线、空间的两个平面或空间的一条直线与一平面之间没有任何公共点时,称它们平行。如图直线AB平行于直线CD,记作AB∥CD。平行线永不相交。

垂直:

两条直线、两个平面相交,或一条直线与一个平面相交,如果交角成直角,叫做互相垂直。

平行四边形:

在同一平面内有两组对边分别平行的四边形叫做平行四边形。

梯形:

梯形是指一组对边平行而另一组对边不平行的四边形。

平行的两边叫做梯形的底边,其中长边叫下底,短边叫上底;也可以单纯的认为上面的一条叫上底,下面一条叫下底。不平行的两边叫腰;夹在两底之间的垂线段叫梯形的高。

除法:

除法法则:除数是几位,先看被除数的前几位,前几位不够除,多看一位,除到哪位,商就写在哪位上面,不够商一,0占位。xxx要比除数小,如果商是小数,商的小数点要和被除数的小数点对齐;如果除数是小数,xxx除数是整数的除法再计算。