榆树范文网

初二的数学知识点总结(热门40篇)

121

初二的数学知识点总结 第1篇

等腰xxx:有两条边相等的xxx叫等腰xxx、

相等的两条边叫腰;两腰的夹角叫顶角;顶角所对的边叫底;腰与底的夹角叫底角。

等腰xxx性质:

(1)具有一般xxx的边角关系

(2)等边对等角;

(3)底边上的高、底边上的中线、顶角平分线互相重合;

(4)是轴对称图形,对称轴是顶角平分线;

(5)底边小于腰长的两倍并且大于零,腰长大于底边的一半;

(6)顶角等于180°减去底角的两倍;

(7)顶角可以是锐角、直角、钝角,而底角只能是锐角、

等腰xxx分类:可分为腰和底边不等的等腰xxx及等边xxx、

等边xxx性质:

①具备等腰xxx的一切性质。

②等边xxx三条边都相等,三个内角都相等并且每个都是60°。

5、 等腰xxx的判定:

①利用定义;

②等角对等边;

等边xxx的判定:

①利用定义:三边相等的xxx是等边xxx

②有一个角是60°的等腰xxx是等边xxx、

含30°锐角的直角xxx边角关系:在直角xxx中,30°锐角所对的直角边等于斜边的一半。

xxx边角的不等关系;长边对大角,短边对小角;大角对长边,小角对短边。

初二的数学知识点总结 第2篇

1.意义:xxx一边与另一边的延长线组成的角叫做xxx的外角.如图,∠ACD为△ABC的一个外角,∠BCE也是△ABC的一个外角,这两个角为对顶角,大小相等.

2.性质:

①xxx的一个外角等于与它不相邻的两个内角的和

②xxx的一个外角大于与它不相邻的任何一个内角,如图中,∠ACD=∠A+∠B , ∠ACD>∠A , ∠ACD>∠B.

③xxx的一个外角与与之相邻的内角互补3.外角个数

过xxx的一个顶点有两个外角,这两个角为对顶角(相等),可见一个xxx共有六个外角.

初二的数学知识点总结 第3篇

一、实数的概念及分类

1、实数的分类

一是分类是:正数、负数、0;

另一种分类是:有理数、无理数

将两种分类进行组合:负有理数,负无理数,0,正有理数,正无理数

2、无理数:无限不循环小数叫做无理数。

在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:

(1)开方开不尽的数,如等;

(2)有特定意义的数,如圆周率π,或化简后含有π的数,如+8等;

(3)有特定结构的数,如…等;

(4)某些三角函数值,如sin60o等

二、实数的倒数、相反数和绝对值

1、相反数

实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=—b,反之亦成立。

2、绝对值

在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。(|a|≥0)。零的绝对值是它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。

3、倒数

如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的.数是1和-1。零没有倒数。

4、数轴

规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。

解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。

初二的数学知识点总结 第4篇

1.xxx的概念

由不在同一直线上的三条线段首尾顺次连结所组成的图形叫做xxx要点:

①三条线段;

②不在同一直线上;

③首尾顺次相接.

2.xxx的表示

通常用三个大写字母表示xxx的顶点,如用A、B、C表示xxx的三个顶点时,此xxx可记作△ABC,其中线段AB、BC、AC是xxx的三条边,∠A、∠B、∠C分别表示xxx的三个内角.3.xxx中的三种重要线段

xxx的角平分线、中线、高线是xxx中的三种重要线段.

(1)xxx的角平分线:xxx一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做xxx的角平分线.

注意:

①xxx的角平分线是一条线段,而角的平分线是经过角的顶点且平分此角的一条射线.

②xxx有三条角平分线且相交于一点,这一点一定在xxx的内部.

③xxx的角平分线画法与角平分线的画法相同,可以用量角器画,也可通过尺规作图来画.

(2)xxx的中线:在一个xxx中,连结一个顶点和它的对边中点的线段叫做xxx的中线.注意:①xxx有三条中线,且它们相交xxx内部一点,交点叫重心.

②画xxx中线时只需连结顶点及对边的中点即可.

(3)xxx的高线:从xxx一个顶点向它的对边作垂线,顶点和垂足间的线段叫做xxx的高。注意:

①xxx的三条高是线段

②画xxx的高时,只需要xxx一个顶点向对边或对边的延长线作垂线,连结顶点与垂足的线段就是该边上的高.

初二的数学知识点总结 第5篇

一、 在平面内,确定物体的位置一般需要两个数据。

二、平面直角坐标系及有关概念

1、平面直角坐标系

在平面内,两条互相垂直且有公共原点的数轴,组成平面直角坐标系。其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;x轴和y轴统称坐标轴。它们的公共原点O称为直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。

2、为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。

注意:x轴和y轴上的点(坐标轴上的点),不属于任何一个象限。

3、点的坐标的概念

对于平面内任意一点P,过点P分别x轴、y轴向作垂线,垂足在上x轴、y轴对应的数a,b分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标。

点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有,分开,横、纵坐标的位置不能颠倒。平面内点的坐标是有序实数对,当 时,(a,b)和(b,a)是两个不同点的坐标。

平面内点的与有序实数对是一一对应的。

4、不同位置的点的坐标的特征

(1)、各象限内点的坐标的特征

点P(x,y)在第一象限:x0

点P(x,y)在第二象限:x0

点P(x,y)在第三象限:x0

点P(x,y)在第四象限:x0

(2)、坐标轴上的点的特征

点P(x,y)在x轴上,y=0 ,x为任意实数

点P(x,y)在y轴上,x=0 ,y为任意实数

点P(x,y)既在x轴上,又在y轴上, x,y同时为零,即点P坐标为(0,0)即原点

(3)、两条坐标轴夹角平分线上点的坐标的特征

点P(x,y)在第一、三象限夹角平分线(直线y=x)上,x与y相等

点P(x,y)在第二、四象限夹角平分线上,x与y互为相反数

(4)、和坐标轴平行的直线上点的坐标的特征

位于平行于x轴的直线上的各点的纵坐标相同。

位于平行于y轴的直线上的各点的横坐标相同。

(5)、关于x轴、y轴或原点对称的点的坐标的特征

点P与点p关于x轴对称 横坐标相等,纵坐标互为相反数,即点P(x,y)关于x轴的对称点为P(x,-y)

点P与点p关于y轴对称 纵坐标相等,横坐标互为相反数,即点P(x,y)关于y轴的对称点为P(-x,y)

点P与点p关于原点对称 横、纵坐标均互为相反数,即点P(x,y)关于原点的对称点为P(-x,-y)

(6)、点到坐标轴及原点的距离

点P(x,y)到坐标轴及原点的距离:

(1)点P(x,y)到x轴的距离等于|y|;

(2)点P(x,y)到y轴的距离等于|x|;

(3)点P(x,y)到原点的距离等于根号x*x+y*y

三、坐标变化与图形变化的规律:

坐标(x,y)的变化

图形的变化

x a或y a

被横向或纵向拉长(压缩)为原来的a倍

x a,y a

放大(缩小)为原来的a倍

x (-1)或y (-1)

关于y轴或x轴对称

x (-1),y (-1)

关于原点成中心对称

x +a或y+ a

沿x轴或y轴平移a个单位

x +a,y+ a

沿x轴平移a个单位,再沿y轴平移a个单

初二的数学知识点总结 第6篇

一、定义

1、全等形:形状大小相同,能完全重合的两个图形、

2、全等xxx:能够完全重合的两个xxx、

二、重点

1、平移,翻折,旋转前后的xxx等、

2、全等xxx的性质:全等xxx的对应边相等,全等xxx的对应角相等、

3、全等xxx的判定:

SSS三边对应相等的两个xxx全等[边边边]

SAS两边和它们的夹角对应相等的两个xxx全等[边角边]

ASA两角和它们的夹边对应相等的两个xxx全等[角边角]

AAS两个角和其中一个角的对边开业相等的两个xxx全等[边角边]

HL斜边和一条直角边对应相等的两个xxx全等[斜边,直角边]

4、角平分线的性质:角的平分线上的点到角的两边的距离相等、

5、角平分线的判定:角的内部到角的两边的距离相等的点在角的平分线上、

不等关系

1、 一般地,用符号“<”(或“≤”),>”(或“≥”)连接的式子叫做不等式、

2、 区别方程与不等式:方程表示是相等的关系,不等式表示是不相等的关系。

3、 准确“翻译”不等式,正确理解“非负数”、“不小于”等数学术语、

非负数 <===> 大于等于0(≥0) <===> 0和正数 <===> 不小于0

非正数 <===> 小于等于0(≤0) <===> 0和负数 <===> 不大于0

不等式的基本性质

1、 掌握不等式的基本性质,并会灵活运用:

(1) 不等式的两边加上(或减去)同一个整式,不等号的方向不变,即:

如果a>b,那么a+c>b+c, a-c>b-c、

(2) 不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,即

如果a>b,并且c>0,那么ac>bc,

(3) 不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,即:如果a>b,并且c<0,那么ac

2、 比较大小:(a、b分别表示两个实数或整式) 一般地:

如果a>b,那么a-b是正数;反过来,如果a-b是正数,那么a>b;

如果a=b,那么a-b等于0;反过来,如果a-b等于0,那么a=b;

如果a那么a-b是负数;反过来,如果a-b是正数,那么a

即:a>b <===> a-b>0 a=b <===> a-b=0 a<===> a-b<0

初二的数学知识点总结 第7篇

如果一个数的平方等于a,那么这个数叫做a的平xxx。0的平xxx是0。负数在实数范围内不能开平方,只有在正数范围内,才可以开平xxx。例如:-1的平xxx为i,-9的平xxx为3i。

平xxx包含了算术平xxx,算术平xxx是平xxx中的一种。

平xxx和算术平xxx都只有非负数才有。

被开方数是乘方运算里的幂。

求平xxx可通过逆运算平方来求。

开平方:求一个非负数a的平xxx的运算叫做开平方,其中a叫做被开方数。

若x的平方等于a,那么x就叫做a的平xxx,即√a=x

重点与难点分析

本节重点是平xxx和算术平xxx的概念.平xxx是开方运算的基础,是引入无理数的准备知识.平xxx概念的正确理解有助于符号表示的理解,是正确求平xxx运算的前提,并且直接影响到二次根式的学习. 算术根的教学不但是本章教学的重点,也是今后数学学习的`重点.在后面学习的根式运算中,归根结底是算术根的运算,非算术根也要转化为算术根。

本节难点是平xxx与算术平xxx的区别于联系.首先这两个概念容易混淆,而且各自的符号表示意义学生不是很容易区分,教学中要抓住算术平xxx式平xxx中正的那个,讲清各自符号的意义,区分两种表示的不同.对于平xxx运算不仅数

3.本节主要内容是平xxx和算术平xxx,注意数字要简单,关键让学生理解概念.另外在文字叙述时注意语言的严谨规范,.

知识归纳:如果一个正数的平方等于a,那么这个正数x叫做a的算术平xxx,a叫做被开方数。

初二的数学知识点总结 第8篇

定义:能够完全重合的两个xxx叫做全等xxx。

理解:

xxx等xxx形状与大小完全相等,与位置无关;

②一个xxx经过平移、翻折、旋转可以得到它的全等形;

③xxx全等不因位置发生变化而改变。

通过上面对全等xxx知识点的讲解学习,相信同学们对全等xxx的知识已经能很好的掌握了吧,后面我们进行更多知识点的巩固学习。

初中数学知识点总结:平面直角坐标系

下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。

平面直角坐标系

平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。

平面直角坐标系的要素:

①在同一平面

②两条数轴

③互相垂直

④原点重合

三个规定:

①正方向的规定横轴取向右为正方向,纵轴取向上为正方向

②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。

③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。

相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。

初中数学知识点:平面直角坐标系的'构成

对于平面直角坐标系的构成内容,下面我们一起来学习哦。

平面直角坐标系的构成

在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴xxx坐标轴,它们的公共原点O称为直角坐标系的原点。

通过上面对平面直角坐标系的构成知识的讲解学习,希望同学们对上面的内容都能很好的掌握,同学们认真学习吧。

初中数学知识点:点的坐标的性质

下面是对数学中点的坐标的性质知识学习,同学们认真看看哦。

点的坐标的性质

建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。

对于平面内任意一点C,过点C分别向X轴、Y轴作垂线,垂足在X轴、Y轴上的对应点a,b分别叫做点C的横坐标、纵坐标,有序实数对(a,b)叫做点C的坐标。

一个点在不同的象限或坐标轴上,点的坐标不一样。

希望上面对点的坐标的性质知识讲解学习,同学们都能很好的掌握,相信同学们会在考试中取得优异成绩的。

初中数学知识点:因式分解的一般步骤

关于数学中因式分解的一般步骤内容学习,我们做下面的知识讲解。

因式分解的一般步骤

如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,

通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。

注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。

相信上面对因式分解的一般步骤知识的内容讲解学习,同学们已经能很好的掌握了吧,希望同学们会考出好成绩。

初中数学知识点:因式分解

下面是对数学中因式分解内容的知识讲解,希望同学们认真学习。

因式分解

因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。

因式分解要素:

①结果必须是整式

②结果必须是积的形式

③结果是等式

④因式分解与整式乘法的关系:m(a+b+c)

公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。

公因式确定方法:

①系数是整数时取各项最大公约数。

②相同字母取最低次幂

③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。

提取公因式步骤:

①确定公因式。

②确定商式

③公因式与商式写成积的形式。

分解因式注意;

①不准丢字母

②不准丢常数项注意查项数

③双重括号化成单括号

④结果按数单字母单项式多项式顺序排列

⑤相同因式写成幂的形式

⑥首项负号放括号外

⑦括号内同类项合并。

初二的数学知识点总结 第9篇

1、分式及其基本性质分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变

2、分式的运算

(1)分式的乘除乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

(2)分式的加减加减法法则:同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减

3、整数指数幂的加减乘除法

4、分式方程及其解法

初二的数学知识点总结 第10篇

知识点:

一、多边形

1、多边形:由一些线段首尾顺次连结组成的图形,叫做多边形。

2、多边形的边:组成多边形的各条线段叫做多边形的边。

3、多边形的顶点:多边形每相邻两边的公共端点叫做多边形的顶点。

4、多边形的对角线:连结多边形不相邻的两个顶点的线段叫做多边形的对角线。

5、多边形的周长:多边形各边的长度和叫做多边形的周长。

6、凸多边形:把多边形的任何一条边向两方延长,如果多边形的其他各边都在延长线所得直线的问旁,这样的多边形叫凸多边形。

说明:一个多边形至少要有三条边,有三条边的叫做xxx;有四条边的叫做四边形;有几条边的叫做几边形。今后所说的多边形,如果不特别声明,都是指凸多边形。

7、多边形的角:多边形相邻两边所组成的角叫做多边形的内角,简称多边形的角。

8、多边形的外角:多边形的角的一边与另一边的反向延长线所组成的角叫做多边形的外角。

注意:多边形的外角也就是与它有公共顶点的内角的邻补角。

9、n边形的对角线共有条。

说明:利用上述公式,可以由一个多边形的边数计算出它的对角线的条数,也可以由一个多边形的对角线的条数求出它的边数。

10、多边形内角和定理:n边形内角和等于(n-2)180°。

11、多边形内角和定理的推论:n边形的外角和等于360°。

说明:多边形的外角和是一个常数(与边数无关),利用它解决有关计算题比利用多边形内角和公式及对角线求法公式简单。无论用哪个公式解决有关计算,都要与解方程联系起来,掌握计算方法。

1、四边形

在同一平面内,由不在同一直线上的四条线段首尾顺次相接的图形叫做四边形。

2、凸四边形

把四边形的任一边向两方延长,如果其他个边都在延长所得直线的同一旁,这样的四边形叫做凸四边形。

3、对角线

在四边形中,连接不相邻两个顶点的线段叫做四边形的对角线。

4、四边形的不稳定性

xxx的三边如果确定后,它的形状、大小就确定了,这是xxx的稳定性。但是四边形的`四边确定后,它的形状不能确定,这就是四边形所具有的不稳定性,它在生产、生活方面有着广泛的应用。

5、四边形的内角和定理及外角和定理

四边形的内角和定理:四边形的内角和等于360°。

四边形的外角和定理:四边形的外角和等于360°。

推论:多边形的内角和定理:n边形的内角和等于180°;

多边形的外角和定理:任意多边形的外角和等于360°。

6、多边形的对角线条数的计算公式

设多边形的边数为n,则多边形的对角线条数为。

初二的数学知识点总结 第11篇

1全等xxx的对应边、对应角相等

2边角边公理(SAS)有两边和它们的夹角对应相等的两个xxx全等

3角边角公理(ASA)有两角和它们的夹边对应相等的两个xxx全等

4推论(AAS)有两角和其中一角的对边对应相等的两个xxx全等

5边边边公理(SSS)有三边对应相等的两个xxx全等

6斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角xxx全等

7定理1在角的平分线上的点到这个角的两边的距离相等

8定理2到一个角的两边的距离相同的点,在这个角的平分线上

9角的平分线是到角的两边距离相等的所有点的集合

10等腰xxx的性质定理等腰xxx的两个底角相等(即等边对等角)

11推论1等腰xxx顶角的平分线平分底边并且垂直于底边

12等腰xxx的顶角平分线、底边上的中线和底边上的高互相重合

13推论3等边xxx的各角都相等,并且每一个角都等于60°

14等腰xxx的判定定理如果一个xxx有两个角相等,那么这两个角所对的边也相等(等角对等边)

15推论1三个角都相等的xxx是等边xxx

16推论2有一个角等于60°的等腰xxx是等边xxx

17在直角xxx中,如果一个锐角等于30°那么它所对的直角边等于斜边的.一半

18直角xxx斜边上的中线等于斜边上的一半

19定理线段垂直平分线上的点和这条线段两个端点的距离相等

20逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

21线段的垂直平分线可看作和线段两端点距离相等的所有点的集合

22定理1关于某条直线对称的两个图形是全等形

23定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

24定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

25逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

26勾股定理直角xxx两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2

27勾股定理的逆定理如果xxx的三边长a、b、c有关系a^2+b^2=c^2,那么这个xxx是直角xxx

28定理四边形的内角和等于360°

29四边形的外角和等于360°

30多边形内角和定理n边形的内角的和等于(n-2)×180°

31推论任意多边的外角和等于360°

32平行四边形性质定理1平行四边形的对角相等

33平行四边形性质定理2平行四边形的对边相等

34推论夹在两条平行线间的平行线段相等

35平行四边形性质定理3平行四边形的对角线互相平分

36平行四边形判定定理1两组对角分别相等的四边形是平行四边形

37平行四边形判定定理2两组对边分别相等的四边形是平行四边形

38平行四边形判定定理3对角线互相平分的四边形是平行四边形

39平行四边形判定定理4一组对边平行相等的四边形是平行四边形

40矩形性质定理1矩形的四个角都是直角

41矩形性质定理2矩形的对角线相等

42矩形判定定理1有三个角是直角的四边形是矩形

43矩形判定定理2对角线相等的平行四边形是矩形

44菱形性质定理1菱形的四条边都相等

45菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角

46菱形面积=对角线乘积的一半,即S=(a×b)÷2

47菱形判定定理1四边都相等的四边形是菱形

48菱形判定定理2对角线互相垂直的平行四边形是菱形

49正方形性质定理1正方形的四个角都是直角,四条边都相等

50正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

51定理1关于中心对称的两个图形是全等的

52定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分

53逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称

54等腰梯形性质定理等腰梯形在同一底上的两个角相等

55等腰梯形的两条对角线相等

56等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形

57对角线相等的梯形是等腰梯形

58平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等

59推论1经过梯形一腰的中点与底平行的直线,必平分另一腰

60推论2经过xxx一边的中点与另一边平行的直线,必平分第三边

61xxx中位线定理xxx的中位线平行于第三边,并且等于它的一半

62梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2S=L×h

初二的数学知识点总结 第12篇

定义:根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分。

步骤:把分式分子分母因式分解,然后约去分子与分母的'公因。

注意:

①分式的分子与分母为单项式时可直接约分,约去分子、分母系数的最大公约数,然后约去分子分母相同因式的最低次幂。

②分子分母若为多项式,约分时先对分子分母进行因式分解,再约分。

通过上面对数学中分式的约分知识的讲解学习,希望同学们对上面的内容知识都能很好的掌握,相信同学们会学习的很好。

初二的数学知识点总结 第13篇

第三章平移和旋转

一.图形的平移

※1.概念:在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做平移。

※2.性质:(1)平移前后xxx等;(2)对应点连线平行或在同一直线上且相等。

二.图形的旋转

※1.概念:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动叫做旋转。

※2.性质:(1)对应点到旋转中心的距离相等;

(2)对应点与旋转中心所连线段的夹角等于旋转角;

(3)旋转前、后的xxx等.

三.中心对称

※1.概念:把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么称这两个图形关于这点对称,也称这两个图形成中心对称,这个点叫做对称中心,两个图形中的对应点叫做对称点。

※2.基本性质:

(1)成中心对称的两个图形具有图形旋转的一切性质。

(2)成中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。

※3.中心对称图形

(2)中心对称与中心对称图形的.区别与联系如果将成中心对称的两个图形看成一个图形,那么这个整体就是中心对称图形;反过来,如果把一个中心对称图形沿着过对称中心的任一条直线分成两个图形,那么这两个图形成中心对称。

图形的平移、轴对称(折叠)、中心对称(旋转)的对比

第四章分解因式

一.分解因式

第四章因式分解

一.因式分解的定义

※1.把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式.

※2.因式分解与整式乘法是互逆关系.

因式分解与整式乘法的区别和联系:

(1)整式乘法是把几个整式相乘,化为一个多项式;(2)因式分解是把一个多项式化为几个因式相乘.

二.提公共因式法

※1.如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式.这种分解因式的方法叫做提公因式法.

三.运用公式法

※1.如果把乘法公式反过来,就可以用来把某些多项式分解因式.这种分解因式的方法叫做运用公式法.

※2.主要公式:

(1)平方差公式:

(2)完全平方公式:

初二的数学知识点总结 第14篇

重点:幂的性质(指数为全体整数)并会用于计算以及用科学记数法表示一些绝对值较小的数

难点:理解和应用整数指数幂的性质。

一、复习练习:

1、;=;=,=,=。

2、不用计算器计算:÷(—2)2—2-1+

二、指数的范围扩大到了全体整数.

1、探索

现在,我们已经引进了零指数幂和负整数幂,指数的范围已经扩大到了全体整数.那么,在“幂的运算”中所学的幂的性质是否还成立呢?与同学们讨论并交流一下,判断下列式子是否成立.

(1);(2)(ab)-3=a-3b-3;(3)(a-3)2=a(-3)×2

2、概括:指数的范围已经扩大到了全体整数后,幂的运算法则仍然成立。

3、例1计算(2mn2)-3(mn-2)-5并且把结果化为只含有正整数指数幂的形式。

解:原式=2-3m-3n-6×m-5n10=m-8n4=

4练习:计算下列各式,并且把结果化为只含有正整数指数幂的形式:

(1)(a-3)2(ab2)-3;(2)(2mn2)-2(m-2n-1)-3.

三、科学记数法

1、回忆:在之前的学习中,我们曾用科学记数法表示一些绝对值较大的数,即利用10的正整数次幂,把一个绝对值大于10的数表示成a×10n的形式,其中n是正整数,1≤∣a∣<10.例如,864000可以写成×105.

2、类似地,我们可以利用10的负整数次幂,用科学记数法表示一些绝对值较小的数,即将它们表示成a×10-n的形式,其中n是正整数,1≤∣a∣<10.

3、探索:

10-1=

10-2=

10-3=

10-4=

10-5=

归纳:10-n=

例如,上面例2(2)中的可以表示成×10-5.

4、例2、一个纳米粒子的直径是35纳米,它等于多少米?请用科学记数法表示.

分析我们知道:1纳米=米.由=10-9可知,1纳米=10-9米.

所以35纳米=35×10-9米.

初二的数学知识点总结 第15篇

第二章 分解因式

一. 分解因式

※1. 把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式.

※2. 因式分解与整式乘法是互逆关系.

因式分解与整式乘法的区别和联系:

(1)整式乘法是把几个整式相乘,化为一个多项式;

(2)因式分解是把一个多项式化为几个因式相乘.

二. 提公共因式法

※1. 如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式.这种分解因式的方法叫做提公因式法.

※2. 概念内涵:

(1)因式分解的最后结果应当是积

(2)公因式可能是单项式,也可能是多项式;

(3)提公因式法的理论依据是乘法对加法的分配律,ab +ac=a(b+c)

(1)注意项的符号与幂指数是否搞错;

(2)公因式是否提彻底;

(3)多项式中某一项恰为公因式,提出后,括号中这一项为+1,不漏掉.

三. 运用公式法

※1. 如果把乘法公式反过来,就可以用来把某些多项式分解因式.这种分解因式的方法叫做运用公式法.

※2. 主要公式:

(1)平方差公式:

①应是二项式或视作二项式的多项式;

②二项式的每项(不含符号)都是一个单项式(或多项式)的平方;

③二项是异号.

(2)完全平方公式:

①应是三项式;

②其中两项同号,且各为一整式的平方;

③还有一项可正负,且它是前两项幂的底数乘积的2倍.

※5. 因式分解的思路与解题步骤:

(1)先看各项有没有公因式,若有,则先提取公因式;

(2)再看能否使用公式法;

(3)因式分解的最后结果必须是几个整式的乘积;

(4)因式分解的结果必须进行到每个因式在有理数范围内不能再分解为止.

四. 一元一次不等式:

※1. 只含有一个未知数,且含未知数的式子是整式,未知数的次数是1. 像这样的不等式叫做一元一次不等式.

※2. 解一元一次不等式的.过程与解一元一次方程类似,特别要注意,当不等式两边都乘以一个负数时,不等号要改变方向.

※3. 解一元一次不等式的步骤:

①去分母;

②去括号;

③移项;

④合并同类项;

⑤系数化为1(注意不等号方向改变的问题)

※4. 不等式应用的探索(利用不等式解决实际问题)

列不等式解应用题基本步骤与列方程解应用题相类似,即:

①审:认真审题,找出题中的不等关系,要抓住题中的关键字眼,如大于、小于、不大于、不小于等含义;

②设:设出适当的未知数;

③列:根据题中的不等关系,列出不等式;

④解:解出所列的不等式的解集;

⑤答:写出答案,并检验答案是否符合题意.

五. 一元一次不等式与一次函数

六. 一元一次不等式组

※1. 定义:由含有一个相同未知数的几个一元一次不等式组成的不等式组,叫做一元一次不等式组.

※2. 一元一次不等式组中各个不等式解集的公共部分叫做不等式组的解集.

如果这些不等式的解集无公共部分,就说这个不等式组无解.

几个不等式解集的公共部分,通常是利用数轴来确定.

※3. 解一元一次不等式组的步骤:

(1)分别求出不等式组中各个不等式的解集;

(2)利用数轴求出这些解集的公共部分,

(3)写出这个不等式组的解集.

两个一元一次不等式组的解集的四种情况(a、b为实数,且a

(同大取大;同小取小;大小小大中间找;大大小小无解)

初二的数学知识点总结 第16篇

1.勾股定理及其逆定理

定理:直角xxx的两条直角边的等于的平方。

逆定理:如果xxx两边的平方和等于第三边的平方,那么这个xxx是直角xxx。

2.含30°的直角xxx的边的性质

定理:在直角xxx中,如果一个锐角等于30°,那么等于的一半。

3.直角xxx斜边上的中线等于斜边的一半。

要点诠释:①勾股定理的逆定理在语言叙述的时候一定要注意,不能说成“两条边的平方和等于斜边的平方”,应该说成“xxx两边的平方和等于第三边的平方”。

②直角xxx的全等判定方法,HL还有SSS,SAS,ASA,AAS,一共有5种判定方法。

初二的数学知识点总结 第17篇

第一章分式

1、分式及其基本性质

分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变

2、分式的运算

(1)分式的乘除乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

(2)分式的加减加减法法则:同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减

3、整数指数幂的加减乘除法

4、分式方程及其解法

第二章反比例函数

1、反比例函数的表达式、图像、性质

图像:双曲线

表达式:y=k/x(k不为0)

性质:两支的增减性相同;

2、反比例函数在实际问题中的应用

第三章勾股定理

1、勾股定理:直角xxx的两个直角边的平方和等于斜边的平方

2、勾股定理的逆定理:如果一个xxx中,有两个边的平方和等于第三条边的平方,那么这个xxx是直角xxx

第四章四边形

1、平行四边形

性质:对边相等;对角相等;对角线互相平分。

判定:两组对边分别相等的四边形是平行四边形;

两组对角分别相等的四边形是平行四边形;

对角线互相平分的四边形是平行四边形;

一组对边平行而且相等的四边形是平行四边形。

推论:xxx的中位线平行第三边,并且等于第三边的一半。

2、特殊的平行四边形:矩形、菱形、正方形

(1)矩形

性质:矩形的四个角都是直角;

矩形的对角线相等;

矩形具有平行四边形的'所有性质

判定:有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;

推论:直角xxx斜边的中线等于斜边的一半。

(2)菱形性质:

菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形具有平行四边形的一切性质

判定:有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四边相等的四边形是菱形。

(3)正方形:

既是一种特殊的矩形,又是一种特殊的菱形,所以它具有矩形和菱形的所有性质。

3、梯形:直角梯形和等腰梯形

等腰梯形:

等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等;同一个底上的两个角相等的梯形是等腰梯形。

第五章数据的分析

加权平均数、中位数、众数、极差、方差

初二的数学知识点总结 第18篇

1、形如AB(A、B都是整式,且B中含有字母,B≠0)的式子叫做分式。整式和分式统称有理式。

2、分母≠0时,分式有意义。分母=0时,分式无意义。

3、分式的值为0,要同时满足两个条件:分子=0,而分母≠0。

4、分式基本性质:分式的分子、分母都乘以或除以同一个不为0的整式,分式的值不变。

5、分式、分子、分母的符号,任意改变其中两个的符号,分式的'值不变。

6、分式四则运算

1)分式加减的关键是通分,把异分母的分式,转化为同分母分式,再运算.

2)分式乘除时先把分子分母都因式分解,然后再约去相同的因式。

3)分式的混合运算,注意运算顺序及符号的变化,

4)分式运算的最后结果应化为最简分式或整式.

7、分式方程

1)分式化简与解分式方程不能混淆.分式化简是恒等变形,不能随意去分母.

2)解分式方程的步骤:第一、化分式方程为整式方程;第二,解这个整式方程;第三,验根,通过检验去掉增根。

3)解有关应用题的步骤和列整式方程解应用题的步骤是一样的:设、列、解、验、答。

初二的数学知识点总结 第19篇

正比例有个具体的例子是长方形面积一定时,它的长和宽成比例。

正比例

两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量相对应的两个数的比值(也就是商)一定,这两种量就xxx正比例的量,它们的关系xxx正比例关系

正比例的意义

满足关系式y/x=k(k为常量)的两个变量,我们称这两个变量的关系成正比例。

显然,若y与xxx正比例,则y/x=k(k为常量);反之亦然。

例如:在行程问题中,若速度一定时,则路程与时间成正比例;在工程问题中,若工作效率一定时,则工作总量与工作时间成正比例。

注意:k不能等于0.

正比例和反比例相同与联系相同之处

1. 事物关系中都有两个变量,一个常量。

2.在两个变量中,当一个变量发生变化时,则另一个变量也随之发生变化。

3.相对应的两个变数的积或商都是一定的。

相互转化

当反比例中的'x值(自变量的值)也转化为它的倒数时,由反比例转化为正比例;当正比例中的x值(自变量的值)转化为它的倒数时,由正比例转化为反比例。

正比例的例子

正方形的周长与边长 (比值4)。

圆的周长与直径 (比值π)。

购买的总价与购买的数量(比值 单价)。

路程的例子:

1.速度一定,路程和时间成正比例。

2.时间一定,路程和速度成正比例。

都是定一个,变一个 。例如aX=Y中,a不变,则 X与xxx正比例。

圆的周长和半径成正比例吗?为什么?

答:∵圆的周长÷圆的半径=2π,∴圆的周长和半径成正比例。

易错的比例:

圆的面积(S):半径(R)=πR

上面这个比例是错误的。它不属于正比例。因为(S:R=πR)因为根据上面所说,比值须是一个不变的量,而比的前项和后项必须是可以变化的量,如果R变化,那比值也会变化,所以圆的面积与半径不成正比例。

还有一种错误的正比例:圆的面积(S):π=R·R(一定),这是一个错误的比例,因为比值是不变的量,前项与后项应随着一个的变化而变化,而在这里,比值是个固定的量,而π也是一个固定的量,前项无法变化,这个比例就成了一个固定的比例,不符合上面所说的前项和后项必须是可以变化的量。

正比例的要点就是两个变量中,当一个变量发生变化时,则另一个变量也随之发生变化。

初二的数学知识点总结 第20篇

1:勾股定理

直角xxx两直角边a、b的平方和等于斜边c的平方。(即:a2+b2=c2)

要点诠释:

勾股定理反映了直角xxx三边之间的关系,是直角xxx的重要性质之一,其主要应用:

(1)已知直角xxx的两边求第三边

(2)已知直角xxx的一边与另两边的关系,求直角xxx的另两边

(3)利用勾股定理可以证明线段平方关系的问题

2:勾股定理的逆定理

如果xxx的三边长:a、b、c,则有关系a2+b2=c2,那么这个xxx是直角xxx。

要点诠释:

勾股定理的逆定理是判定一个xxx是否是直角xxx的一种重要方法,它通过“数转化为形”来确定xxx的可能形状,在运用这一定理时应注意:

(1)首先确定最大边,不妨设最长边长为:c;

(2)验证c2与a2+b2是否具有相等关系,若c2=a2+b2,则△ABC是以∠C为直角的直角xxx(若c2>a2+b2,则△ABC是以∠C为钝角的钝角xxx;若c2

3:勾股定理与勾股定理逆定理的区别与联系

区别:勾股定理是直角xxx的性质定理,而其逆定理是判定定理;

联系:勾股定理与其逆定理的题设和结论正好相反,都与直角xxx有关。

4:互逆命题的概念

如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。

5:勾股定理的证明

勾股定理的证明方法很多,常见的是拼图的方法

用拼图的方法验证勾股定理的思路是

①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变

②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理

初二的数学知识点总结 第21篇

1、提公因式法

(1)掌握提公因式法的概念;

(2)提公因式法的关键是找出公因式,公因式的构成一般情况下有三部分:

①系数一各项系数的最大公约数;

②字母——各项含有的相同字母;

③指数——相同字母的最低次数;

(3)提公因式法的步骤:第一步是找出公因式;第二步是提取公因式并确定另一因式.需注意的是,提取完公因式后,另一个因式的项数与原多项式的项数一致,这一点可用来检验是否漏项.

(4)注意点:

①提取公因式后各因式应该是最简形式,即分解到“底”;

②如果多项式的第一项的系数是负的,一般要提出“-”号,使括号内的第一项的系数是正的.

2、公式法

运用公式法分解因式的实质是把整式中的乘法公式反过来使用;

常用的公式:

22①平方差公式:a-b=(a+b)(a-b)

②完全平方公式:a2+2ab+b2=(a+b)2 222 a-2ab+b=(a-b)

初二的数学知识点总结 第22篇

1.把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。这条直线就是它的对称轴。这时我们也说这个图形关于这条直线(成轴)对称。

2.把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线

4.轴对称与轴对称图形的性质

①关于某直线对称的两个图形是全等形。

②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。 ③轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

④如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。

⑤两个图形关于某条直线成轴对称,如果它们的对应线段或延长线相交,那么交点在对称轴上。

初二的数学知识点总结 第23篇

xxx内角和性质的推理方法有多种,常见的有以下几种:

结论1:xxx的内角和为180°.表示:在△ABC中,∠A+∠B+∠C=180°

(1)构造平角

①可过A点作MN∥BC(如图)

②可过一边上任一点,作另两边的平行线

(2)构造邻补角,可延长任一边得邻补角

构造同旁内角,过任一顶点作射线平行于对边

结论2:在直角xxx中,两个锐角互余.表示:如图,在直角xxxABC中,∠C=90°,那么∠A+∠B=90°

(因为∠A+∠B+∠C=180°)

注意:①在xxx中,已知两个内角可以求出第三个内角

如:在△ABC中,∠C=180°-(∠A+∠B)

②在xxx中,已知三个内角和的比或它们之间的关系,求各内角.

如:△ABC中,已知∠A:∠B:∠C=2:3:4,求∠A、∠B、∠C的度数.

初二的数学知识点总结 第24篇

一、试题情况分析

本次试题注重了对基础知识的考查,同时关注了对学生推理能力、计算能力、做图能力和综合运用知识解决问题的能力的考查。试卷以新课程标准的评价理念为指导,以新课标教材为依据,特别在依据教材的基础上,考出学生的素质。突出的特点有:

1、知识点考查全面。让题型为知识点服务。每一个知识点无不被囊括其中,真正做到了覆盖全面。

2、形式灵活多样,并且注重数学知识与现实生活的应用,激发学生独立思考和创新意识。

3、题量适中,试题难度较小,试卷主要考查学生的综合运用能力,重点考查了学生对基础知识的掌握情况及熟练程度。

二、学生答题情况分析

三、测试结果

四、年级学生情况分析

学生整体水平参差不齐,好多同学对基础知识掌握不牢固,在教学中对好坏的兼顾仍是思考重点。

主要失分原因:一是对基础知识、基本概念掌握不到位,;二是学生审题不清、马虎大意,导致出错;三是某些思考和推理过程,过程过于简单,书写不够严谨;四是对知识的迁移不能正确把握,不能正确使用所学的知识,缺乏应有的应变能力。

五、班级学情分析

一、个别学生较差,应对中差生加强辅导;二、课堂听讲效率不高,学习惰性较强,两级分化严重,对差生多加关注,分层次教学;三、多数学生能在课上保持稳定,不违反纪律,但听讲集中性不强,经常若有所思应注意对优等生拔高,对中等生强化,对差生加强基础知识的巩固;四、极端性较强,有的学生基础很好,有的学生基础很差并且纪律表现极差,以后要注意调动学生学习积极性,降低差生率。

六、收获和进步

在教学中,我们注重了课前准备,自觉地准备教学用具,提高了课堂教学效率,更加注重调动学生学习的积极性,能采用灵活多样的教学方式吸引学生,合作学习、小组讨论及分层作业等学习方式中课堂中普遍被采用。

七、存在问题

主要是两个方面,其一是在追求教学效果和如何让不同程度的学生在每节课有不同的收获方面下功夫,提高课堂实效性;其二是作业反馈力度仍不够,部分同学还要面批面改。

八、考试后的教学建议

(一)立足课本,加强基础知识的巩固以及基本方法的训练,让学生在理解的基础上掌握概念的.本质,并能灵活运用。在教学中要重视对基础知识的精讲多练,让学生在动手的过程中巩固知识,提高能力。

(二)数学课堂教学过程中,力求从学生的思维角度去分析问题,要精心备课,积极创设问题情景,不失时机地引导学生进行质疑、探究、类比、推广、归纳总结,努力促使学生由“学会”向“会学”转变。

(三)坚持能力培养的方向不变。学生的能力是他们今后立身社会的根本,在数学教学中对学生进行各种能力的培养一方面是我们不可推卸的责任,另一方面我们也看到了它的可操作性,我们要多培养学生的实际应用能力,相信我们的学生在将来会有更强的生存能力和竞争优势。

(四)重视数学思想方法的渗透。数学教学重在实,而不是多,数学题目千变万化,但核心思想却只有统计、数形结合、图形变换、方程的思想等等,抓住了数学思想方法,等于是扼住了数学教学的咽喉,掌握了数学教学的命脉,当然会事半功倍。

(五)加强非智力因素的培养,提高学生认真审题、规范解题的习惯。如审题时可划出关键句,在图形中作标记等,而且要让学生在平时加强练习。

(六)尊重差异,分层教学,分类指导。我们要将差生工作落到实处,这会树立学生学习数学的信心,还要更多地转化后进生,特别是做好他们的思想工作,亲近他们,关心他们,让他们也体会到学习的乐趣。

初二的数学知识点总结 第25篇

1、相似xxx判定定理1两角对应相等,两xxx相似(ASA)

2、直角xxx被斜边上的高分成的两个直角xxx和原xxx相似

3、判定定理2两边对应成比例且夹角相等,两xxx相似(SAS)

4、判定定理3三边对应成比例,两xxx相似(SSS)

5、定理如果一个直角xxx的斜边和一条直角边与另一个直角xxx的斜边和一条直角边对应成比例,那么这两个直角xxx相似

6、性质定理1相似xxx对应高的比,对应中线的比与对应角平分线的比都等于相似比

7、性质定理2相似xxx周长的比等于相似比

8、性质定理3相似xxx面积的比等于相似比的平方

9、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值

10、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值。

11、圆是定点的距离等于定长的点的集合

12、圆的内部可以看作是圆心的距离小于半径的点的集合

13、圆的外部可以看作是圆心的距离大于半径的点的集合

14、同圆或等圆的半径相等

15、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

16、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线

17、到已知角的两边距离相等的点的轨迹,是这个角的平分线

18、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线

19、定理不在同一直线上的三点确定一个圆。

20、垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧

21、推论1①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

②弦的垂直平分线经过圆心,并且平分弦所对的两条弧

③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

22、推论2圆的两条平行弦所夹的弧相等

23、圆是以圆心为对称中心的中心对称图形

24、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等

25、推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两

弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等

26、定理一条弧所对的圆周角等于它所对的圆心角的一半

27、推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

28、推论2半圆(或直径)所对的圆周角是直角;2°的圆周角所对的弦是直径

29、推论3如果xxx一边上的中线等于这边的一半,那么这个xxx是直角xxx

30、定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角

31、①直线L和⊙O相交d

②直线L和⊙O相切d=r

③直线L和⊙O相离d>r

32、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线

33、切线的性质定理圆的切线垂直于经过切点的半径

34、推论1经过圆心且垂直于切线的直线必经过切点

35、推论2经过切点且垂直于切线的直线必经过圆心

36、切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角

37、圆的外切四边形的两组对边的和相等

38、弦切角定理弦切角等于它所夹的弧对的圆周角

39、推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等

40、相交弦定理圆内的两条相交弦,被交点分成的`两条线段长的积相等

41、推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项

42、切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项

43、推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等

44、如果两个圆相切,那么切点一定在连心线上

45、①两圆外离d>R+r②两圆外切d=R+r

③两圆相交R-rr)

④两圆内切d=R-r(R>r)⑤两圆内含dr)

46、定理相交两圆的连心线垂直平分两圆的公共弦

47、定理把圆分成n(n≥3):

⑴依次连结各分点所得的多边形是这个圆的内接正n边形

⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形

48、定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

49、正n边形的每个内角都等于(n-2)×2°/n

50、定理正n边形的半径和边心距把正n边形分成2n个全等的直角xxx

51、正n边形的面积Sn=pnrn/2p表示正n边形的周长

52、正xxx面积√3a/4a表示边长

53、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)2°/n=360°化为(n-2)(k-2)=4

54、弧长计算公式:L=n兀R/2

55、扇形面积公式:S扇形=n兀R^2/360=LR/2

56、内公切线长=d-(R-r)外公切线长=d-(R+r)

初二的数学知识点总结 第26篇

1.在平面直角坐标系中

①关于x轴对称的点横坐标相等,纵坐标互为相反数;

②关于y轴对称的点横坐标互为相反数,纵坐标相等;

③关于原点对称的点横坐标和纵坐标互为相反数;

④与X轴或Y轴平行的直线的两个点横(纵)坐标的关系;

⑤关于与直线X=C或Y=C对称的坐标

点(x, y)关于x轴对称的点的坐标为_(x, -y)_____.

点(x, y)关于y轴对称的点的坐标为___(-x, y)___.

2.xxx三条边的垂直平分线相交于一点,这个点到xxx三个顶点的距离相等

初二的数学知识点总结 第27篇

第十六章 二次根式

主要知识点:

1、二次根式的概念

2、二次根式的性质

3、xxx次根式与同类二次根式

4、二次根式的运算

中考分值:

填空一题、选择一题共4~8分。

大题目中的计算基本都会运用到二次根式的计算。

重难点:

初中第一次将有理数的计算拓展到无理数的计算。

二次根式的运算是基础运算,为后面各种方程的计算做基础。

二次根式的计算比较容易出错。

第十七章一元二次方程

主要知识点:

1、一元二次方程的概念

2、一元二次方程的解法

3、一元二次方程根的判别式

4、一元二次方程的应用

中考分值:

所有需要运算的题目基本都需要运用到解一元二次方程,分值不低于30分。

重难点:

一元二次方程解法多样,需要注意方法的选择。

铺垫型知识点,为后面学习分式方程、无理方程等做铺垫。

如果不会解一元二次方程中考基本寸步难行。

第十八章正比例函数和反比例函数

主要知识点:

1、函数的概念

2、正比例函数

3、反比例函数

4、函数表示法

中考分值:

填空选择一题4分

重难点:

初中第一次接触函数,概念和意义比较难理解。

这一章是所有函数的'基础,为后面学习一次函数、二次函数做铺垫。

第十九章几何证明

主要知识点:

1、公理、定理及命题,逆命题及逆定理

2、线段的垂直平分线

3、角平分线

4、直角xxx的性质

5、勾股定理

中考分值:

21题几何证明10分,填空选择8~12分。

18、25题难题基本都会运用到本章所学知识点。

重难点:

相较于初一的几何,这一章的难度大大增加,是本学期最重要的章节。

这一章所学的知识点都是几何比较轴心的知识点,以后学习几何会经常使用。

初二的数学知识点总结 第28篇

1.一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平xxx,a叫做被开方数。

2.一般地,如果一个数的平方等于a,那么这个数叫做a的平xxx或二次xxx,求一个数a的平xxx的运算,叫做开平方。

3.一般地,如果一个数的立方等于a,那么这个数叫做a的立xxx或三次xxx,求一个数的立xxx的运算,叫做开立方。

4.任何一个有理数都可以写成有限小数或无限循环小数的形式,任何有限小数或无限循环小数也都是有理数。

5.无限不循环小数又叫无理数。

6.有理数和无理数统称实数。

7.数轴上的点与实数一一对应,平面直角坐标系中与有序实数对之间也是一一对应的。

初二的数学知识点总结 第29篇

1全等xxx的对应边、对应角相等

2边角边公理(SAS)有两边和它们的夹角对应相等的两个xxx全等

3角边角公理(ASA)有两角和它们的夹边对应相等的两个xxx全等

4推论(AAS)有两角和其中一角的对边对应相等的两个xxx全等

5边边边公理(SSS)有三边对应相等的两个xxx全等

6斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角xxx全等

7定理1在角的平分线上的点到这个角的两边的距离相等

8定理2到一个角的两边的距离相同的点,在这个角的平分线上

9角的平分线是到角的两边距离相等的所有点的集合

10等腰xxx的性质定理等腰xxx的两个底角相等(即等边对等角)

11推论1等腰xxx顶角的平分线平分底边并且垂直于底边

12等腰xxx的顶角平分线、底边上的中线和底边上的高互相重合

13推论3等边xxx的各角都相等,并且每一个角都等于60°

14等腰xxx的判定定理如果一个xxx有两个角相等,那么这两个角所对的边也相等(等角对等边)

15推论1三个角都相等的xxx是等边xxx

16推论2有一个角等于60°的等腰xxx是等边xxx

17在直角xxx中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

18直角xxx斜边上的中线等于斜边上的一半

19定理线段垂直平分线上的点和这条线段两个端点的距离相等

20逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

21线段的垂直平分线可看作和线段两端点距离相等的所有点的集合

22定理1关于某条直线对称的两个图形是全等形

23定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

24定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

25逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

26勾股定理直角xxx两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2

27勾股定理的逆定理如果xxx的三边长a、b、c有关系a^2+b^2=c^2,那么这个xxx是直角xxx

28定理四边形的内角和等于360°

29四边形的外角和等于360°

30多边形内角和定理n边形的内角的和等于(n-2)×180°

31推论任意多边的外角和等于360°

32平行四边形性质定理1平行四边形的对角相等

33平行四边形性质定理2平行四边形的对边相等

34推论夹在两条平行线间的平行线段相等

35平行四边形性质定理3平行四边形的对角线互相平分

36平行四边形判定定理1两组对角分别相等的四边形是平行四边形

37平行四边形判定定理2两组对边分别相等的四边形是平行四边形

38平行四边形判定定理3对角线互相平分的四边形是平行四边形

39平行四边形判定定理4一组对边平行相等的四边形是平行四边形

40矩形性质定理1矩形的四个角都是直角

41矩形性质定理2矩形的对角线相等

42矩形判定定理1有三个角是直角的四边形是矩形

43矩形判定定理2对角线相等的平行四边形是矩形

44菱形性质定理1菱形的四条边都相等

45菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角

46菱形面积=对角线乘积的一半,即S=(a×b)÷2

47菱形判定定理1四边都相等的四边形是菱形

48菱形判定定理2对角线互相垂直的平行四边形是菱形

49正方形性质定理1正方形的四个角都是直角,四条边都相等

50正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

51定理1关于中心对称的两个图形是全等的

52定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分

53逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称

54等腰梯形性质定理等腰梯形在同一底上的两个角相等

55等腰梯形的两条对角线相等

56等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形

57对角线相等的梯形是等腰梯形

58平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等

59推论1经过梯形一腰的中点与底平行的直线,必平分另一腰

60推论2经过xxx一边的中点与另一边平行的直线,必平分第三边

61xxx中位线定理xxx的中位线平行于第三边,并且等于它的一半

62梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2S=L×h

一、轴对称图形

1.把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。这条直线就是它的对称轴。这时我们也说这个图形关于这条直线(成轴)对称。

2.把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。这条直线叫做对称轴。折叠后重合的点是对应点,叫做对称点

3、轴对称图形和轴对称的区别与联系

4.轴对称的性质

①关于某直线对称的两个图形是全等形。

②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。

③轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

④如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。

二、线段的垂直平分线

1.经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线。

2.线段垂直平分线上的点与这条线段的两个端点的距离相等

3.与一条线段两个端点距离相等的点,在线段的垂直平分线上

三、用坐标表示轴对称小结:

1.在平面直角坐标系中,关于x轴对称的点横坐标相等,纵坐标互为相反数.关于y轴对称的点横坐标互为相反数,纵坐标相等.

2.xxx三条边的垂直平分线相交于一点,这个点到xxx三个顶点的距离相等

四、(等腰xxx)知识点回顾

1.等腰xxx的性质

①.等腰xxx的两个底角相等。(等边对等角)

②.等腰xxx的顶角平分线、底边上的中线、底边上的高互相重合。(三线合一)

2、等腰xxx的判定:如果一个xxx有两个角相等,那么这两个角所对的边也相等。(等角对等边)

五、(等边xxx)知识点回顾

1.等边xxx的性质:等边xxx的三个角都相等,并且每一个角都等于600。

2、等边xxx的判定:

①三个角都相等的xxx是等边xxx。

②有一个角是600的等腰xxx是等边xxx。

3.在直角xxx中,如果一个锐角等于300,那么它所对的直角边等于斜边的一半。

①、等腰xxx的性质

定理:等腰xxx的两个底角相等(简称:等边对等角)

推论1:等腰xxx顶角平分线平分底边并且垂直于底边。即等腰xxx的顶角平分线、底边上的中线、底边上的高重合。

推论2:等边xxx的各个角都相等,并且每个角都等于60°。

②、等腰xxx的其他性质:

(1)等腰直角xxx的两个底角相等且等于45°

(2)等腰xxx的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角)。

(3)等腰xxx的三边关系:设腰长为a,底边长为b,则

(4)等腰xxx的三角关系:设顶角为顶角为∠A,底角为∠B、∠C,则∠A=180°—2∠B,∠B=∠C=

③、等腰xxx的判定

等腰xxx的判定定理及推论:

定理:如果一个xxx有两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。这个判定定理常用于证明同一个xxx中的边相等。

推论1:三个角都相等的xxx是等边xxx

推论2:有一个角是60°的等腰xxx是等边xxx。

推论3:在直角xxx中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。

④、xxx中的中位线

连接xxx两边中点的线段叫做xxx的中位线。

(1)xxx共有三条中位线,并且它们又重新构成一个新的xxx。

(2)要会区别xxx中线与中位线。

xxx中位线定理:xxx的中位线平行于第三边,并且等于它的一半。

xxx中位线定理的作用:

位置关系:可以证明两条直线平行。

数量关系:可以证明线段的倍分关系。

常用结论:任一个xxx都有三条中位线,由此有:

结论1:三条中位线组成一个xxx,其周长为原xxx周长的一半。

结论2:三条中位线将原xxx分割成四个全等的xxx。

结论3:三条中位线将原xxx划分出三个面积相等的平行四边形。

结论4:xxx一条中线和与它相交的中位线互相平分。

结论5:xxx中任意两条中位线的夹角与这夹角所对的xxx的顶角相等。

1.提公共因式法

※1.如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式.这种分解因式的方法叫做提公因式法.

※2.概念内涵:

(1)因式分解的最后结果应当是“积”;

(2)公因式可能是单项式,也可能是多项式;

(3)提公因式法的理论依据是乘法对加法的分配律,即:

※3.易错点点评:

(1)注意项的符号与幂指数是否搞错;

(2)公因式是否提“干净”;

(3)多项式中某一项恰为公因式,提出后,括号中这一项为+1,不漏掉.

2.运用公式法

※1.如果把乘法公式反过来,就可以用来把某些多项式分解因式.这种分解因式的方法叫做运用公式法.

※2.主要公式:

(1)平方差公式:

(2)完全平方公式:

¤3.易错点点评:

因式分解要分解到底.如就没有分解到底.

※4.运用公式法:

(1)平方差公式:

①应是二项式或视作二项式的多项式;

②二项式的每项(不含符号)都是一个单项式(或多项式)的平方;

③二项是异号.

(2)完全平方公式:

①应是三项式;

②其中两项同号,且各为一整式的平方;

③还有一项可正负,且它是前两项幂的底数乘积的2倍.

3.因式分解的思路与解题步骤:

(1)先看各项有没有公因式,若有,则先提取公因式;

(2)再看能否使用公式法;

(3)用分组分解法,即通过分组后提取各组公因式或运用公式法来达到分解的目的;

(4)因式分解的最后结果必须是几个整式的乘积,否则不是因式分解;

(5)因式分解的结果必须进行到每个因式在有理数范围内不能再分解为止.

4.分组分解法:

※1.分组分解法:利用分组来分解因式的方法叫做分组分解法.

※2.概念内涵:

分组分解法的关键是如何分组,要尝试通过分组后是否有公因式可提,并且可继续分解,分组后是否可利用公式法继续分解因式.

※3.注意:分组时要注意符号的变化.

5.十字相乘法:

※1.对于二次三项式,将a和c分别分解成两个因数的乘积,且满足,往往写成的形式,将二次三项式进行分解.

※2.二次三项式的分解:

※3.规律内涵:

(1)理解:把分解因式时,如果常数项q是正数,那么把它分解成两个同号因数,它们的符号与一次项系数p的符号相同.

(2)如果常数项q是负数,那么把它分解成两个异号因数,其中绝对值较大的因数与一次项系数p的符号相同,对于分解的两个因数,还要看它们的和是不是等于一次项系数p.

※4.易错点点评:

(1)十字相乘法在对系数分解时易出错;

(2)分解的结果与原式不等,这时通常采用多项式乘法还原后检验分解的是否正确.

八年级数学知识点总结归纳4

1.做好准备,提出问题,多次阅读课本,查阅相关材料,回答自己提出的问题,并在老师谈论新课之前努力掌握尽可能多的知识。如果你不能回答问题,你可以在老师的讲座中解答。

2。学会听课。在初中教学中,教师经常反复讲解一个知识点,让学生通过大量的练习掌握它。但是高中毕业后,老师不会让学生通过大量的练习掌握知识点,而是通过一些相关的知识来引导学生去理解。这些知识是如何产生的,以及如何利用这些知识来解决一些相关的疑问?如果学生能够理解,他们可以通过课外练习巩固自己的知识。同时,学生可以根据教师的指导扩大知识。

八年级数学学习技巧

敢于表达自己的想法。在高中数学学习中,学生会遇到很多解决问题的技巧。也许这个方法对别人来说不是很熟悉,你知道。那么你需要学生敢于表达自己的想法,这样你才能掌握更多的技能。它也可以激发学生的学习兴趣,如果一个班是满的。是老师在说话,课堂气氛很沉闷,学生的学习效率也很低。

学会看题

高中比初中有更多的相关材料。高考是全社会关注的问题。因此,在高中的实践尤其多,一些学生购买更多的材料。因此,如何利用主题来掌握我们学习的知识,扩大我们所学的知识是学习的关键。我认为我们应该看更多的话题,更多的思考,看看解决材料中问题的方法,思考方法中的原因,这样我们就可以从更多的方法中学习。

有很多方法来消化它们。因此,我们将不得不选择去做这个问题,用一半的努力达到两倍的结果。我建议每天练习一次,每周做一组完整的试题,看2到3组试题,从中找出这段时间数学学习的关键知识,这些是我们常用来解决问题的方法,以及可以用来优化解题的方法。

八年级数学知识点总结归纳5

1.某工厂生产了一批零件共1600件,从中任意抽取了80件进行检查,其中合格产品78件,其余不合格,则可估计这批零件中有______件不合格.

2.下列调查工作需采用普查方式的是()

A.环保部门对xxx段水域的水污染情况的调查

B.电视台对正在播出的某电视节目收视率的调查

C.质检部门对各厂家生产的电池使用寿命的调查

D.企业在给职工做工作服前进行的尺寸大小的调查

3.为了解某校九年级学生每天的睡眠时间情况,随机调查了该校九年级20名学生,将所得数据整理并制成下表:

据此估计该校九年级学生每天的平均睡眠时间大约是______小时.

4.一养鱼专业户从鱼塘捕得同时放养的草鱼100条,他从中任选5条,称得它们的质量如下(单位:kg):,,,,.则这100条鱼的总质量约为______kg.

【考点归纳】

1.总体是指_________________________,个体是指_____________________,样本是指________________________,样本的个数叫做___________.

2.样本方差与标准差是衡量______________的量,其值越大,______越大.

3.频数是指________________________;频率是___________________________.

4.得到频数分布直方图的步骤_________________________________________.

5.数据的统计方法有____________________________________________.

初二的数学知识点总结 第30篇

1、主要知识回顾:

幂的运算性质:

am·an=am+n(m、n为正整数)

同底数幂相乘,底数不变,指数相加.

=amn(m、n为正整数)

幂的乘方,底数不变,指数相乘.

同底数幂相除,底数不变,指数相减.

零指数幂的概念:

0a=1(a≠0)

任何一个不等于零的数的零指数幂都等于l.

负指数幂的概念:

1a=a(a≠0,p是正整数)

任何一个不等于零的数的-p(p是正整数)指数幂,等于这个数的p指数幂的倒数.(m≠0,n≠0,p为正整数)也可表示为:

单项式的乘法法则:

单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连pp-pp同它的指数作为积的一个因式.

单项式与多项式的乘法法则:

单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加.

多项式与多项式的乘法法则:

多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加.单项式的除法法则:

单项式相除,把系数、同底数幂分别相除,作为商的因式:对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.

多项式除以单项式的法则:

多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.

2、乘法公式:

①平方差公式:(a+b)(a-b)=a2-b2

文字语言叙述:两个数的和与这两个数的差相乘,等于这两个数的平方差.

②完全平方公式:(a+b)2=a2+2ab+b2

(a-b)2=a2-2ab+b2

文字语言叙述:两个数的和(或差)的平方等于这两个数的平方和加上(或减去)这两个数的积的2倍.

3、因式分解:

因式分解的定义.

把一个多项式化成几个整式的乘积的形式,这种变形叫做把这个多项式因式分解.

掌握其定义应注意以下几点:

(1)分解对象是多项式,分解结果必须是积的形式,且积的因式必须是整式,这三个要素缺一不可;

(2)因式分解必须是恒等变形;

(3)因式分解必须分解到每个因式都不能分解为止.

弄清因式分解与整式乘法的内在的关系.

因式分解与整式乘法是互逆变形,因式分解是把和差化为积的形式,而整式乘法是把积化为和差的形式.

初二的数学知识点总结 第31篇

【菱形】

1.菱形的定义:有一组邻边相等的平行四边形叫做菱形。

2.菱形的性质:

(1)菱形的性质有:

①平行四边形的一切性质;

②四条边都相等;

③对角线互相垂直,并且每一条对角线平分一组对角;

④菱形是对称轴图形,它有2条对称轴,分别为它的两条对角线所在的直线。

(2)菱形面积=底×高=对角线乘积的一半。

3.菱形的判定:

(1)用定义判定(即一组邻边相等的平行四边形是菱形)。

(2)对角线互相垂直的平行四边形是菱形。

(3)四条边都相等的四边形是菱形。

综上可知,判定菱形时常用的思路:

四条边都相等菱形

菱形 四边形

四边形 有一组邻边相等菱形

【矩形】

1.矩形的定义:有一个角是直角的平行四边形叫做矩形。

2.矩形的性质:

(1)具有平行四边形的一切性质;

(2)矩形的四个角都是直角;

(3)矩形的四个角都相等。

4.矩形的判定方法:

(1)用定义判定(即有一个角是直角的平行四边形是矩形);

(2)三个角都是直角的四边形是矩形;

(3)对角线相等的平行四边形是矩形。

综上可知,判定矩形时常用的思路:

【正方形】

1.正方形的定义:有一组邻边相等,并且有一个角是直角的平行四边形叫做正方形。

2.正方形的性质:正方形具有平行四边形、矩形、菱形的一切性质。

(1)边:四条边相等,邻边垂直且相等,对边平行且相等。

(2)角:四个角都是直角。

(3)对角线:对角线相等且互相垂直平分,每条对角线平分一组对角。

3.正方形的判定

(1)根据定义判定;对角线相等的菱形是正方形;

(2)有一个角是直角的菱形是正方形;

(3)有一组邻边相等的矩形是正方形;

(4)对角线互相垂直的矩形是正方形。

4.特殊的平行四边形之间的关系

矩形、菱形是特殊的平行四边形,正方形是更特殊的平行四边形,它既是矩形,又是菱形,它们之间的关系如图所示:

5.依次连接四边形各边中点所得到的四边形的形状:

(1)依次连接任意四边形各边中点所得到的四边形是平行变形;

(2)依次连接对角线相等的四边形各边中点所得到的四边形是菱形;

(3)依次连接对角线垂直的四边形各边中点所得到的四边形是矩形;

(4)依次连接对角线垂直且相等的四边形各边中点所得到的四边形是正方形;

初二的数学知识点总结 第32篇

人教版初二数学上册知识点汇总

(一)运用公式法:

我们知道整式乘法与因式分解互为逆变形。如果把乘法公式反过来就是把多项式分解因式。于是有:

a2-b2=(a+b)(a-b)

a2+2ab+b2=(a+b)2

a2-2ab+b2=(a-b)2

如果把乘法公式反过来,就可以用来把某些多项式分解因式。这种分解因式的方法叫做运用公式法。

(二)平方差公式

1.平方差公式

(1)式子:a2-b2=(a+b)(a-b)

(2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。这个公式就是平方差公式。

(三)因式分解

1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。

2.因式分解,必须进行到每一个多项式因式不能再分解为止。

(四)完全平方公式

(1)把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反过来,就可以得到:

a2+2ab+b2=(a+b)2

a2-2ab+b2=(a-b)2

这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。

把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式。

上面两个公式叫完全平方公式。

(2)完全平方式的形式和特点

①项数:三项

②有两项是两个数的的平方和,这两项的符号相同。

③有一项是这两个数的积的两倍。

(3)当多项式中有公因式时,应该先提出公因式,再用公式分解。

(4)完全平方公式中的a、b可表示单项式,也可以表示多项式。这里只要将多项式看成一个整体就可以了。

(5)分解因式,必须分解到每一个多项式因式都不能再分解为止。

(五)分组分解法

我们看多项式am+an+bm+bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.

如果我们把它分成两组(am+an)和(bm+bn),这两组能分别用提取公因式的方法分别分解因式.

原式=(am+an)+(bm+bn)

=a(m+n)+b(m+n)

做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义.但不难看出这两项还有公因式(m+n),因此还能继续分解,所以

原式=(am+an)+(bm+bn)

=a(m+n)+b(m+n)

=(m+n)×(a+b).

初二的数学知识点总结 第33篇

1、认识无理数

①有理数:总是可以用有限小数和无限循环小数表示

②无理数:无限不循环小数

2、平xxx

①算数平xxx:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算数平xxx

②特别地,我们规定:0的算数平xxx是0

③平xxx:一般地,如果一个数x的平方等于a,即x2=a。那么这个数x就叫做a的平xxx,也叫做二次xxx

④一个正数有两个平xxx;0只有一个平xxx,它是0本身;负数没有平xxx

⑤正数有两个平xxx,一个是a的算数平方,另一个是—,它们互为相反数,这两个平xxx合起来可记作±

⑥开平方:求一个数a的平xxx的运算叫做开平方,a叫做被开方数

3、立xxx

①立xxx:一般地,如果一个数x的立方等于a,即x3=a,那么这个数x就叫做a的立xxx,也叫三次xxx

②每个数都有一个立xxx,正数的立xxx是正数;0立xxx是0;负数的立xxx是负数。

③开立方:求一个数a的立xxx的运算叫做开立方,a叫做被开方数

4、估算

①估算,一般结果是相对复杂的小数,估算有精确位数

5、用计算机开平方

6、实数

①实数:有理数和无理数的统称

②实数也可以分为正实数、0、负实数

③每一个实数都可以在数轴上表示,数轴上每一个点都对应一个实数,在数轴上,右边的点永远比左边的点表示的数大

7、二次根式

①含义:一般地,形如(a≥0)的式子叫做二次根式,a叫做被开方数

② =(a≥0,b≥0),=(a≥0,b>0)

③最xxx次根式:一般地,被开方数不含分母,也不含能开的尽方的因数或因式,这样的二次根式,叫做最xxx次根式

④化简时,通常要求最终结果中分母不含有根号,而且各个二次根式时最xxx次根式

初二的数学知识点总结 第34篇

加权平均数、中位数、众数、极差、方差

初二必备数学知识

位置与坐标

1、确定位置

在平面内,确定物体的位置一般需要两个数据。

2、平面直角坐标系及有关概念

①平面直角坐标系

在平面内,两条互相垂直且有公共原点的数轴,组成平面直角坐标系。其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;x轴和y轴统称坐标轴。它们的公共原点O称为直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。

②坐标轴和象限

为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。

注意:x轴和y轴上的点(坐标轴上的点),不属于任何一个象限。

③点的坐标的概念

对于平面内任意一点P,过点P分别x轴、y轴向作垂线,垂足在上x轴、y轴对应的数a,b分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标。

点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。平面内点的坐标是有序实数对,(a,b)和(b,a)是两个不同点的坐标。

平面内点的与有序实数对是一一对应的。

④不同位置的点的坐标的特征

a、各象限内点的坐标的特征

点P(x,y)在第一象限→ x>0,y>0

点P(x,y)在第二象限→ x0

点P(x,y)在第三象限→ x<0,y<0

点P(x,y)在第四象限→ x>0,y<0

b、坐标轴上的点的特征

点P(x,y)在x轴上→ y=0,x为任意实数

点P(x,y)在y轴上→ x=0,y为任意实数

点P(x,y)既在x轴上,又在y轴上→ x,y同时为零,即点P坐标为(0,0)即原点

c、两条坐标轴夹角平分线上点的坐标的特征

点P(x,y)在第一、三象限夹角平分线(直线y=x)上→ x与y相等

点P(x,y)在第二、四象限夹角平分线上→ x与y互为相反数

d、和坐标轴平行的直线上点的坐标的特征

位于平行于x轴的直线上的各点的纵坐标相同。

位于平行于y轴的直线上的各点的横坐标相同。

e、关于x轴、y轴或原点对称的点的坐标的特征

点P与点p’关于x轴对称横坐标相等,纵坐标互为相反数,即点P(x,y)关于x轴的对称点为P’(x,—y)

点P与点p’关于y轴对称纵坐标相等,横坐标互为相反数,即点P(x,y)关于y轴的对称点为P’(—x,y)

点P与点p’关于原点对称,横、纵坐标均互为相反数,即点P(x,y)关于原点的对称点为P’(—x,—y)

f、点到坐标轴及原点的距离

点P(x,y)到坐标轴及原点的距离:

点P(x,y)到x轴的距离等于?y?

点P(x,y)到y轴的距离等于?x?

点P(x,y)到原点的距离等于√x2+y2

初二数学常考知识

一次函数

1、函数

一般地,在某一变化过程中有两个变量x与y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。

2、自变量取值范围

使函数有意义的自变量的取值的全体,叫做自变量的取值范围。一般从整式(取全体实数),分式(分母不为0)、二次根式(被开方数为非负数)、实际意义几方面考虑。

3、函数的三种表示法及其优缺点

关系式(解析)法两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做关系式(解析)法。

列表法把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。

图象法用图象表示函数关系的方法叫做图象法。

4、由函数关系式画其图像的一般步骤

列表:列表给出自变量与函数的一些对应值。

描点:以表中每对对应值为坐标,在坐标平面内描出相应的点。

连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。

5、正比例函数和一次函数

①正比例函数和一次函数的概念

一般地,若两个变量x,y间的关系可以表示成y=kx+b(k,b为常数,k不等于0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。

特别地,当一次函数y=kx+xxx的b=0时(k为常数,k不等于0),称y是x的正比例函数。②一次函数的图像:

所有一次函数的图像都是一条直线。

③一次函数、正比例函数图像的主要特征

一次函数y=kx+b的图像是经过点(0,b)的直线;

初二的数学知识点总结 第35篇

1.定义:能够完全重合的两个xxx叫做全等xxx。

理解:xxx等xxx形状与大小完全相等,与位置无关;

②一个xxx经过平移、翻折、旋转可以得到它的全等形;

③xxx全等不因位置发生变化而改变。

2、全等xxx有哪些性质

(1)全等xxx的对应边相等、对应角相等。

理解:

①长边对长边,短边对短边;最大角对最大角,最小角对最小角;

②对应角的对边为对应边,对应边对的角为对应角。

(2)全等xxx的周长相等、面积相等。

(3)全等xxx的对应边上的对应中线、角平分线、高线分别相等。

3、全等xxx的判定

边边边:三边对应相等的两个xxx全等(可简写成“SSS”)

边角边:两边和它们的夹角对应相等两个xxx全等(可简写成“SAS”)角边角:两角和它们的夹边对应相等的两个xxx全等(可简写成“ASA”)角角边:两角和其中一角的对边对应相等的两个xxx全等(可简写成“AAS”)

1、性质:角的平分线上的点到角的两边的距离相等.

2、判定:角的内部到角的两边的距离相等的点在角的平分线上。

注意:xxx的三条角平分线交于一点,这个点到xxx三边的距离相等。

三、学习全等xxx应注意以下几个问题:

(1)要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义;

(2表示两个xxx全等时,表示对应顶点的字母要写在对应的位置上;

(3)“有三个角对应相等”或“有两边xxx一边的对角对应相等”的两个xxx不一定全等;

(4)时刻注意图形中的隐含条件,如“公共角” 、“公共边”、“对顶角”

(5)截长补短法证xxx全等。

初二的数学知识点总结 第36篇

1、函数概念:在一个变化过程中有两个变量x、y,如果对于x的每一个值,y都有惟一的值与它对应,那么就说x是自变量,y是x的函数、

2、一次函数和正比例函数的概念

若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数(x为自变量),特别地,当b=0时,称y是x的正比例函数、

说明:

(1)一次函数的自变量的取值范围是一切实数,但在实际问题中要根据函数的实际意义来确定、

(2)一次函数y=kx+b(k,b为常数,b≠0)中的“一次”和一元一次方程、一元一次不等式中的“一次”意义相同,即自变量x的次数为1,一次项系数k必须是不为零的常数,b可为任意常数、

(3)当b=0,k≠0时,y=b仍是一次函数、

(4)当b=0,k=0时,它不是一次函数、

3、一次函数的图象(三步画图象)

由于一次函数y=kx+b(k,b为常数,k≠0)的图象是一条直线,所以一次函数y=kx+b的图象也称为直线y=kx+b、

由于两点确定一条直线,因此在今后作一次函数图象时,只要描出适合关系式的两点,再连成直线即可,一般选取两个特殊点:直线与y轴的交点(0,b),直线与x轴的交点(-,0)、但也不必一定选取这两个特殊点、画正比例函数y=kx的图象时,只要描出点(0,0),(1,k)即可、

4、一次函数y=kx+b(k,b为常数,k≠0)的性质(正比例函数的性质略)

(1)k的正负决定直线的倾斜方向;①k>0时,y的值随x值的增大而增大;

②k﹤O时,y的值随x值的增大而减小、

(2)|k|大小决定直线的.倾斜程度,即|k|越大,直线与x轴相交的锐角度数越大(直线陡),|k|越小,直线与x轴相交的锐角度数越小(直线缓);

(3)b的正、负决定直线与y轴交点的位置;

①当b>0时,直线与y轴交于正半轴上;

②当b<0时,直线与y轴交于负半轴上;

③当b=0时,直线经过原点,是正比例函数、

(4)由于k,b的符号不同,直线所经过的象限也不同;

5、确定正比例函数及一次函数表达式的条件

(1)由于正比例函数y=kx(k≠0)中只有一个待定系数k,故只需一个条件(如一对x,y的值或一个点)就可求得k的值、

(2)由于一次函数y=kx+b(k≠0)中有两个待定系数k,b,需要两个独立的条件确定两个关于k,b的方程,求得k,b的值,这两个条件通常是两个点或两对x,y的值、

6、待定系数法

先设待求函数关系式(其中含有未知常数系数),再根据条件列出方程(或方程组),求出未知系数,从而得到所求结果的方法,叫做待定系数法、其中未知系数也叫待定系数、例如:函数y=kx+xxx,k,b就是待定系数、

7、用待定系数法确定一次函数表达式的一般步骤

(1)设函数表达式为y=kx+b;

(2)将已知点的坐标代入函数表达式,解方程(组);

(3)求出k与b的值,得到函数表达式、

8、本章思想方法

(1)函数方法。函数方法就是用运动、变化的观点来分析题中的数量关系,函数的实质是研究两个变量之间的对应关系。

(2)数形结合法。数形结合法是指将数与形结合,分析、研究、解决问题的一种思想方法。

初二的数学知识点总结 第37篇

一、试卷成绩总体分析

这份试卷,围绕学段教材的重点,并侧重本学期所学知识,紧密联系生活实际,测查学生对基础知识、基本技能的理解与掌握,以及对于联系生活实际的实践活动能力等等。本次试卷命题较好地体现新课程理念,内容覆盖面广,题型全面、多样、灵活,难度也较大。

成绩反映:平均分一般,及格率较高说明,学生基础知识掌握的可以,但高分率低,说明学生解决复杂问题的数学能力较弱。

二、存在问题分析

1、基础知识掌握好,个别同学较差

大部分学生的基础知识掌握的比较扎实,对基本知识掌握得较牢固。个别较差的学生个别辅导。

2、解决问题能力不强

在本张试题中有多个题目是解决实际问题的题目,这部分试题基本上都是按由易到难的顺序排列的。学生的得分率较低,反映出学生不能很好的将所学知识应用于实际,能够解决一些实际问题。

3、解答方法多样化,但有解题不规范的现象

试题中有一定数量的灵活、开放的题目。可以说学生的解答方法多样,表现出了思维的灵活性和方法的多样性。试卷中有许多同学明明知道道理,却未得满分,在解题规范性上海存在问题。

4.有些学生良好的学习习惯有待养成

据卷面失分情况结合学生平时学情分析,许多数学生失分可归因于良好的学习习惯还没很好养成,从卷面的答题情况看,学生的审题不够认真,抄错数字,看错题目要求,忘记做题,计算粗心马虎等,是导致失分的一个重要原因。

通过以上的分析,我们可以看出:教师们已经把新课程的理念落实到教学实际之中。他们在夯实知识与技能的同时,还应该关注学生“数学思考、解决问题、情感态度以及个性发展”等全方位的综合素质,促进学生创新思维能力、解决问题能力及学习习惯等综合素质的拓展和提升。

三、今后教学工作改进策略措施:

根据学生的答题情况,反思我们的教学,我们觉得今后应从以下几方面加强:

1、加强学习,更新教学观念。

发挥教师群体力量进行备课,弥补教师个体钻研教材能力的不足,共同分析、研究和探讨教材,准确把握教材。根据学生的年龄和思维特点,充分利用学生的生活经验,设计生动有趣、直观形象的数学教学活动,激发学生的学习兴趣,让学生在生动具体的情境中理解和认识数学知识。重视知识的获得过程,让学生通过操作、实践、探索等活动充分地感知,使他们在经历和体验知识的产生和形成过程中,获取知识、形成能力。坚持认真写好教学反思。经常对自己教学中的得与失进行自我反思,分析失败的原因,寻求改进的措施和对策,总结成功的经验,撰写教学案例和经验论文,以求更快地提高自身课堂教学的素质和水平。学校内部积极开展教研活动,互相学习,共同发展,提高自身素质,构建适应现代化发展需要的数学模式。《国家数学课程标准》的基本理念中提出:“对数学学习的评价要关注学生学习的结果,更要关注他们学习的过程;要关注学生数学学习的水平…”,明确地把“形成解决问题的一些基本策略”作为一个重要的课程目标,因此教师应把评价的重心由关注学生解题结果转移到关注学生的解题策略上来。在肯定学生个性方法、带给学生成功感受的同时,认真分析学生不同的解题策略,并通过观察、调查、访谈等多种方式,了解学生的所思所想,掌握学生数学学习的水平,看到自己教学中存在的问题,对自己的教学过程进行回顾与反思,从而促进课堂教学的改革。

2、夯实基础,促进全面发展。

初二的数学知识点总结 第38篇

1、实数的概念及分类

①实数的'分类

②无理数

无限不循环小数叫做无理数。

在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:

开方开不尽的数,如 √7 ,3 √2等;

有特定意义的数,如圆周率π,或化简后含有π的数,如π /?+8等;

有特定结构的数,如…等;

某些三角函数值,如sin60°等

2、实数的倒数、相反数和绝对值

①相反数

实数与它的相反数是一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=-b,反之亦成立。

②绝对值

在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。|a|≥0。0的绝对值是它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。

③倒数

如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。0没有倒数。

④数轴

规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。

解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。

⑤估算

3、平xxx、算数平xxx和立xxx

①算术平xxx

一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算术平xxx。特别地,0的算术平xxx是0。

性质:正数和零的算术平xxx都只有一个,0的算术平xxx是0。

②平xxx

一般地,如果一个数x的平方等于a,即x2=a,那么这个数x就叫做a的平xxx(或二次xxx)。

性质:一个正数有两个平xxx,它们互为相反数;零的平xxx是零;负数没有平xxx。

开平方求一个数a的平xxx的运算,叫做开平方。注意 √a的双重非负性:√a≥0 ; a≥0

③立xxx

一般地,如果一个数x的立方等于a,即x3=a,那么这个数x就叫做a 的立xxx(或三次xxx)。

表示方法:记作 3 √a

性质:一个正数有一个正的立xxx;一个负数有一个负的立xxx;零的立xxx是零。

注意:- 3 √a=3 √-a,这说明三次根号内的负号可以移到根号外面。

4、实数大小的比较

①实数比较大小

正数大于零,负数小于零,正数大于一切负数;

数轴上的两个点所表示的数,右边的总比左边的大;

两个负数,绝对值大的反而小。

②实数大小比较的几种常用方法

数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。

求差比较:设a、b是实数 a-b>0a>b; a-b=0a=b; a-b<0a

求商比较法:设a、b是两正实数,

绝对值比较法:设a、b是两负实数,则∣a∣>∣b∣a

平方法:设a、b是两负实数,则a2>b2a

5、算术平xxx有关计算(二次根式)

①含有二次根号“√”;被开方数a必须是非负数。

②性质:

③运算结果若含有“√”形式,必须满足:

被开方数的因数是整数,因式是整式

被开方数中不含能开得尽方的因数或因式

6、实数的运算

①六种运算:加、减、乘、除、乘方、开方。

②实数的运算顺序

先算乘方和开方,再算乘除,最后算加减,如果有括号,就先算括号里面的。

③运算律

加法交换律a+b=b+a

加法结合律(a+b)+c=a+(b+c)

乘法交换律ab=ba

乘法结合律(ab)c=a(bc)

乘法对加法的分配律a(b+c)=ab+ac

初二的数学知识点总结 第39篇

1、一次函数:若两个变量x,y间的关系式可以表示成y=kx+b(k≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。特别地,当b=0时,称y是x的正比例函数。

2、正比例函数一般式:y=kx(k≠0),其图象是经过原点(0,0)的一条直线。

3、正比例函数y=kx(k≠0)的图象是一条经过原点的直线,当k>0时,直线y=kx经过第一、三象限,y随x的增大而增大,当k0时,y随x的增大而增大;当k

4、已知两点坐标求函数解析式:待定系数法

一次函数是初中学生学习函数的开始,也是今后学习其它函数知识的基石。在学习本章内容时,教师应该多从实际问题出发,引出变量,从具体到抽象的认识事物。培养学生良好的变化与对应意识,体会数形结合的思想。在教学过程中,应更加侧重于理解和运用,在解决实际问题的同时,让学习体会到数学的实用价值和乐趣。

初二的数学知识点总结 第40篇

一、分式

1、两个整数不能整除时,出现了分数;类似地,当两个整式不能整除时,就出现了分式。

整式A除以整式B,可以表示成的形式。如果除式B中含有字母,那么称为分式,对于任意一个分式,分母都不能为零。

2、整式和分式xxx有理式,即有:

3、进行分数的化简与运算时,常要进行约分和通分,其主要依据是分数的基本性质:

分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变。

4、一个分式的分子、分母有公因式时,可以运用分式的基本性质,把这个分式的分子、分母同时除以它的们的公因式,也就是把分子、分母的公因式约去,这叫做约分。

二、分式的乘除法

1、分式乘以分式,用分子的积做积的分子,分母的积做积的分母;分式除以以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

2、分式乘方,把分子、分母分别乘方。

逆向运用,当n为整数时,仍然有成立。

3、分子与分母没有公因式的分式,叫做最简分式。

三、分式的加减法

1、分式与分数类似,也可以通分。根据分式的基本性质,把几个异分母的分式分别化成与原来的.分式相等的同分母的分式,叫做分式的通分。

2、分式的加减法:

分式的加减法与分数的加减法一样,分为同分母的分式相加减与异分母的分式相加减。

(1)同分母的分式相加减,分母不变,把分子相加减;

上述法则用式子表示是:

(2)异号分母的分式相加减,先通分,变为同分母的分式,然后再加减;

上述法则用式子表示是:

3、概念内涵:

通分的关键是确定最简分母,其方法如下:最xxx母的系数,取各分母系数的最小公倍数;最xxx母的字母,取各分母所有字母的最高次幂的积,如果分母是多项式,则首先对多项式进行因式分解。

四、分式方程

1、解分式方程的一般步骤:

①在方程的两边都乘最xxx母,约去分母,化成整式方程;

②解这个整式方程;

③把整式方程的根代入最xxx母,看结果是不是零,使最xxx母为零的根是原方程的增根,必须舍去。

2、列分式方程解应用题的一般步骤:

①审清题意;

②设未知数;

③根据题意找相等关系,列出(分式)方程;

④解方程,并验根;

⑤写出答案。