高二数学必修五知识点总结 第1篇
数列:
1.数列的有关概念:
(1)数列:按照一定次序排列的一列数。数列是有序的。数列是定义在自然数N_它的有限子集{1,2,3,…,n}上的函数。
(2)通项公式:数列的第n项an与n之间的函数关系用一个公式来表示,这个公式即是该数列的通项公式。如:。
(3)递推公式:已知数列{an}的第1项(或前几项),且任一项an与他的前一项an-1(或前几项)可以用一个公式来表示,这个公式即是该数列的递推公式。
如:。
2.数列的表示方法:
(1)列举法:如1,3,5,7,9,…(2)图象法:用(n,an)孤立点表示。
(3)解析法:用通项公式表示。(4)递推法:用递推公式表示。
3.数列的分类:
4.数列{an}及前n项和之间的关系:
高二数学必修五知识点总结 第2篇
排列P------和顺序有关
组合C-------不牵涉到顺序的问题
排列分顺序,组合不分
例如把5本不同的书分给3个人,有几种分法。_排列_
把5本书分给3个人,有几种分法_组合_
1、排列及计算公式
从n个不同元素中,任取m(m≤n)个元素按照一定的顺序xxx一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用xxx(n,m)表示。
p(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!(规定0!=1)。
2、组合及计算公式
从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数。用符号
c(n,m)表示。
c(n,m)=p(n,m)/m!=n!/((n-m)!_!);c(n,m)=c(n,n-m);
3、其他排列与组合公式
从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!。
n个元素被分成k类,每类的个数分别是n1,n2,。.。nk这n个元素的全排列数为
n!/(n1!_2!_.。_k!)。
k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m)。
排列(Pnm(n为下标,m为上标))
Pnm=n×(n-1)。.。.(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标)=n!;0!=1;Pn1(n为下标1为上标)=n
组合(Cnm(n为下标,m为上标))
Cnm=Pnm/Pmm;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标)=1;Cn1(n为下标1为上标)=n;Cnm=Cnn-m
2008-07-0813:30
公式P是指排列,从N个元素取R个进行排列。公式C是指组合,从N个元素取R个,不进行排列。N-元素的总个数R参与选择的元素个数!-阶乘,如9!=9________
从N倒数r个,表达式应该为n_n-1)_n-2)。.(n-r+1);
因为从n到(n-r+1)个数为n-(n-r+1)=r
举例:
Q1:有从1到9共计9个号码球,请问,可以组成多少个三位数?
A1:123和213是两个不同的排列数。即对排列顺序有要求的,既属于“排列P”计算范畴。
上问题中,任何一个号码只能用一次,显然不会出现988,997之类的组合,我们可以这么看,百位数有9种可能,十位数则应该有9-1种可能,个位数则应该只有9-1-1种可能,最终共有9__个三位数。计算公式=P(3,9)=9__,(从9倒数3个的乘积)
Q2:有从1到9共计9个号码球,请问,如果三个一组,代表“三国联盟”,可以组合成多少个“三国联盟”?
A2:213组合和312组合,代表同一个组合,只要有三个号码球在一起即可。即不要求顺序的,属于“组合C”计算范畴。
上问题中,将所有的包括排列数的个数去除掉属于重复的个数即为最终组合数C(3,9)=9__/3__
排列、组合的概念和公式典型例题分析
例1设有3名学生和4个课外小组。(1)每名学生都只参加一个课外小组;(2)每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加。各有多少种不同方法?
解(1)由于每名学生都可以参加4个课外小组中的任何一个,而不限制每个课外小组的人数,因此共有种不同方法。
(2)由于每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加,因此共有种不同方法。
点评由于要让3名学生逐个选择课外小组,故两问都用乘法原理进行计算。
例2xxx一行,其中不排第一,不排第二,不排第三,不排第四的不同排法共有多少种?
解依题意,符合要求的排法可分为第一个排、、中的某一个,共3类,每一类中不同排法可采用画“树图”的方式逐一排出:
∴符合题意的不同排法共有9种。
点评按照分“类”的思路,本题应用了加法原理。为把握不同排法的规律,“树图”是一种具有直观形象的有效做法,也是解决计数问题的一种数学模型。
例3判断下列问题是排列问题还是组合问题?并计算出结果。
(1)高三年级学生会有11人:①每两人互通一封信,共通了多少封信?②每两人互握了一次手,共握了多少次手?
(2)高二年级数学课外小组共10人:①从中选一名正组长和一名副组长,共有多少种不同的选法?②从中选2名参加省数学竞赛,有多少种不同的选法?
(3)有2,3,5,7,11,13,17,19八个质数:①从中任取两个数求它们的商可以有多少种不同的商?②从中任取两个求它的积,可以得到多少个不同的积?
(4)有8盆花:①从中选出2盆分别给甲乙两人每人一盆,有多少种不同的选法?②从中选出2盆放在教室有多少种不同的选法?
分析(1)①由于每人互通一封信,甲给乙的信与乙给甲的信是不同的两封信,所以与顺序有关是排列;②由于每两人互握一次手,甲与乙握手,乙与甲握手是同一次握手,与顺序无关,所以是组合问题。其他类似分析。
(1)①是排列问题,共用了封信;②是组合问题,共需握手(次)。
(2)①是排列问题,共有(种)不同的选法;②是组合问题,共有种不同的选法。
(3)①是排列问题,共有种不同的商;②是组合问题,共有种不同的积。
(4)①是排列问题,共有种不同的选法;②是组合问题,共有种不同的选法。
例4证明。
证明左式
右式。
∴等式成立。
点评这是一个排列数等式的证明问题,选用阶乘之商的形式,并利用阶乘的性质,可使变形过程得以简化。
例5化简。
解法一原式
解法二原式
点评解法一选用了组合数公式的阶乘形式,并利用阶乘的性质;解法二选用了组合数的两个性质,都使变形过程得以简化。
例6解方程:(1);(2)。
解(1)原方程
解得。
(2)原方程可变为
∵,,
∴原方程可化为。
即,解得
高二数学必修五知识点总结 第3篇
排列组合
排列P------和顺序有关
组合C-------不牵涉到顺序的问题
排列分顺序,组合不分
例如把5本不同的书分给3个人,有几种分法。_排列_
把5本书分给3个人,有几种分法_组合_
1.排列及计算公式
从n个不同元素中,任取m(m≤n)个元素按照一定的顺序xxx一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用xxx(n,m)表示。
p(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!(规定0!=1).
2.组合及计算公式
从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数。用符号
c(n,m)表示。
c(n,m)=p(n,m)/m!=n!/((n-m)!_!);c(n,m)=c(n,n-m);
3.其他排列与组合公式
从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!.
n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为
n!/(n1!_2!_.._k!).
k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m).
排列(Pnm(n为下标,m为上标))
Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标)=n!;0!=1;Pn1(n为下标1为上标)=n
组合(Cnm(n为下标,m为上标))
Cnm=Pnm/Pmm;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标)=1;Cn1(n为下标1为上标)=n;Cnm=Cnn-m
20xx-07-0813:30
公式P是指排列,从N个元素取R个进行排列。公式C是指组合,从N个元素取R个,不进行排列。N-元素的总个数R参与选择的元素个数!-阶乘,如9!=9________
从N倒数r个,表达式应该为n_n-1)_n-2)..(n-r+1);
因为从n到(n-r+1)个数为n-(n-r+1)=r
高二数学必修五知识点总结 第4篇
●不等式
1、不等式你会解么?你会解么?如果是写解集不要忘记写成集合形式!
2、的解集是(1,3),那么的解集是什么?
3、两类xxx问题图象法——xxx,则=?
★★★★分离变量法——在[1,3]xxx,则=?(必考题)
4、线性规划问题
(1)可行域怎么作(一定要用直尺和铅笔)定界——定域——边界
(2)目标函数改写:(注意分析截距与z的关系)
(3)平行直线系去画
5、基本不等式的形式和变形形式
如a,b为正数,a,b满足,则ab的范围是
6、运用基本不等式求最值要注意:一正二定三相等!
如的最小值是的最小值(不要忘记交代是什么时候取到=!!)
一个非常重要的函数——对勾函数的图象是什么?
运用对勾函数来处理下面问题的最小值是
7、★★两种题型:
和——倒数和(1的代换),如x,y为正数,且,求的最小值?
和——积(直接用基本不等式),如x,y为正数,,则的范围是?
不要忘记x,xy,x2+y2这三者的关系!如x,y为正数,,则的范围是?
高二数学必修五知识点总结 第5篇
1、数列的定义及数列的通项公式:
① an?f(n),数列是定义域为N
的函数f(n),当n依次取1,2,???时的一列函数值② i。归纳法
若S0?0,则an不分段;若S0?0,则an分段iii。若an?1?pan?q,则可设an?1?m?p(an?m)解得m,得等比数列?an?m?
?Sn?f(an)
iv。若Sn?f(an),先求a
1?得到关于an?1和an的递推关系式
S?f(a)n?1?n?1?Sn?2an?1
例如:Sn?2an?1先求a1,再构造方程组:??(下减上)an?1?2an?1?2an
?Sn?1?2an?1?1
2、等差数列:
①定义:a
n?1?an=d(常数),证明数列是等差数列的重要工具。 ②通项d?0时,an为xxx的一次函数;
d>0时,an为xxx增数列;d<0时,a
n为xxx减数列。
n(n?1)2
③前n?na1?
d?0时,Sn是xxx的不含常数项的一元二次函数,反之也成立。
④性质:ii。若?an?为等差数列,则am,am?k,am?2k,…仍为等差数列。 iii。若?an?为等差数列,则Sn,S2n?Sn,S3n?S2n,…仍为等差数列。 iv若A为a,b的等差中项,则有A?3。等比数列:
①定义:
an?1an
?q(常数),是证明数列是等比数列的重要工具。
a?b2
②通项时为常数列)。
③。前n项和
需特别注意,公比为字母时要讨论。
高二数学必修五知识点总结 第6篇
对于函数y=f(x)(x∈D),把使f(x)=0成立的实数x叫做函数y=f(x)(x∈D)的零点。
(2)函数的零点与相应方程的根、函数的图象与x轴交点间的关系:
方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴有交点⇔函数y=f(x)有零点。
(3)函数零点的判定(零点存在性定理):
如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根。
二二次函数y=ax2+bx+c(a>0)的图象与零点的关系
三二分法
对于在区间[a,b]上连续不断且f(a)·f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法。
1、函数的零点不是点:
函数y=f(x)的零点就是方程f(x)=0的实数根,也就是函数y=f(x)的图象与x轴交点的横坐标,所以函数的零点是一个数,而不是一个点.在写函数零点时,所写的一定是一个数字,而不是一个坐标。
2、对函数零点存在的判断中,必须强调:
(1)、f(x)在[a,b]上连续;
(2)、f(a)·f(b)<0;
(3)、在(a,b)内存在零点。
这是零点存在的一个充分条件,但不必要。
3、对于定义域内连续不断的函数,其相邻两个零点之间的所有函数值保持同号。
利用函数零点的存在性定理判断零点所在的区间时,首先看函数y=f(x)在区间[a,b]上的图象是否连续不断,再看是否有f(a)·f(b)<0.若有,则函数y=f(x)在区间(a,b)内必有零点。
判断函数零点个数的常用方法
1、解方程法:
令f(x)=0,如果能求出解,则有几个解就有几个零点。
2、零点存在性定理法:
利用定理不仅要判断函数在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性、周期性、对称性)才能确定函数有多少个零点。
3、数形结合法:
转化为两个函数的图象的交点个数问题.先画出两个函数的图象,看其交点的个数,其中交点的个数,就是函数零点的个数。
已知函数有零点(方程有根)求参数取值常用的方法
1、直接法:
直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围。
2、分离参数法:
先将参数分离,转化成求函数值域问题加以解决。
3、数形结合法:
先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解。
高二数学必修五知识点总结 第7篇
正弦、xxx典型例题
1.在△ABC中,∠C=90°,a=1,c=4,则sinA的值为
2.已知α为锐角,且,则α的度数是()°°°°
3.在△ABC中,若,∠A,∠B为锐角,则∠C的度数是()°°°°
4.若∠A为锐角,且,则A=()°°°°
5.在△ABC中,AB=AC=2,AD⊥BC,垂足为D,且AD=,E是AC中点,EF⊥BC,垂足为F,求sin∠EBF的值。
正弦、xxx解题诀窍
1、已知两角及一边,或两边及一边的对角(对三角形是否存在要讨论)用正弦定理
2、已知三边,或两边及其夹角用xxx定理
3、xxx定理对于确定三角形形状非常有用,只需要知道角的xxx值为正,为负,还是为零,就可以确定是钝角。直角还是锐角。
排列及计算公式
从n个不同元素中,任取m(m≤n)个元素按照一定的顺序xxx一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用xxx(n,m)表示.
p(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!(规定0!=1).
组合及计算公式
从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的'组合数.用符号
c(n,m)表示.
c(n,m)=p(n,m)/m!=n!/((n-m)!_!);c(n,m)=c(n,n-m);
其他排列与组合公式
从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!.
n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为
n!/(n1!_2!_.._k!).
k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m).
排列(Pnm(n为下标,m为上标))
Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标)=n!;0!=1;Pn1(n为下标1为上标)=n
组合(Cnm(n为下标,m为上标))
Cnm=Pnm/Pmm;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标)=1;Cn1(n为下标1为上标)=n;Cnm=Cnn-m
高二数学必修五知识点总结 第8篇
一、变量间的相关关系
1.常见的两变量之间的关系有两类:一类是函数关系,另一类是相关关系;与函数关系不同,相关关系是一种非确定性关系。
2.从散点图上看,点分布在从左下角到右上角的区域内,两个变量的这种相关关系称为正相关,点分布在左上角到右下角的区域内,两个变量的相关关系为负相关。
二、两个变量的线性相关
从散点图上看,如果这些点从整体上看大致分布在通过散点图中心的一条直线附近,称两个变量之间具有线性相关关系,这条直线叫回归直线。
当r>0时,表明两个变量正相关;
当r<0时,表明两个变量负相关。
r的绝对值越接近于1,表明两个变量的线性相关性越强。r的绝对值越接近于0时,表明两个变量之间几乎不存在线性相关关系。通常|r|大于时,认为两个变量有很强的线性相关性。
三、解题方法
1.相关关系的判断方法一是利用散点图直观判断,二是利用相关系数作出判断。
2.对于由散点图作出相关性判断时,若散点图呈带状且区域较窄,说明两个变量有一定的线性相关性,若呈曲线型也是有相关性。
3.由相关系数r判断时|r|越趋近于1相关性越强。
高二数学必修五知识点总结 第9篇
三角函数
注意归一公式、诱导公式的正确性
数列题
证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;
最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;
证明不等式时,有时构造函数,利用函数单调性很简单
立体几何题
证明线面位置关系,一般不需要去建系,更简单;
求异面直线xxx的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,要建系;
注意向量xxx的角的xxx值(范围)与所求角的xxx值(范围)的关系。
概率问题
搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数;
搞清是什么概率模型,套用哪个公式;
记准均值、方差、标准差公式;
求概率时,正难则反(根据p1+p2+...+pn=1);
注意计数时利用列举、树图等基本方法;
注意放回抽样,不放回抽样。
高二数学必修五知识点总结 第10篇
基本初等函数有哪些
基本初等函数包括以下几种:
(1)常数函数y=c(c为常数)
(2)幂函数y=x^a(a为常数)
(3)指数函数y=a^x(a>0,a≠1)
(4)对数函数y=log(a)x(a>0,a≠1,真数x>0)
(5)三角函数以及反三角函数(如正弦函数:y=sinx反正弦函数:y=arcsinx等)
基本初等函数性质是什么
幂函数
形如y=x^a的函数,式中a为实常数。
指数函数
形如y=a^x的函数,式中a为不等于1的正常数。
对数函数
指数函数的反函数,记作y=logaax,式中a为不等于1的正常数。指数函数与对数函数之间成立关系式,logaax=x。
三角函数
即正弦函数y=sinx,xxx函数y=cosx,正切函数y=tanx,余切函数y=cotx,正割函数y=secx,余割函数y=cscx(见三角学)。
高二数学必修五知识点总结 第11篇
【一元二次不等式及其解法】
★知识梳理★
一、解不等式的有关理论
(1)若两个不等式的解集相同,则称它们是同解不等式;
(2)一个不等式变形为另一个不等式时,若两个不等式是同解不等式,这种变形称为不等式的同解变形;
(3)解不等式时应进行同解变形;
(4)解不等式的结果,原则上要用集合表示。
二、一元二次不等式的解集
三、解一元二次不等式的基本步骤:
(1)整理系数,使次项的系数为正数;
(2)尝试用十字相乘法分解因式;
(3)计算
(4)结合二次函数的图象特征写出解集。
四、高次不等式解法:
尽可能进行因式分解,分解成一次因式后,再利用数轴标根法求解
(注意每个因式的次项的系数要求为正数)
五、分式不等式的解法:
分子分母因式分解,转化为相异一次因式的积和商的形式,再利用数轴标根法求解;
★重难点突破★
1、重点:从实际情境中抽象出一元二次不等式模型;熟练掌握一元二次不等式的解法。
2、难点:理解二次函数、一元二次方程与一元二次不等式解集的关系。求解简单的分式不等式和高次不等式以及简单的含参数的'不等式
3、重难点:掌握一元二次不等式的解法,利用不等式的性质解简单的简单的分式不等式和高次不等式以及简单的含参数的不等式,会解简单的指数不等式和对数不等式。
高二数学必修五知识点总结 第12篇
等差数列等比数列
定义式
( )
通项公式及推广公式
中项公式若 成等差,则
若 成等比,则
运算性质若 ,则
若 ,则
前 项和公式
一个性质 成等差数列
成等比数列
86、解不等式
(1)、含有绝对值的不等式
当a >0时,有 . [小于取中间]
或 .[大于取两边]
(2)、解一元二次不等式 的步骤:
①求判别式
②求一元二次方程的解: 两相异实根 一个实根 没有实根
③画二次函数 的图象
④结合图象写出解集
解集 R
注: 解集为R 对 xxx
(3)高次不等式:数轴标根法(奇穿偶回,大于取上,小于取下)
(4)分式不等式:先移项通分,化一边为0,再将除变乘,化为整式不等式,求解。
如解分式不等式 :先移项 通分
再除变乘 ,解出。
高二数学必修五知识点总结 第13篇
1、数列的函数理解:
①数列是一种特殊的函数。其特殊性主要表现在其定义域和值域上。数列可以看作一个定义域为正整数集N_其有限子集{1,2,3,…,n}的函数,其中的{1,2,3,…,n}不能省略。②用函数的观点认识数列是重要的思想方法,一般情况下函数有三种表示方法,数列也不例外,通常也有三种表示方法:a.列表法;b。图像法;c.解析法。其中解析法包括以通项公式给出数列和以递推公式给出数列。③函数不一定有解析式,同样数列也并非都有通项公式。
2、通项公式:数列的第N项an与项的序数n之间的关系可www.白话文baihuawen白话文.cn以用一个公式an=f(n)来表示,这个公式就叫做这个数列的通项公式(注:通项公式不)。
数列通项公式的特点:
(1)有些数列的通项公式可以有不同形式,即不。
(2)有些数列没有通项公式(如:素数由小到大xxx一列2,3,5,7,11,。.。)。
3、递推公式:如果数列{an}的第n项与它前一项或几项的关系可以用一个式子来表示,那么这个公式叫做这个数列的递推公式。
数列递推公式特点:
(1)有些数列的递推公式可以有不同形式,即不。
(2)有些数列没有递推公式。
有递推公式不一定有通项公式。
注:数列中的项必须是数,它可以是实数,也可以是复数。
高二数学必修五知识点总结 第14篇
【不等关系及不等式】
一、不等关系及不等式知识点
1、不等式的定义
在客观世界中,量与量之间的不等关系是普遍存在的,我们用数学符号、、连接两个数或代数式以表示它们之间的不等关系,含有这些不等号的式子,叫做不等式。
2、比较两个实数的大小
两个实数的大小是用实数的运算性质来定义的,有a-baa-b=0a-ba0,则有a/baa/b=1a/ba
3、不等式的性质
(1)对称性:ab
(2)传递性:ab,ba
(3)可加性:aa+cb+c,ab,ca+c
(4)可乘性:ab,cacb0,c0bd;
(5)可乘方:a0bn(nN,n
(6)可开方:a0
(nN,n2)。
注意:
一个技巧
作差法变形的技巧:作差法中变形是关键,常进行因式分解或配方。
一种方法
待定系数法:求代数式的范围时,先用已知的代数式表示目标式,再利用多项式相等的法则求出参数,最后利用不等式的性质求出目标式的范围。
高二数学必修五知识点总结 第15篇
1、等差数列通项公式
an=a1+(n-1)d
n=1时a1=S1
n≥2时an=Sn-Sn-1
an=kn+b(k,b为常数)推导过程:an=dn+a1-d令d=k,a1-d=b则得到an=kn+b
2、等差中项
由三个数a,A,xxx的等差数列可以堪称最简单的等差数列。这时,A叫做a与b的等差中项(arithmeticmean)。
有关系:A=(a+b)÷2
3、前n项和
倒序相加法推导前n项和公式:
Sn=a1+a2+a3+xxx··+an
=a1+(a1+d)+(a1+2d)+xxxxxx+[a1+(n-1)d]①
Sn=an+an-1+an-2+xxxxxx+a1
=an+(an-d)+(an-2d)+xxxxxx+[an-(n-1)d]②
由①+②得2Sn=(a1+an)+(a1+an)+xxxxxx+(a1+an)(n个)=n(a1+an)
∴Sn=n(a1+an)÷2
等差数列的前n项和等于首末两项的和与项数乘积的一半:
Sn=n(a1+an)÷2=na1+n(n-1)d÷2
Sn=dn2÷2+n(a1-d÷2)
亦可得
a1=2sn÷n-an=[sn-n(n-1)d÷2]÷n
an=2sn÷n-a1
有趣的是S2n-1=(2n-1)an,S2n+1=(2n+1)an+1
4、等差数列性质
一、任意两项am,an的关系为:
an=am+(n-m)d
它可以看作等差数列广义的通项公式。
二、从等差数列的定义、通项公式,前n项和公式还可推出:
a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈N
三、若m,n,p,q∈N_且m+n=p+q,则有am+an=ap+aq
四、对任意的k∈N_有
Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…成等差数列。
最新范文
高二数学必修五知识点总结 第16篇
(一)解三角形:
1、正弦定理:在中,、、分别为角、、的对边,,则有
(为的外接圆的半径)
2、正弦定理的变形公式:①,,;
②,,;③;
3、三角形面积公式:。
4、xxx定理:在中,有,推论:
(二)数列:
1、数列的有关概念:
(1)数列:按照一定次序排列的一列数。数列是有序的。数列是定义在自然数N_它的有限子集{1,2,3,…,n}上的函数。
(2)通项公式:数列的第n项an与n之间的函数关系用一个公式来表示,这个公式即是该数列的通项公式。如:。
(3)递推公式:已知数列{an}的第1项(或前几项),且任一项an与他的前一项an-1(或前几项)可以用一个公式来表示,这个公式即是该数列的递推公式。
如:。
2、数列的表示方法:
(1)列举法:如1,3,5,7,9,…(2)图象法:用(n,an)孤立点表示。
(3)解析法:用通项公式表示。(4)递推法:用递推公式表示。
3、数列的分类:
4、数列{an}及前n项和之间的关系:
高二数学必修五知识点总结 第17篇
空间直线与直线之间的位置关系
(1)异面直线定义:不同在任何一个平面内的两条直线
(2)异面直线性质:既不平行,又不相交。
(3)异面直线判定:过平面外一点与平面内一点的直线与平面内不过该店的直线是异面直线
异面直线xxx角:作平行,令两线相交,所得锐角或直角,即xxx角。两条异面直线xxx角的范围是(0°,90°],若两条异面直线xxx的角是直角,我们就说这两条异面直线互相垂直。
(4)求异面直线xxx角步骤:
A、利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选在特殊的位置上。
B、证明作出的角即为所求角
C、利用三角形来求角
(5)等角定理:如果一个角的两边和另一个角的两边分别平行,那么这两角相等或互补。
(6)空间直线与平面之间的位置关系
直线在平面内——有无数个公共点。
三种位置关系的符号表示:aαa∩α=Aaα
(7)平面与平面之间的位置关系:
平行——没有公共点;αβ
相交——有一条公共直线。α∩β=b
高二数学必修五知识点总结 第18篇
函数的性质:
函数的单调性、奇偶性、周期性
单调性:注意定义是相对与某个具体的区间而言。
判定方法有:定义法(作差比较和作商比较)
导数法(适用于多项式函数)
复合函数法和图像法。
应用:比较大小,证明不等式,解不等式。
奇偶性:注意区间是否关于原点对称,比较f(x)与f(-x)的关系。
f(x)-f(-x)=0f(x)=f(-x)f(x)为偶函数。
f(x)+f(-x)=0f(x)=-f(-x)f(x)为奇函数。
判别方法:定义法,图像法,复合函数法
应用:把函数值进行转化求解。
周期性:定义:若函数f(x)对定义域内的任意x满足:f(x+T)=f(x),则T为函数f(x)的周期。
其他:若函数f(x)对定义域内的任意x满足:f(x+a)=f(x-a),则2a为函数f(x)的周期。
应用:求函数值和某个区间上的函数解析式。
高二数学必修五知识点总结 第19篇
(一)解三角形:
1、正弦定理:在中,、、分别为角、、的对边,,则有
(为的外接圆的半径)
2、正弦定理的变形公式:①,,;
②,,;③;
3、三角形面积公式:.
4、xxx定理:在中,有,推论:
(二)数列:
1.数列的有关概念:
(1)数列:按照一定次序排列的一列数。数列是有序的。数列是定义在自然数N_它的有限子集{1,2,3,…,n}上的函数。
(2)通项公式:数列的第n项an与n之间的函数关系用一个公式来表示,这个公式即是该数列的通项公式。如:。
(3)递推公式:已知数列{an}的第1项(或前几项),且任一项an与他的前一项an-1[](或前几项)可以用一个公式来表示,这个公式即是该数列的递推公式。
如:。
2.数列的表示方法:
(1)列举法:如1,3,5,7,9,…(2)图象法:用(n,an)孤立点表示。
(3)解析法:用通项公式表示。(4)递推法:用递推公式表示。
3.数列的分类:
4.数列{an}及前n项和之间的关系:
它山之石可以攻玉,以上就是一秘范文为大家带来的8篇《高二数学必修5知识点总结》,希望对您的写作有所帮助。