榆树范文网

考研高数知识点总结(通用3篇)

132

考研高数知识点总结 第1篇

⒈理解二重积分的概念与性质,了解二重积分的几何意义以及二重积分与定积分之间的联系,会用性质比较二重积分的大小,估计二重积分的取值范围。

⒉领会将二重积分化为二次积分时如何确定积分次序和积分限,如何改换二次积分的积分次序,并且如何根据被积函数和积分区域的特征选择坐标系。熟练掌握直角坐标系和极坐标系下重积分的计算方法。

⒊掌握曲顶柱体体积的求法,会求由曲面围成的空间区域的体积。

二重积分的概念与性质

【学习方法导引】

1.二重积分定义

为了更好地理解二重积分的定义,必须首先引入二重积分的两个“原型”,一个是几何的“原型”-曲顶柱体的.体积如何计算,另一个是物理的“原型”—平面薄片的质量如何求。从这两个“原型”出发,对所抽象出来的二重积分的定义就易于理解了。

在二重积分的定义中,必须要特别注意其中的两个“任意”,一是将区域D成n个小区域1,2,,n的分法要任意,二是在每个

小区域i上的点(i,i)i的取法也要任意。有了

这两个“任意”,

如果所对应的积分和当各小区域的直径中的最大值0时总有同一个极限,才能称二元函数f(x,y)在区域D上的二重积分存在。

2.明确二重积分的几何意义。

(1) 若在D上f(x,y)≥0,则f(x,y)d表示以区域D为底,以

f(x,y)为曲顶的曲顶柱体的体积。特别地,当f(x,y)=1时,f(x,y)d

表示平面区域D的面积。

(2) 若在D上f(x,y)≤0,则上述曲顶柱体在Oxy面的下方,二重积分f(x,y)d的值是负的,其绝对值为该曲顶柱体的体积

(3)若f(x,y)在D的某些子区域上为正的,在D的另一些子区域上为负的,则f(x,y)d表示在这些子区域上曲顶柱体体积的代数和

(即在Oxy平面之上的曲顶柱体体积减去Oxy平面之下的曲顶柱体的体积).

3.二重积分的性质,即线性、区域可加性、有序性、估值不等式、二重积分中值定理都与一元定积分类似。有序性xxx比较两个二重积分的大小,估值不等式xxx估计一个二重积分的取值范围,在用估值不等式对一个二重积分估值的时候,一般情形须按求函数f(x,y)在闭区域D上的最大值、最小值的方法求出其最大值与最小值,再应用估值不等式得到取值范围。

考研高数知识点总结 第2篇

1、二重积分的计算(对称性(奇偶、轮换)、极坐标、积分次序的选择)

2、三重积分的计算(“先一后二”、“先二后一”、球坐标)

3、第一、二类曲线积分、第一、二类曲面积分的计算及对称性(主要关注不带方向的积分)

4、格林公式(重点)(直接用(不满足条件时的处理:“补线”、“挖洞”),积分与路径无关,二元函数的全微分)

5、xxx公式(重点)(不满足条件时的处理(类似格林公式))

6、xxx斯公式(要求低何时用:计算第二类曲线积分,曲线不易参数化,常表示为两曲面的交线)

7、场论初步(散度、旋度)

考研高数知识点总结 第3篇

强化阶段完成后,实际上考研数学的复习已经基本完成。这个时候大家应该已经熟悉考研数学中的每一类题型以及对应的解题方法,而且已经具备较强的计算能力。所以从11月份开始,每周要做真题、模拟题培养考试状态,进入冲刺阶段的复习。

【冲刺阶段复习资料】这一阶段的主要任务是查漏补缺,培养考试状态。所以,建议的复习资料是基础阶段和强化阶段总结的复习笔记,历年真题与模拟题。

【注意事项】冲刺阶段需要通过真题和模拟题的训练体验实战感觉,找到做题技巧并摸索出题特点,以便更利于临场发挥。这一阶段要做到:

1.要记忆,不要脱离教材。对考研数学必需掌握的基本概念、公式、定理进行记忆,尤其是平时记忆模糊的公式,都需要重新回到教材找出原型来记忆。

2.要总结、思考。这一阶段不能搞题海战术,需要对上一轮复习中做过的历年真题和模拟题进行总结(包括理清基本的解题思路,对遗忘的知识点查漏补缺)

3.要练习考研数学的套题。坚持练套题到最后,手不能生。最后阶段一定要做高质量的模拟题,尽量少做难题、偏题、怪题。