高中概率总结 第1篇
1若等差数列{an}的前nxxx为Sn,且a2+a3=6,则S4的值为()
2设等差数列?an?的前nxxx为Sn,若a1??11,a4?a6??6,则当Sn取最小值时,n等于()
3记等差数列的前nxxx为Sn,若S2?4,S4?20,则该数列的公差d?()
A、2B、3C、6D、7
4等差数列{an}中,a3?a4?a5?84,a9?73.
求数列{an}的通项公式及Sn
高中概率总结 第2篇
解xxx
1、xxx三角关系:A+B+C=180°;C=180°-(A+B);
2、xxx三边关系:a+b>c; a-b3、xxx中的基本关系:sin(A?B)?sinC,cos(A?B)??cosC,tan(A?B)??tanC, A?BCA?BCA?BC?cos,cos?sin,tan?cot 222222
4、正弦定理:在???C中,a、b、c分别为角?、?、C的对边,R为???C的外abc???2R.接圆的半径,则有sin?sin?sinCsin
5、正弦定理的变形公式:
①化角为边:a?2Rsin?,b?2Rsin?,c?2RsinC; abc,sin??,sinC?; 2R2R2R
a?b?cabc???③a:b:c?sin?:sin?:sinC;④. sin??sin??sinCsin?sin?sinC②化边为角:sin??6、两类正弦定理解xxx的问题:
①xxx两角和任意一边,求其他的两边及一角.
②xxx两角和其中一边的对角,求其他边角.(对于xxx两边和其中一边所对的角的题型要注意解的情况(一解、两解、三解))
7、xxx定理:在???C中,有a?b?c?2bccos?,b?a?c?2accos?,222222c2?a2?b2?2abcosC.
b2?c2?a2a2?c2?b2a2?b2?c2
8、xxx定理的推论:cos??,cos??,cosC?. 2bc2ac2ab(xxx定理主要解决的问题:1.xxx两边和夹角,求其余的量。2.xxx三边求角)
9、xxx定理主要解决的问题:①xxx两边和夹角,求其余的量。②xxx三边求角)
10、如何判断xxx的形状:判定xxx形状时,可利用正xxx定理实现边角转化,统一成边的形式或角的形式设a、b、c是???C的角?、?、C的对边,则:
①若a?b?c,则C?90;②若a?b?c,则C?90;
③若a?b?c,则C?90.
高中概率总结 第3篇
六、解析几何
这部分内容说起来容易做起来难,需要掌握几类问题,第一类直线和曲线的位置关系,要掌握它的通法;第二类动点问题;第三类是弦长问题;第四类是对称问题;第五类重点问题,这类题往往觉得有思路却没有一个清晰的答案,但需要要掌握比较好的算法,来提高做题的准确度。
七、压轴题
同学们在最后的备考复习中,还应该把重点放在不等式计算的方法中,难度虽然很大,但是也切忌在试卷中留空白,平时多做些压轴题真题,争取能解题就解题,能思考就思考。
高考数学直线方程知识点:什么是直线方程
从平面解析几何的角度来看,平面上的直线就是由平面直角坐标系中的一个二元一次方程所表示的图形。求两条直线的交点,只需把这两个二元一次方程联立求解,当这个联立方程组无解时,两直线平行;有无穷多解时,两直线重合;只有一解时,两直线相交于一点。常用直线向上方向与 X 轴正向的 夹角( 叫直线的倾斜角 )或该角的正切(称直线的斜率)来表示平面上直线(对于X轴)的倾斜程度。可以通过斜率来判断两条直线是否互相平行或互相垂直,也可计算它们的交角。直线与某个坐标轴的交点在该坐标轴上的坐标,称为直线在该坐标轴上的截距。直线在平面上的位置,由它的斜率和一个截距完全确定。在空间,两个平面相交时,交线为一条直线。因此,在空间直角坐标系中,用两个表示平面的三元一次方程联立,作为它们相交所得直线的方程。
高中概率总结 第4篇
不等式
一、不等式的基本性质:
注意:
(1)特值法是判断不等式命题是否成立的一种方法,此法尤其适用于不成立的命题。
(2)注意课本上的几个性质,另外需要特别注意:
①若ab>0,则,即不等式两边同号时,不等式两边取倒数,不等号方向要改变。
②如果对不等式两边同时乘以一个代数式,要注意它的正负号,如果正负号未定,要注意分类讨论。
③图象法:利用有关函数的图象(指数函数、对数函数、二次函数、三角函数的图象),直接比较大小。
④中介值法:先把要比较的代数式与“0”比,与“1”比,然后再比较它们的大小
二、均值不等式:两个数的算术平均数不小于它们的几何平均数。
基本应用:
①放缩,变形;
②求函数最值:
注意:
①一正二定三相等;
②积定和最小,和定积。
常用的方法为:拆、凑、平方;
三、绝对值不等式:
注意:上述等号“=”成立的条件;
四、常用的基本不等式:
五、证明不等式常用方法:
(1)比较法:作差比较:
作差比较的步骤:
⑴作差:对要比较大小的两个数(或式)作差。
⑵变形:对差进行因式分解或配方成几个数(或式)的完全平方和。
⑶判断差的符号:结合变形的结果及题设条件判断差的符号。
注意:若两个正数作差比较有困难,可以通过它们的平方差来比较大小。
(2)综合法:由因导果。
(3)分析法:执果索因。基本步骤:要证……只需证……,只需证……
(4)反证法:正难则反。
(5)放缩法:将不等式一侧适当的放大或缩小以达证题目的。
放缩法的方法有:
⑴添加或舍去一些项,
⑵将分子或分母放大(或缩小)
⑶利用基本不等式,
(6)换元法:换元的目的就是减少不等式中变量,以使问题化难为易,化繁为简,常用的换元有三角换元和代数换元。
(7)构造法:通过构造函数、方程、数列、向量或不等式来证明不等式;
直线、平面、简单几xxx:
1、学会三视图的分析:
2、斜二测画法应注意的地方:
(1)在xxx图形中取互相垂直的轴Ox、Oy。画直观图时,把它画成对应轴o'x'、o'y'、使∠x'o'y'=45°(或135°);
(2)平行于x轴的线段长不变,平行于y轴的线段长减半。
(3)直观图中的45度原图中就是90度,直观图中的90度原图一定不是90度。
3、表(侧)面积与体积公式:
⑴柱体:
①表面积:S=S侧+2S底;
②侧面积:S侧=;
③体积:V=S底h
⑵锥体:
①表面积:S=S侧+S底;
②侧面积:S侧=;
③体积:V=S底h:
⑶台体
①表面积:S=S侧+S上底S下底②侧面积:S侧=
⑷球体:
①表面积:S=;
②体积:V=
4、位置关系的证明(主要方法):注意立体几何证明的书写
(1)直线与平面平行:
①线线平行线面平行;
②面面平行线面平行。
(2)平面与平面平行:
①线面平行面面平行。
(3)垂直问题:线线垂直线面垂直面面垂直。核心是线面垂直:垂直平面内的两条相交直线
5、求角:(步骤——Ⅰ.找或作角;Ⅱ.求角)
⑴异面直线xxx角的求法:平移法:平移直线,构造xxx;
⑵直线与平面xxx的角:直线与射影xxx的角
空间中直线与平面、平面与平面之间的位置关系
1、直线与平面有三种位置关系:
(1)直线在平面内——有无数个公共点
(2)直线与平面相交——有且只有一个公共点
(3)直线在平面平行——没有公共点
指出:直线与平面相交或平行的情况统称为直线在平面外,可用aα来表示aαa∩α=Aa∥α
.直线、平面平行的判定及其性质
直线与平面平行的判定
1、直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。
简记为:线线平行,则线面平行。
符号表示:
bβ=>a∥α
a∥b
空间几xxx的三视图
1、定义三视图:正视图(光线从几xxx的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)
2、注:正视图反映了物体的高度和长度;俯视图反映了物体的长度和宽度;侧视图反映了物体的高度和宽度。
3、空间几xxx的直观图——斜二测画法
斜二测画法特点:
①原来与x轴平行的线段仍然与x平行且长度不变;
②原来与y轴平行的线段仍然与y平行,长度为原来的一半。
4、柱体、锥体、台体的表面积与体积
(1)几xxx的表面积为几xxx各个面的面积的和。
(2)特殊几xxx表面积公式(c为底面周长,h为高,为斜高,l为母线)
(3)柱体、锥体、台体的体积公式
(4)球体的表面积和体积公式:V=;S=
5、空间点、直线、平面的位置关系
公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内。
应用:判断直线是否在平面内
用符号语言表示公理1:
公理2:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线
符号:平面α和β相交,交线是a,记作α∩β=a。
符号语言:
公理2的作用:
①它是判定两个平面相交的方法。
②它说明两个平面的交线与两个平面公共点之间的关系:交线公共点。
③它可以判断点在直线上,即证若干个点共线的重要依据。
公理3:经过不在同一条直线上的三点,有且只有一个平面。
推论:一直线和直线外一点确定一平面;两相交直线确定一平面;两平行直线确定一平面。
公理3及其推论作用:
①它是空间内确定平面的依据
②它是证明平面重合的依据
公理4:平行于同一条直线的两条直线互相平行
空间直线与直线之间的位置关系
①异面直线定义:不同在任何一个平面内的两条直线
②异面直线性质:既不平行,又不相交。
③异面直线判定:过平面外一点与平面内一点的直线与平面内不过该店的直线是异面直线
④异面直线xxx角:作平行,令两线相交,所得锐角或直角,即xxx角。两条异面直线xxx角的范围是(0°,90°],若两条异面直线xxx的角是直角,我们就说这两条异面直线互相垂直。
直线与圆:
1、直线的倾斜角的范围是
在平面直角坐标系中,对于一条与轴相交的直线,如果把轴绕着交点按逆时针方向转到和直线重合时所转的最小正角记为,就叫做直线的倾斜角。当直线与轴重合或平行时,规定倾斜角为0;
2、斜率:xxx直线的倾斜角为α,且α≠90°,则斜率k=tanα。
过两点(x1,y1),(x2,y2)的直线的斜率k=(y2—y1)/(x2—x1),另外切线的斜率用求导的方法。
3、直线方程:
⑴点斜式:直线过点斜率为,则直线方程为,
⑵斜截式:直线在轴上的截距为和斜率,则直线方程为
4、直线与直线的位置关系:
(1)平行A1/A2=B1/B2注意检验
(2)垂直A1A2+B1B2=0
5、点到直线的距离公式;
两条平行线与的距离是
6、圆的标准方程:圆的一般方程:
注意能将标准方程化为一般方程
7、过圆外一点作圆的切线,一定有两条,如果只求出了一条,那么另外一条就是与轴垂直的直线。
8、直线与圆的位置关系,通常转化为圆心距与半径的关系,或者利用垂径定理,构造直角xxx解决弦长问题。①相离②相切③相交
9、解决直线与圆的关系问题时,要充分发挥圆的平面几何性质的作用(如半径、半弦长、弦心距构成直角xxx)直线与圆相交所得弦长
高中概率总结 第5篇
几何概型的概念:
如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)称比例,则称这样的概率模型为几何概率模型,简称为几何概型。
几何概型的概率:
一般地,在几何区域D中随机地取一点,记事件“该点落在其内部一个区域d内”为事件A,则事件A发生的概率
说明:(1)D的测度不为0;
(2)其中“测度”的意义依D确定,当D分别是线段,平面图形,立体图形时,相应的“测度”分别是长度,面积和体积;
(3)区域为“开区域”;
(4)区域D内随机取点是指:该点落在区域内任何一处都是等可能的,落在任何部分的可能性大小只与该部分的测度成正比而与其形状位置无关。
几何概型的基本特点:
(1)试验中所有可能出现的结果(基本事件)有无限多个;
(2)每个基本事件出现的可能性相等。
高中概率总结 第6篇
一、导数的应用
1、用导数研究函数的最值
确定函数在其确定的定义域内可导(通常为开区间),求出导函数在定义域内的零点,研究在零点左、右的函数的单调性,若左增,右减,则在该零点处,函数去极大值;若左边减少,右边增加,则该零点处函数取极小值。
学习了如何用导数研究函数的最值之后,可以做一个有关导数和函数的综合题来检验下学习成果。
2、生活中常见的函数优化问题
1)费用、成本最省问题
2)利润、收益最大问题
3)面积、体积最(大)问题
二、推理与证明
1、归纳推理:归纳推理是高二数学的一个重点内容,其难点就是有部分结论得到一般结论,的方法是充分考虑部分结论提供的信息,从中发现一般规律;类比推理的难点是发现两类对象的相似特征,由其中一类对象的特征得出另一类对象的特征,的方法是利用已经掌握的数学知识,分析两类对象之间的关系,通过两类对象xxx的相似特征得出所需要的相似特征。
2、类比推理:由两类对象具有某些类似特征和其中一类对象的某些xxx特征,推出另一类对象也具有这些特征的推理称为类比推理,简而言之,类比推理是由特殊到特殊的推理。
三、不等式
对于含有参数的一元二次不等式解的讨论
1)二次项系数:如果二次项系数含有字母,要分二次项系数是正数、零和负数三种情况进行讨论。
2)不等式对应方程的根:如果一元二次不等式对应的方程的根能够通过因式分解的方法求出来,则根据这两个根的大小进行分类讨论,这时,两个根的大小关系就是分类标准,如果一元二次不等式对应的方程根不能通过因式分解的方法求出来,则根据方程的判别式进行分类讨论。
通过不等式练习题能够帮助你更加熟练的运用不等式的知识点,例如用放缩法证明不等式这种技巧以及利用均值不等式求最值的九种技巧这样的解题思路需要再做题的过程中总结出来。
四、坐标平面上的直线
1、内容要目:直线的点方向式方程、直线的点法向式方程、点斜式方程、直线方程的一般式、直线的倾斜角和斜率等。点到直线的距离,两直线的夹角以及两平行线之间的距离。
2、基本要求:掌握求直线的方法,熟练转化确定直线方向的不同条件(例如:直线方向向量、法向量、斜率、倾斜角等)。熟练判断点与直线、直线与直线的不同位置,能正确求点到直线的距离、两直线的交点坐标及两直线的夹角大小。
3、重难点:初步建立代数方法解决几何问题的观念,正确将几何条件与代数表示进行转化,定量地研究点与直线、直线与直线的位置关系。根据两个独立条件求出直线方程。熟练运用待定系数法。
五、圆锥曲线
1、内容要目:直角坐标系中,曲线C是方程F(x,y)=0的曲线及方程F(x,y)=0是曲线C的方程,圆的标准方程及圆的一般方程。椭圆、双曲线、抛物线的标准方程及它们的性质。
2、基本要求:理解曲线的方程与方程的曲线的意义,利用代数方法判断定点是否在曲线
上及求曲线的交点。掌握圆、椭圆、双曲线、抛物线的定义和求这些曲线方程的基本方法。求曲线的交点之间的距离及交点的中点坐标。利用直线和圆、圆和圆的位置关系的几何判定,确定它们的位置关系并利用解析法解决相应的几何问题。
3、重难点:建立数形结合的概念,理解曲线与方程的对应关系,掌握代数研究几何的方法,掌握把xxx条件转化为等价的代数表示,通过代数方法解决几何问题。
高一数学上学期知识点复习
1.函数的奇偶性
(1)若f(x)是偶函数,那么f(x)=f(-x);
(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);
(3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0);
(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;
(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;
2.复合函数的有关问题
(1)复合函数定义域求法:若xxx的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若xxxf[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。
(2)复合函数的单调性由“同增异减”判定;
3.函数图像(或方程曲线的对称性)
(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;
(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;
(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);
(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;
(5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)xxx,则y=f(x)图像关于直线x=a对称;
(6)函数y=f(x-a)与y=f(b-x)的图像关于直线x=对称;
4.函数的周期性
(1)y=f(x)对x∈R时,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)xxx,则y=f(x)是周期为2a的周期函数;
(2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2|a|的周期函数;
(3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4|a|的周期函数;
(4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数;
(5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2的周期函数;
(6)y=f(x)对x∈R时,f(x+a)=-f(x)(或f(x+a)=,则y=f(x)是周期为2的周期函数;
5.方程k=f(x)有解k∈D(D为f(x)的值域);
a≥f(x)xxxa≥[f(x)]max,;a≤f(x)xxxa≤[f(x)]min;
(1)(a>0,a≠1,b>0,n∈R+);
(2)logaN=(a>0,a≠1,b>0,b≠1);
(3)logab的符号由口诀“同正异负”记忆;
(4)alogaN=N(a>0,a≠1,N>0);
6.判断对应是否为映射时,抓住两点:
(1)A中元素必须都有象且;
(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;
7.能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。
8.对于反函数,应掌握以下一些结论:
(1)定义域上的单调函数必有反函数;
(2)奇函数的反函数也是奇函数;
(3)定义域为非单元素集的偶函数不存在反函数;
(4)周期函数不存在反函数;
(5)互为反函数的两个函数具有相同的单调性;
(6)y=f(x)与y=f-1(x)互为反函数,设f(x)的定义域为A,值域为B,则有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A);
9.处理二次函数的问题勿忘数形结合
二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系;
10依据单调性
利用一次函数在区间上的保号性可解决求一类参数的范围问题;
11xxx问题的处理方法:
(1)分离参数法;
(2)转化为一元二次方程的根的分布列不等式(组)求解;
练习题:
1.(-3,4)关于x轴对称的点的坐标为_________,关于y轴对称的点的坐标为__________,
关于原点对称的坐标为__________.
2.点B(-5,-2)到x轴的距离是____,到y轴的距离是____,到原点的距离是____
3.以点(3,0)为圆心,半径为5的圆与x轴交点坐标为_________________,
与y轴交点坐标为________________
4.点P(a-3,5-a)在第一象限内,则a的取值范围是____________
5.xxx用500元去购买单价为3元的一种商品,剩余的钱y(元)与购买这种商品的件数x(件)
之间的函数关系是______________,x的取值范围是__________
6.函数y=的自变量x的取值范围是________
7.当a=____时,函数y=x是正比例函数
8.函数y=-2x+4的图象经过___________象限,它与两坐标轴围成的xxx面积为_________,
周长为_______
9.一次函数y=kx+b的图象经过点(1,5),交y轴于3,则k=____,b=____
10.若点(m,m+3)在函数y=-x+2的图象上,则m=____
与3x成正比例,当x=8时,y=-12,则y与x的函数解析式为___________
12.函数y=-x的图象是一条过原点及(2,___)的直线,这条直线经过第_____象限,
当x增大时,y随之________
13.函数y=2x-4,当x_______,y0,b0,b>0;C、k
高中概率总结 第7篇
1、抽样方法主要有:简单随机抽样(抽签法、随机数表法)常xxx总体个数较少时,它的特征是从总体中逐个抽取;系统抽样,xxx总体个数较多时,它的主要特征是均衡成若干部分,每部分只取一个;分层抽样,主要特征是分层按比例抽样,主要用于总体中有明显差异,它们的共同特征是每个个体被抽到的概率相等,体现了抽样的客观性和平等性。
2、对总体分布的估计——用样本的频率作为总体的概率,用样本的期望(平均值)和方差去估计总体的期望和方差。
3、向量——既有大小又有方向的量。在此规定下向量可以在平面(或空间)平行移动而不改变。
4、并线向量(平行向量)——方向相同或相反的向量。规定零向量与任意向量平行。
高中概率总结 第8篇
高中数学知识点大全
集合的分类:
(1)按元素属性分类,如点集,数集。
(2)按元素的个数多少,分为有/无限集
关于集合的概念:
(1)确定性:作为一个集合的元素,必须是确定的,这就是说,不能确定的对象就不能构成集合,也就是说,给定一个集合,任何一个对象是不是这个集合的元素也就确定了。
(2)互异性:对于一个给定的集合,集合中的元素一定是不同的(或说是互异的),这就是说,集合中的任何两个元素都是不同的对象,相同的对象归入同一个集合时只能算作集合的一个元素。
(3)无序性:判断一些对象时候构成集合,关键在于看这些对象是否有明确的标准。
集合可以根据它含有的元素的个数分为两类:
含有有限个元素的集合叫做有限集,含有无限个元素的集合叫做无限集。
非负整数全体构成的集合,叫做自然数集,记作N。
在自然数集内排除0的集合叫做正整数集,记作N+或NX。
整数全体构成的集合,叫做整数集,记作Z。
有理数全体构成的集合,叫做有理数集,记作Q。(有理数是整数和分数的统称,一切有理数都可以化成分数的形式。)
实数全体构成的集合,叫做实数集,记作R。(包括有理数和无理数。其中无理数就是无限不循环小数,有理数就包括整数和分数。数学上,实数直观地定义为和数轴上的点一一对应的数。)
1、列举法:如果一个集合是有限集,元素又不太多,常常把集合的所有元素都列举出来,写在花括号“{}”内表示这个集合,例如,由两个元素0,xxx的集合可表示为{0,1}。
有些集合的元素较多,元素的排列又呈现一定的规律,在不致于发生误解的情况下,也可以列出几个元素作为代表,其他元素用省略号表示。
例如:不大于100的自然数的全体构成的集合,可表示为{0,1,2,3,…,100}。
无限集有时也用上述的列举法表示,例如,自然数集N可表示为{1,2,3,…,n,…}。
2、描述法:一种更有效地描述集合的方法,是用集合中元素的特征性质来描述。
例如:正偶数构成的集合,它的每一个元素都具有性质:“能被2整除,且大于0”
而这个集合外的其他元素都不具有这种性质,因此,我们可以用上述性质把正偶数集合表示为{x∈R│x能被2整除,且大于0}或{x∈R│x=2n,n∈N+},大括号内竖线左边的X表示这个集合的任意一个元素,元素X从实数集合中取值,在竖线右边写出只有集合内的元素x才具有的性质。
一般地,如果在集合I中,属于集合A的任意一个元素x都具有性质p(x),而不属于集合A的元素都不具有的性质p(x),则性质p(x)叫做集合A的一个特征性质。于是,集合A可以用它的性质p(x)描述为{x∈I│p(x)}它表示集合A是由集合I中具有性质p(x)的所有元素构成的,这种表示集合的方法,叫做特征性质描述法,简称描述法。
例如:集合A={x∈R│x2—1=0}的特征是X2—1=0
高中数学复习计划
一、目的:
在学校高三毕业班教学备考的指导下,根据学科的特点与历年的高考说明及高考中数学的地位,使数学复习有一个依据顺序,协调班级之间的教学复习工作,使与教师充分发挥各自特长、特点、优点,出色完成高三数学复习的教学任务,让学生得到应有的数学知识,在知识的海洋中遨游,达到理想的彼岸。
二、指导思想:
针对高三学生现有的真实水平及实际情况,以课本内容为基础,新课程标准及高考说明为依据,选择适合的复习资料,运用恰当的途径,熟读、细读高考说明,准确把握高考的信息、动向,规范复习,夯实基础,充分发挥本学科的科任教师的特长、特点,协调与其他学科间的横向关系,让各位老师都舒畅、乐意、轻松、出色的完成高三数学复习教学任务。
三、复习安排:
1、第一轮(9月初至明年3月中旬)基础复习(课本为主,蓝本资料为辅助)。夯实基础,让学生弄清楚所学知识的基本结构,基本技能,重视知识结构的先后顺序及掌握基础知识的方法并赋以应用。具体课时安排:
知识内容课时数
1、集合与常用逻辑用语6
2、平面向量8
3、不等式的性质与解法包括基本不等式和简单的线性规划。10
4、函数的概念及性质10
5、幂函数、指数函数、对数函数6
6、导数及其应用6
7、函数与方程,函数的综合应用4
8、等差数列与等比数列4
9、递推数列与数学归纳法4
10、三角函数8
11、三角恒等变换4
12、解xxx4
13、平面解析几何初步10
14、圆锥曲线方程10
15、立体几何初步12
16、空间中向量与立体几何6
17、计数原理与概率10
18、随机变量及其分布6
19、算法初步、统计、统计案例12
20、推理与证明及复数8
第二轮:(明年3月下旬到4月下旬)专题复习(视情况有机选择)。教师以方法、技巧为主线;主要研究数学思想方法,不断提高学生分析问题、解决问题的能力,强调通性通法,系统全面地复习,灵活运用通法,培养学生的思维能力和思想方法,注意必考点,关注热点,立足得分点,分析易错点,把握准确无失误。具体作法(专题选取):
1、第一轮复习中反映出来的弱点;
2、教材中的重点;
3、历年高考试题中的热点;
4、基本数学思想方法的系统介绍;
5、解题应试的技巧;
6、具体题型的复习(如:选择题、填空题、最值、定点、定值、平几、立几、……)
第三轮:(5月份至临考)综合训练,补漏补缺。重视反思,减少失误,提高思维的灵活性、创造性、规范解题。优化学习方法,规范模式规律,心理辅导,放松心情,轻松应考。
高中数学教学计划
一、教学目标
培养学生德、智、体等方面全面发展,使学生掌握从事社会主义现代化建设和进一步学习现代化科学技术所需要的数学知识和基本技能,强化学生的交流意识、合作意识、探究意识、重点培养学生创新精神和实践能力,并注重培养学生良好的学习习惯。
二、具体措施
1、同组数学教师加强同头研究,集中集体智慧,统一进度、统一考试、统一安排。
2、每长周星期三下午召开同组数学教师会,总结上一周教学得与失,布置下一长周教学任务。
3、每一章节小考一次,重点班、普通班分别命题,分层次检测,每章责任人见附表。
4、每个组员加强自身业务知识学习,每学期至少听课15节。
5、全组教师尽量采用多媒体教学,加大大课堂容量,加强课堂趣味性。
三、进度安排
说明:各班教学进度可根据本班实际情况适当调整!
高中概率总结 第9篇
1突出知识的产生背景
2加强课堂教学的师生互动
数学家的故事以及数学知识的产生历史或应用背景可以为枯燥的数学知识增添一些光泽,但为了提高课堂的教学效果,师生间的课堂互动必不可少。作为教学的另外一个主体———学生因为年龄处于20岁左右,注意力容易分散,如果没有有效的师生互动,学生的注意力很容易就会偏离课堂。那么如何才能达到师生之间的有效互动呢?笔者认为如下方法可行。
课堂提问提问的问题应该是精心设计的,且应具备趣味性和启发性。一般而言,数学课堂的提问问题要和所讲授的公式或者定理紧密联系。例如在讲到“泊松近似定理”时,教师可以首先僵硬地摆出公式。然后提问学生:“你觉得左右两个公式哪一个比较简单”。由于学生高中开始就接触组合公式,所以他们对组合公式比较熟悉,一般情况下他们都会回答比简单。接着,引进例“某人骑摩托车上街,出事故率为,若他独立重复上街400次,求出事故恰好两次的概率。”此时让学生甲、乙到黑板求解该题目,规定甲用组合公式,乙用近似公式。结果乙不用两分钟就可通过查表解决,而甲算半天得不到结果。最后教师可以把用组合公式计算的结果以及近似公式计算的结果给出,比较之后给出以下结论:实际上“泊松近似定理”就是把复杂的计算进行简化的一个工具,并且这种简化具有很强的实际应用,特别是在没有计算机的时代,这种简化优势特别明显。
分组讨论让学生分组讨论问题,可以让每个学生都参与到课堂教学中,增加学生之间的相互交流,加深他们对所学知识的理解和掌握,也提高了学生学习的兴趣。例如在讲授“古典概率模型”时引进例“从一副没有大xxx的扑克中,取五张牌,求下列事件的概率:A=出现,B=出现俘虏,C=出现四大天王,D=我们不妨先把公式展示出来,然后分析说明该定理可以陈述成若随机变量Y服从参数为n,p的二项分布,则近似地有Y~N(np,np(1-p))。于是,(2)相比之下,学生对(1)式中的积分和极限符号始终带有恐惧感,此时我们把(1)式化成了一个标准化的(2)式。而学生在高中就开始接触正态分布标准化的过程,所以这一个化简过程可以增加学生对该定理的好感,能够让学生完全掌握这个公式。此时,再引进下面的例子“在3000次抛银币的试验中,求正面向上的次数在500次到2499次之间的概率”。接着给出下面两种不同的解法:出现同色。”然后让学生分组讨论,最后各组选派代表在黑板上写出答案。由于该问题源于实际生活,学生都会积极地参与到讨论中,这样课堂气氛就会活跃起来,也提高了教学效果。
黑板练习随机选择部分学生到黑板进行练习。有些大学教师或许会认为让学生到黑板进行练习是中学教师做的事情,实际上大学数学教学中随机选择学生到黑板练习也是必须并且很有意义的。随机地挑选学生到黑板进行练习可以让教师了解到学生对知识的掌握程度,同时也可以对学生的心理造成一定的影响,对抄袭作业等行为起到一定的抑制作用,并且也可以加强师生间的课堂互动。
3注意教材的灵活处理
首先教材的选择非常重要,要根据学生的授课学时、接受能力进行筛选。但是,即使确定好教材之后,授课内容也必须因材施教。例如在农业院校给农学的学生授课,在概率论方面应该注重理论知识的讲解,里面一些知识的推导必不可少,其逻辑性要求也应该严谨化。这样有助于学生数学思维的锻炼,也有助于提高学生学习数学的兴趣,如前文所介绍的棣莫弗-拉普拉斯定理的讲授。但对于数理统计部分内容,由于其知识推导需要较多较复杂的高等数学知识,所以在对农科数学学生授课过程中就不宜于xxx明和推导,而更应该侧重于思想以及知识的实际应用。例如,在讲授“无交互作用的双因素的方差分析”时,对于公式SST=SSA+SSB+SSE我们可不必进行严格推导,只是粗略地介绍一下其推导原理,即,而更应该注重于SST,SSA,SSB,SSE的意义,并且突出“无交互作用的双因素的方差分析”的应用背景。这样的授课方式,即概率论方面注重于理论推导、数理统计方面注重于实际应用的处理方法主要是根据农业院校的学生文理兼有、数学基础参差不齐并且学时数不多的情况而采用。否则,若把数理统计部分内容也进行严格化证明和推导,那对于很多高中选修文科上来的大一学生来说无疑是难度过大,最终虽然教师授课认真辛苦,但教学效果会大打折扣。因此,教师应该根据不同的学科需要并且根据不同的学生水平选择适当的教材,并合理地处理教材中的授课内容。
4留意知识的前后联系
概率论与数理统计是数学学科的一个分支,因此在授课过程中教师也应该时时留意知识的前后联系。这里所讲“知识的前后联系”主要有以下两种情况:第一,新旧概念的区别联系。当讲授到一个新概念,发现它与某些旧概念有密切联系或者容易产生混淆时就应该对两者进行对比辨析。例如,当讲授到“相互独立”概念时,很多学生都会把它与“互不相容”概念联系在一起或者对这两个概念产生混淆。此时,教师应该通过例子说明“相互独立”与“互不相容”没有任何联系;第二,新旧结论的区别联系。当讲授到一个新结论,发现它和原来的结论容易产生混淆时,教师也应该通过例子对两者进行辨析。例如在讲授完“独立同分布的中心极限定理”之后,很多学生就会把它和“切比雪夫不等式”混淆。此时不妨引进下面例子“一零件包括10部分,每部分的长度是一个随机变量,相互独立,且具有同一分布。其数学期望是2mm,均方差是,规定总长度为20±时产品合格,试求产品合格的概率。”然后让学生用“独立同分布的中心极限定理”和“切比雪夫不等式”来求解(也可以分组讨论)。通过这个例子可以很好地让学生明白“切比雪夫不等式”一般用于理论研究,得到的结果比较粗糙(该例用“切比雪夫不等式”将得到一个毫无疑义的但并无矛盾的不等式)。相比之下,“独立同分布的中心极限定理”更具有实际应用的价值。除此之外,教师还应在授课过程中注意到新旧知识的前后承接或者同一概念的前后变异。例如,在讲授到数理统计知识时书本往往针对于正态总体进行展开,这时候就要复习中心极限定理以及通过实例来说明现实生活中大部分的随机变量都服从或者近似地服从正态分布,因此数理统计基本上都是针对正态总体进行研究。另外,在讲授到回归分析中的样本相关系数应该和概率论中所讲授的两个随机变量的相关系数进行对比,这样就可以让学生更好地理解样本相关系数的作用以及定义的形式。总而言之,在授课过程中教师应时刻留意知识的前后联系,这样可以使学生对新旧知识有更好的理解和认识,也加深他们对新旧知识的记忆和掌握。
5注重理论的实际应用
高中概率总结 第10篇
高中数学知识点总结
有界性
设函数f(x)在区间X上有定义,如果存在M>0,对于一切属于区间X上的x,恒有|f(x)|≤M,则称f(x)在区间X上有界,否则称f(x)在区间上无界。
单调性
设函数f(x)的定义域为D,区间I包含于D。如果对于区间上任意两点x1及x2,当x1f(x2),则称函数f(x)在区间I上是单调递减的。单调递增和单调递减的函数统称为单调函数。
奇偶性
设为一个实变量实值函数,若有f(—x)=—f(x),则f(x)为奇函数。
几何上,一个奇函数关于原点对称,亦即其图像在绕原点做180度旋转后不会改变。
奇函数的例子有x、sin(x)、sinh(x)和erf(x)。
设f(x)为一实变量实值函数,若有f(x)=f(—x),则f(x)为偶函数。
几何上,一个偶函数关于y轴对称,亦即其图在对y轴映射后不会改变。
偶函数的例子有|x|、x2、cos(x)和cosh(x)。
偶函数不可能是个双射映射。
连续性
在数学中,连续是函数的一种属性。直观上来说,连续的函数就是当输入值的变化足够小的时候,输出的变化也会随之足够小的函数。如果输入值的某种微小的变化会产生输出值的一个突然的跳跃甚至无法定义,则这个函数被称为是不连续的函数(或者说具有不连续性)。
高中数学怎么学好
1.培养数学思维是学好数学的前提
数学最主要的就是思维方式,如果你懂了数学如何去思考,就能懂得命题人是如何出题的,知道怎么去分析一道题目,该如何入手去解一道题。数学思维能帮助我们理清解题思路,根据xxx条件,一步步推出未知条件。
初中数学好不代表高中数学就一定好,所学的知识点不一样,接触的数学思维也不同,所以需要同学们高中也要重新去学习数学。高中数学每一章节知识点都要学会了才能在做题时拥有理性的数学思维。
2.要想提高数学成绩就要多做题
数学就是一个熟能生巧的过程,数学需要接触最多的就是计算,所以大家每学习一个公式都要通过大量的习题去巩固,直到把公式及推导公式都学会为止。
数学第一遍学习都是一些浅显的知识,综合复习时会把所学的公式融合在一起考查,所以大家复习是不要仅仅针对一个知识点去复习,要眼界开阔,融会贯通。
3.学好数学最好的方式就是琢磨
数学很多学的好的同学都不是靠上课听讲或是不会就看答案的,他们遇到不会的题目,首先要做的不是去问或者看答案,而是反复自己思考,有的一道难题甚至能琢磨好几天,在大脑中留下了深刻印象,实在是不会了再去问去看。
试想,经过这样的过程,什么样的难题会记不住,如果再遇到类似的题目还怎么能不会?如果是一遇的不会的就看答案,看了答案也没什么印象,下次考试出原题目还是不会,又有什么意义呢?还不如不看!
高中数学常用定理
1、过两点有且只有一条直线
2、两点之间线段最短
3、同角或等角的补角相等
4、同角或等角的余角相等
5、过一点有且只有一条直线和xxx直线垂直
6、直线外一点与直线上各点连接的所有线段中,垂线段最短
7、平行公理经过直线外一点,有且只有一条直线与这条直线平行
8、如果两条直线都和第三条直线平行,这两条直线也互相平行
9、同位角相等,两直线平行
10、内错角相等,两直线平行
11、同旁内角互补,两直线平行
12、两直线平行,同位角相等
13、两直线平行,内错角相等
14、两直线平行,同旁内角互补
15、角形两边的和大于第三边
16、角形两边的差小于第三边
17、xxx内角和定理xxx三个内角的和等于180°
18、直角xxx的两个锐角互余
19、xxx的一个外角等于和它不相邻的两个内角的和
20、xxx的一个外角大于任何一个和它不相邻的内角
21、全等xxx的对应边、对应角相等
22、边角边公理(SAS)有两边和它们的夹角对应相等的两个xxx全等
23、角边角公理(ASA)有两角和它们的夹边对应相等的两个xxx全等
24、有两角和其中一角的对边对应相等的两个xxx全等
25、边边边公理(SSS)有三边对应相等的两个xxx全等
26、斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角xxx全等
27、在角的平分线上的点到这个角的两边的距离相等
28、到一个角的两边的距离相同的点,在这个角的平分线上
29、角的平分线是到角的两边距离相等的所有点的集合
30、等腰xxx的性质定理等腰xxx的两个底角相等(即等边对等角)
31、等腰xxx顶角的平分线平分底边并且垂直于底边
32、等腰xxx的顶角平分线、底边上的中线和底边上的高互相重合
33、等边xxx的各角都相等,并且每一个角都等于60°
34、等腰xxx的判定定理如果一个xxx有两个角相等,那么这两个角所对的边也相等(等角对等边)
35、三个角都相等的xxx是等边xxx
36、有一个角等于60°的等腰xxx是等边xxx
37、在直角xxx中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
38、直角xxx斜边上的中线等于斜边上的一半
39、线段垂直平分线上的点和这条线段两个端点的距离相等
40、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
42、关于某条直线对称的两个图形是全等形
43、如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
44、两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
45、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
46、勾股定理直角xxx两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2
47、勾股定理的逆定理如果xxx的三边长a、b、c有关系a^2+b^2=c^2,那么这个xxx是直角xxx
48、四边形的内角和等于360°
49、四边形的外角和等于360°
50、多边形内角和定理n边形的内角的和等于(n-2)×180°
51、任意多边的外角和等于360°
52、平行四边形的对角相等
53、平行四边形的对边相等
54、夹在两条平行线间的平行线段相等
55、平行四边形的对角线互相平分
56、两组对角分别相等的四边形是平行四边形
57、两组对边分别相等的四边形是平行四边形
58、对角线互相平分的四边形是平行四边形
59、一组对边平行相等的四边形是平行四边形
60、矩形的四个角都是直角
61、矩形的对角线相等
62、有三个角是直角的四边形是矩形
63、对角线相等的平行四边形是矩形
64、菱形的四条边都相等
65、菱形的对角线互相垂直,并且每一条对角线平分一组对角
66、菱形面积=对角线乘积的一半,即S=(a×b)÷2
67、四边都相等的四边形是菱形
68、对角线互相垂直的平行四边形是菱形
69、正方形的四个角都是直角,四条边都相等
70、正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
71、关于中心对称的两个图形是全等的
72、关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
73、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称
74、等腰梯形性质定理等腰梯形在同一底上的两个角相等
75、等腰梯形的两条对角线相等
76、等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形
高中概率总结 第11篇
高中数学课堂有不同的课型,不同课型中学生学习的侧重点不同。因此,在不同的数学课型上运用核心问题教学模式促进学生深度体验的侧重点也有所不同。
一、在概念公式课中设计探究类核心问题
(一)概念公式课的基本认识
数学概念和公式是数学学科的基石,是学生形成数学知识结构、解决数学问题、形成数学能力和素养的基础。
传统数学概念公式课通常重结论、轻过程,其教学流程大致是这样的:先由教师通过课件或讲解得出概念公式教师指出应用这一概念公式解决相关问题时应注意的要点教师分析、讲解典型例题学生完成练习对所学概念公式加以巩固。这种教学方式中前三个环节都是“教师讲、学生听”,只有最后一个环节是学生相对主动地思考,因此学生往往在前三个教学环节中处于被动地位,如果教师讲得够明晰,则学生能听得懂,但到了最后自己完成练习的环节时,往往会因前面环节的体验不深而导致下笔困难,出现听得懂而做不起题的情况。
针对这一现状,我在概念公式课的教学中尝试运用以核心问题促进学生体验的教学模式,希望以恰当的核心问题促进学生在概念形成、公式推出的过程中获得体验。考虑到学生获取数学概念、数学公式不应是单纯地记住与获取结果,而是要在体验基础上主动建构知识的同时,获得情感、态度、价值观的相应体验。因此,必须在概念公式的学习中关注它们形成的背景,一定程度上经历它们形成的过程。基于这样的认识,我认为数学概念公式课的核心问题应多以“学科问题+学生活动”组成的探究类核心问题呈现。
(二)教学实践与反思
下面是以核心问题促进学生体验的教学模式对《直线的倾斜角与斜率》这节课的实践与思考。
《直线的倾斜角与斜率》是高中平面解析几何的入门课。在这一节课的教学过程中,教师往往是直接给出直线的倾斜角和斜率的定义;然后板演斜率公式的推导,给出公式的几点注意事项;接下来就对公式进行简单或变式应用。这样传授,首先,学生对解析几何的产生、具有的历史地位很模糊,不理解为什么非要用代数方法解决几何核心问题;其次,学生对为什么要采用教科书上的定义方式来定义直线的倾斜角和斜率一无所知;第三,不了解用直线上的点坐标计算斜率的真正意义,对公式只会模仿使用,不能进行灵活的运用;第四,学生在后续学习圆、椭圆、双曲线、抛物线时,使用坐标法的意识和能力都非常薄弱。最终致使解析几何问题成为学生最棘手、最难解决的问题。
为了实现学生在体验中学习规律、习得方法,本节课设计了核心问题:“在平面直角坐标系中,探索确定直线位置的几何要素。并用代数方法表示它们。”在这一核心问题的激发下,学生先根据已有的相关知识分析确定直线位置的要素,发现有两个方案:一是两个定点(点已数化);二是一个定点和倾斜角,教师就可借助几何画板让学生理解倾斜角的定义;并发现倾斜角的范围。学生进一步就可以在平面直角坐标系下,探究直线上两点坐标与倾斜角的关系,此后通过学生小组活动,发现可以通过借助直角xxx,利用锐角三角函数定义求解,或者借助向量利用任意角三角函数定义求解这两条途径来探究,接下来探究完成后,多个小组的学生先后自愿上台展示其小组探究的结果,并以小组活动表的形式记录下来;台下的学生对台上演示的学生的方案进行适时的提示与评价;得到直线上两点坐标与倾斜角的关系式tan ?琢=■,然后教师再水到渠成地给出斜率的定义k=tan ?琢(?琢≠90°)。
由于对“直线的倾斜角与斜率”这两个概念及“斜率公式”建立有了较深入的学习体验过程,学生对概念的理解、公式的运用就比较自然而到位,不会感觉十分困难了。不仅如此,几乎所有学生都能很准确地感受到斜率与倾斜角之间的关系。由于有了前述体验及聚集点,在下一课时请同学们解决典型的相关问题时,就很容易了,学生确实真正地获得了较为深刻的体验。
二、在习题课中设计方法类核心问题
(一)习题课的基本认识
学生在数学学习中,完成适当的习题来加深对相关知识的体验、理解是必不可少的,习题课教学也就成为必需的教学组成部分。
为了更好地发挥习题课教学的功效,我也尝试在习题课教学中运用以核心问题促进学生体验的教学模式,加深对数学概念、公式、定理等的理解,逐渐形成数学学科素养。考虑到高中数学有选择、填空、计算三种题型,学生解答数学问题感到困难的原因也是多方面的。因此,教师要在每节习题课前首先分析教学内容与学情,确定本节习题课主要解决的问题以及学生在复习课体验中应习得的主要方法;在此基础上再确立相应的激发学生活动体验的核心问题。基于这样的认识,我认为高中数学习题课教学中的核心问题应多以“解题方法+学生活动”的方法类核心问题呈现。
(二)教学实践与反思
下面是我在进行高三复习教学中针对学生审题能力较弱这一现状,以核心问题促进学生体验的教学模式进行《高中数学试题的审题要点》习题课的实践与思考。
一方面,通过学情分析发现,高三学生觉得数学题难、不易下手、易错等是由于解题的最初环节——审题不清造成的;以往的高三复习教学中,这一问题通常是在知识、方法的复习中就所遇到的题目较为零散地加以讲解,这样做的结果是,某些学习主动,反思、总结能力强的同学能将分散在各部分复习中出现的审题关键加以关注、进行反思、总结,但更多的同学对此不够重视,没有进行反思、总结。另一方面,高三阶段的复习应对所学知识、知识背后的思想方法加以复习、总结,也应对解题方法、技巧予以关注,加以总结。
为让更多的同学能对审题中可能出现的问题加以关注,主动反思,总结出与自身认知结构相适应的审题方法加以内化,因此设计了核心问题:“审下列数学题组,归纳审题要点”,引发学生的主动学习活动,激起同学们对审题的足够重视,能在后续复习中对审题环节主动关注、总结,有效、甚至高效地减少解题最初环节——审题造成的障碍。所给数学题组由下列三道题目构成:
(1)若3sin2 ?琢+2sin2 ?茁=2sin2 ?琢,求cos2 ?琢+cos2 ?茁的范围。
(2)道路旁有一条河,河对岸有塔ab高15米,只有测角器和皮尺作测量工具,能否求出道路与塔顶之间的距离?
(3)某超市为了获取最大利润做了一番实验:若将进货单价为8元的商品按10元/件的价格出售时,每天可销售60件,现在采用提高销售价格、减少进货量的办法增加利润,xxx这种商品每涨1元,其销售量就要减少10件,问该商品售价定为多少时才能赚得最大利润?并求出最大利润。
通过个人思考、小组讨论,教师的及时指导,同学们还真就三道题目归纳出了一些审题的要点,例如:审题时速度要慢,争取二次审题,明确问题的条件与结论,善于挖掘隐含条件,能进行文字、符号、图形三者之间的转换等要点。
在教学实施中,由于这样的课对执教老师和学生来说都是全新的,虽然教师随着研讨过程的不断深化,观念有所转变,但学生观念的转变不到位,对这种方式的习题课不太适应,加上教师对这种方式的习题课引导经验还不够多,因此课堂实施中进入到“审题要点归纳环节”时,学生虽然有一些收获,但主动参与还显得不够。这一方面反映出我们平时的习题课教学中对通用方法的教学不够,另一方面更提醒我们在今后的习题课教学中,应引导学生在体验基础上更多关注处理习题时对通用有效方法的反思、小结、归纳、提升,以此来实现数学学习中自觉地对处理核心问题的方法加以反思、归类、总结,进一步提高学习的有效性。
三、在复习课中设计能力类核心问题
(一)复习课的基本认识
学生学习过程中对知识的掌握、方法的习得,都需要适时复习巩固,温故知新,因此,高中数学教学中复习课是必不可少的,到了高三总复习阶段更是如此。
为了更好地发挥复习课教学的功效,我还尝试在复习课教学中运用以核心问题促进学生体验的教学模式,希望能以恰当的核心问题达成学生在课堂上更为深度的体验,在复习旧知、强化方法的同时养成良好的复习习惯,逐步形成较强的学习能力。复习课学习中不应仅仅停留在新课学习阶段的要求上,而应在温故基础上知新,要在巩固知识、强化方法的基础上使自己的学习态度、学习习惯、学习能力等在不断加深的体验中逐步增强。基于这样的思考,我认为在高中数学复习课中的核心问题应多以“复习方法+学生活动”的能力类核心问题呈现。
(二)教学实践与反思
下面是我在进行高三复习教学中,以核心问题促进学生体验的教学模式进行《概率与统计》复习课教学的实践与思考。
《概率与统计》内容是中学数学的重要知识,与高等数学联系非常密切,是进一步学习高等数学的基础,也是高考数学命题的热点内容。就学生学习情况来看,有两方面的因素:有利因素是这部分内容与其他章节联系不是很大,所以大部分学生能够较好掌握,甚至还有一些学困生也能够对章节知识有一些了解,故每次考试、练习中学生对完成《概率与统计》章节的试题有充分的信心。不利因素是这部分知识非连贯知识,因此有部分学生对各种概率事件的类型及概率的意义的理解程度不够,从而导致学生对这部分的知识、方法掌握不熟练、迁移能力差,在试卷答题阶段,忽略试题的文字表述,所以在考试中常有答案正确但缺乏规范导致丢分。
为了让学生对本部分知识的掌握情况有深层次的体验(包括知识与知识、知识与方法、知识与学科能力关联的体验),从而更好地调动自己主动、自主复习的积极性,所以本节课设计了核心问题:改正《概率与统计》中已完成的练习,完善章节知识、方法并形成有“个性”的复习资料。课上按照以下四个环节展开:(1)参与试题评讲活动,改正答案、记录要点;(2)反思已改正的试题;(3)发现老师评讲归类的方式,小结解决每类问题的方法、关键;(4)形成有“个性”的复习资料。课后,学生根据自己在本节评讲课前后的强烈对比体验,自主对这部分知识进行了梳理,进行了适合自己现阶段学习情况的补充、整理,完成并上交了自己个性化的复习资料。
对按要求上交的41份作业统计的情况如下:仅对《概率与统计》中典型问题进行了补缺梳理的同学有13人,占上交人数的;仅对《概率与统计》中涉及的相关概念进行了补缺梳理的同学有8人,占上交人数的;仅将《概率与统计》这部分知识形成结构的同学有10人,占上交人数的;对《概率与统计》中涉及的概念、规律以及典型问题均进行了补缺梳理的同学有5人,占上交人数的;既将《概率与统计》这部分知识形成了结构,又对涉及的典型问题(包括解题方法)进行了补缺梳理的同学也有5人,占上交人数的。
从以上反馈信息看,一方面,同学们在较长时间的自主复习体验中,逐步认识到“个性化复习资料的功用是为了帮助自己更好地复习、提升,而非为了交给老师、应付老师检查”。因此,上交的复习资料均能做到不照搬资料、不照抄老师的笔记,针对自己现阶段的实际情况完成。这也反应出学生自主学习的意识和能力已初步形成,在三轮复习教学中应进一步巩固、强化。另一方面,虽然在对主干知识进行的单元复习中,老师均在本节的第一节课展示了自己对本单元相关知识的结构化认识以及本节知识与排列、组合知识的关联,但同学们在这方面的意识和能力还显得不够。这反映出同学们在分析核心问题时的关联意识不够,还没习惯于用联系的观点看待自己存在的核心问题,相信通过我们在教学中的不断反思、改进,和学生一道共同努力,同学们定会在不断加强知识掌握的同时,为自己的可持续发展更好地奠基。
高中概率总结 第12篇
关键词:大专数学;教学探究;反思
大专数学的数学课程主要分为高等数学、解析几何以及概率论等科目,不同的数学科目对于学生数学思维能力的培养多数是不同的。但是就目前的教学体制来看,学生在数学学习的过程中存在较大的问题,并且教师也缺乏有效的教学反思,导致教学效率不高。
一、目前大专院校在数学教学中存在的问题
(一)师生观念上的局限性首先,想要切实有效地提升大专数学的教学效率需要真正从教师的观念改变做起。然而就目前的形式来看,教师的教学观念过于落后。教师观念上的落后主要分为应试教育的影响以及专业数学的影响。部分教师在数学课程上教导学生的能力局限在试卷的做题上,比如说具体的一个极限的概念以及应用讲解,学生在进行极限概念的学习过程中往往不懂如何灵活使用,而教师也对此没有采取更深入的教学来帮助学生理解知识,最终导致的后果就是学生虽然能够掌握极限的相关求解题目,懂得如何去生搬硬套公式去解答试卷中的题目,但是却不知道为什么,不知道求解的原理是什么,最终使得学生在经过大学数学学习之后只懂得如何解题,却不知道如何应用。再次,有关数学专业教学过程中,教师过多关注于学生的专业掌握情况,大专教学不仅仅需要学生掌握一定的知识,培养一定的实践能力,还需要能够在经过几年的学习之后达到一定的提高综合素质的能力,在数学学习的过程中能够懂得如何做人,教师在这方面的教学也是有所欠缺的。
(二)教师的照本宣科式教学第二,教师在进行有关数学课程的教学过程中存在一定的误区,认为教材中的相关知识概念比较全面,能够帮助学生形成较好的数学思维能力,并且教材中的设置已经比较符合学生的学习方式。在课堂的教学过程中容易出现“念教材、固定讲解模式”的出现,教师数学教学过程中仅仅通过照本宣科的教学模式来培养学生的数学能力是远远不够的,不仅无法有效提升学生的学习效果,而且学生往往对缺乏创新和趣味的数学课堂感到一定的疲倦,久而久之,容易使学生产生厌恶心理,从而影响到学生的数学学习。
(三)教学方式上的匮乏,学生自主学习情况欠缺最后,当前教师在数学教学过程中的教学方式缺乏多元化,采取的教学模式大多都是传统的以教师为中心的课堂教学,学生在课堂学习中的创新能力和发散思维被大大的遏制,学生的学习效果也不太乐观。而对于学生来说,学生在大学里面轻视数学的重要性,在经过高中阶段的数学学习之后,到了大学缺少了热情和激情,在数学学习的过程中抱着消极的态度学习,认为只要考试能过就行。而这样的学习思想不仅严重降低了数学学习质量,而且也降低了数学学习自主性。
二、教学反思,优化数学课堂
我们对当前大专数学教学过程中教师和学生存在的学习问题和局限性进行了系统全面的分析。总结来说,主要分为教师的教学观念、教学体制上的局限和缺乏,学生自主学习能力,数学学习态度上的错误导致的。因此,在大专数学教学过程中,不断的开展数学反思,优化课堂教学模式,提升课堂教学效率是非常有必要的。
(一)转变传统教学观念现在最为重要的一点是需要教师能够跟随时代的脚步,不断的改变传统的教学观念,从根本上认清楚大专学生在数学学习中缺少的是什么能力,通过什么样的教学方法能够提升学生的创造性思维,而不仅是培养学生的应试能力,导致学生未来到社会中只会做题不会实践。我通过实际的教学发现,在数学课堂上,如果能够将一些具体的数学知识和数学概念与实际生活联系起来,让学生能够通过实际的案例来达到掌握知识的效果,所取得的成效是非常显著的。将数学思想融入到实际的生活案例当中,不仅能够有效的提升学生的课堂学习兴趣,而且在一定程度上也促进了学生数学应用能力,数学思维能力的养成,为学生未来走入社会奠定了坚实的基础。就以《概率论》为例,在概率论这一门课程的学习过程中,其中基本上所有的知识点和概念的讲解都可以通过转化的思维方式,将一个具体的数学概念转化为生活案例来让学生进行学习和思考,概率论的知识点比较抽象,学生单纯依靠理解往往效率较低。而我通过不断的教学反思,发现如果把一些具体的知识点和生活中的案例联系起来,那么学生往往能够更深入的思考,然后我再把案例普遍化,使学生了解“一般公式”的含义,达到学习的目的。总而言之,大专数学教学需要教师不断的进行教学反思,不断的优化课堂教学模式,根据合适的教学概念和知识点来设定合理的教学对策,从而提升学生的数学思维能力而不是学生的应试能力。
(二)数学建模思想的教学反思笔者在经过了长时间的反思学习之后发现,在大专数学的教学过程中,如果能够帮助学生形成有效的建模思想,使学生在一些重点难点知识点的学习过程中把它们转化为数学模型,那么学生的学习效率能够成倍提升。因为数学模型的思想是将这一类知识点难点的题目类型进行有效的总结,抽取概念中的核心数学思想,将其形成一个数学模型,然后学生通过对数学模型的学习来掌握相关的知识点和难点。以高等数学中的微分和积分概念为例,高等数学学习过程中,核心的思想就是微分和积分的数学思想,大部分的知识点和概念都是有这两个思想衍生而来的,而通过实际的教学案例发现,学生在这方面的掌握情况并不乐观,部分的学生往往容易混淆这几个思想方法,一旦学生混淆了概念,那么在高等数学的学习过程中就很容易出现迷茫,对后续的课程学习造成了严重的影响。微分和积分的概念在曲面面积求解、近似求解、极限的相关概念中都有应用。在这一部分知识教学中,笔者逐渐摸索出帮助学生建立一定的数学模型对于学生的学习具有显著的效果。在课堂教学中笔者一般会通过提出问题、学生讨论、总结概括等步骤来逐步的引出数学模型的概念。首先将微分和积分的数学概念进行讲解,然后通过提问的方式,询问学生如何能够通过微分积分的概念来结合极限解答问题,如何来求解近似值等;其次帮助学生建立“近似”的数学思想,使学生了解微分的核心概念,并进行总结概括,最终将抽象化的知识点概念转化为数学模型,通过学生对数学模型的学习来掌握微分积分的数学思想,从而使学生在高等数学的学习过程中能够达到事半功倍的效果。总之,在大专高等数学的教学过程中,微分积分的概念是非常重要且有用的,很多题目的求解都需要用到这个概念,笔者通过不断的反思总结得出了有效的教学方式,即通过建模的数学思想来帮助学生理解知识。[1]
(三)数学教学中培养学生的数学思想大专的课程学习是需要学生在未来的社会发展中能够得以应用和发展自我的,而不是让学生来应对考试的,因此大专的数学教学应当以培养学生的数学思维和创造性思维为主,我们在教学的过程中 应当重视学生的实践应用能力,通过课程的教学来帮助学生形成有效的数学思想,使得学生能够在类似知识点的解答和应用当中得心应手。[2]在笔者看来,大专阶段的数学课程主要的几个数学思想有转化思想、类比思想和数形结合思想,这几个思想贯穿了高等数学学习的整个过程,笔者通过不断的教学与课程的总结反思发现学生养成良好的数学思想在数学学习中能够显著提升数学能力。就以《概率论》来说,在概率论的“包含被包含以及真包含”等知识概念的讲解过程中,往往罗列大量的数学公式不如一个维恩图更能让学生接受,学生通过对维恩图的学习往往能够在很短的时间里了解“包含被包含”等知识概念,这种将抽象化的数学知识转化为具象化的图形更加能够使学生理解和学习。而我们在教学的过程中也应当培养学生的这一思维方式,对于一些代数类题目以及抽象的数学公式,往往通过图形的方式更加容易理解和学习。[3]大专数学的学习培养的是学生掌握知识和应用知识的过程,学生掌握了一定的数学思想对于学生应用数学具有显著的效果,虽然在短期的学习过程中可能效果并不是非常明显,但是随着时间的推移,知识点概念的增多,掌握良好的数学思想能够大大改善学生的学习效率。[4]
(四)课程教学多样化在当前大专数学课堂教学的过程中,本人发现一个最普遍的现象就是教师在讲台上讲,台下学生没有几个认真听的。针对这一问题,笔者认为主要是由于教师的教学方式选择错误,在课堂教学中没有什么趣味性、幽默的小案例,使得课堂教学气氛低下,学生学习效率低。对此,我们应当积极的转变教学对策,跟随时代的步伐,创新教学模式。将一些难以理解的数学公式繁杂的概念通过一些幽默的小案例来引出,激发学生的课堂兴趣,从而提升课堂的教学质量。[5]
三、结语
综合上文所述,我们可以看出在大专数学教学过程中不断的进行教学反思的意义是非常显著的,不仅能够提升课堂教学效率,而且还能够显著提升学生的学习效果,提高学生对数学学习的兴趣,培养学生应用数学的能力,为学生在未来步入社会奠定坚实的基础。我们教师应当树立正确的教学观念,使得学生在经过大专这几年的学习之后能够为社会做出贡献。
参考文献:
[1]xxx.大专数学教学中存在的问题及对策探讨[J].黑河教育,2016,11:87-88.
[2]xxx.关于大专数学概率教学模式的研究[J].吉林省教育学院学报(上旬),2014(02):89-90.
[3]苏德矿.高等数学教学如何与中学数学内容及教学方法有效地衔接[J].中国大学教学,2013(05):47-49.
[4]xxx.基于“翻转课堂”的文科高等数学教学设计研究[D].西安:陕西师范大学,2015.
高中概率总结 第13篇
一、集合、简易逻辑
1、集合;
2、子集;
3、补集;
4、交集;
5、并集;
6、逻辑连结词;
7、四种命题;
8、充要条件。
二、函数
1、映射;
2、函数;
3、函数的单调性;
4、反函数;
5、互为反函数的函数图象间的关系;
6、指数概念的扩充;
7、有理指数幂的运算;
8、指数函数;
9、对数;
10、对数的运算性质;
11、对数函数。
12、函数的应用举例。
三、数列(12课时,5个)
1、数列;
2、等差数列及其通项公式;
3、等差数列前nxxx公式;
4、等比数列及其通顶公式;
5、等比数列前nxxx公式。
四、三角函数
1、角的概念的推广;
2、弧度制;
3、任意角的三角函数;
4、单位圆中的三角函数线;
5、同角三角函数的基本关系式;
6、正弦、xxx的诱导公式;
7、两角和与差的正弦、xxx、正切;
8、二倍角的正弦、xxx、正切;
9、正弦函数、xxx函数的图象和性质;
10、周期函数;
11、函数的奇偶性;
12、函数的图象;
13、正切函数的图象和性质;
14、xxx三角函数值求角;
15、正弦定理;
16、xxx定理;
17、斜xxx解法举例。
五、平面向量
1、向量;
2、向量的加法与减法;
3、实数与向量的积;
4、平面向量的坐标表示;
5、线段的定比分点;
6、平面向量的数量积;
7、平面两点间的距离;
8、平移。
六、不等式
1、不等式;
2、不等式的基本性质;
3、不等式的证明;
4、不等式的解法;
5、含绝对值的不等式。
七、直线和圆的方程
1、直线的倾斜角和斜率;
2、直线方程的点斜式和两点式;
3、直线方程的`一般式;
4、两条直线平行与垂直的条件;
5、两条直线的交角;
6、点到直线的距离;
7、用二元一次不等式表示平面区域;
8、简单线性规划问题;
9、曲线与方程的概念;
10、由xxx条件列出曲线方程;
11、圆的标准方程和一般方程;
12、圆的参数方程。
八、圆锥曲线
1、椭圆及其标准方程;
2、椭圆的简单几何性质;
3、椭圆的参数方程;
4、双曲线及其标准方程;
5、双曲线的简单几何性质;
6、抛物线及其标准方程;
7、抛物线的简单几何性质。
九、直线、平面、简单xxx
1、平面及基本性质;
2、平面图形直观图的画法;
3、平面直线;
4、直线和平面平行的判定与性质;
5、直线和平面垂直的判定与性质;
6、三垂线定理及其逆定理;
7、两个平面的位置关系;
8、空间向量及其加法、减法与数乘;
9、空间向量的坐标表示;
10、空间向量的数量积;
11、直线的方向向量;
12、异面直线xxx的角;
13、异面直线的公垂线;
14、异面直线的距离;
15、直线和平面垂直的性质;
16、平面的法向量;
17、点到平面的距离;
18、直线和平面xxx的角;
19、向量在平面内的射影;
20、平面与平面平行的性质;
21、平行平面间的距离;
22、二面角及其平面角;
23、两个平面垂直的判定和性质;
24、多面体;
25、棱柱;
26、棱锥;
27、正多面体;
28、球。
十、排列、组合、二项式定理
1、分类计数原理与分步计数原理;
2、排列;
3、排列数公式;
4、组合;
5、组合数公式;
6、组合数的两个性质;
7、二项式定理;
8、二项展开式的性质。
十一、概率
1、随机事件的概率;
2、等可能事件的概率;
3、互斥事件有一个发生的概率;
4、相互独立事件同时发生的概率;
5、独立重复试验。
必修一函数重点知识整理
1、函数的奇偶性
(1)若f(x)是偶函数,那么f(x)=f(—x);
(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);
(3)判断函数奇偶性可用定义的等价形式:f(x)±f(—x)=0或(f(x)≠0);
(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;
(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;
2、复合函数的有关问题
(1)复合函数定义域求法:若xxx的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若xxxf[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。
(2)复合函数的单调性由“同增异减”判定;
3、函数图像(或方程曲线的对称性)
(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;
(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;
(3)曲线C1:f(x,y)=0,关于y=x+a(y=—x+a)的对称曲线C2的方程为f(y—a,x+a)=0(或f(—y+a,—x+a)=0);
(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a—x,2b—y)=0;
(5)若函数y=f(x)对x∈R时,f(a+x)=f(a—x)xxx,则y=f(x)图像关于直线x=a对称;
(6)函数y=f(x—a)与y=f(b—x)的图像关于直线x=对称;
4、函数的周期性
(1)y=f(x)对x∈R时,f(x +a)=f(x—a)或f(x—2a)=f(x)(a>0)xxx,则y=f(x)是周期为2a的周期函数;
(2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数;
(3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数;
(4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数;
(5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2的周期函数;
(6)y=f(x)对x∈R时,f(x+a)=—f(x)(或f(x+a)=,则y=f(x)是周期为2的周期函数;
5、方程k=f(x)有解k∈D(D为f(x)的值域);
6、a≥f(x)xxxa≥[f(x)]max,;a≤f(x)xxxa≤[f(x)]min;
7、(1)(a>0,a≠1,b>0,n∈R+);
(2)l og a N=(a>0,a≠1,b>0,b≠1);
(3)l og a b的符号由口诀“同正异负”记忆;
(4)a log a N= N(a>0,a≠1,N>0);
8、判断对应是否为映射时,抓住两点:
(1)A中元素必须都有象且唯一;
(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;
9、能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。
10、对于反函数,应掌握以下一些结论:
(1)定义域上的单调函数必有反函数;
(2)奇函数的反函数也是奇函数;
(3)定义域为非单元素集的偶函数不存在反函数;
(4)周期函数不存在反函数;
(5)互为反函数的两个函数具有相同的单调性;
(6)y=f(x)与y=f—1(x)互为反函数,设f(x)的定义域为A,值域为B,则有f[f——1(x)]=x(x∈B),f——1[f(x)]=x(x∈A)。
11、处理二次函数的问题勿忘数形结合;二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系;
12、依据单调性,利用一次函数在区间上的保号性可解决求一类参数的范围问题
13、xxx问题的处理方法:
(1)分离参数法;
(2)转化为一元二次方程的根的分布列不等式(组)求解。
拓展阅读:高中数学复习方法
1、把答案盖住看例题
例题不能带着答案去看,不然会认为自己就是这么,其实自己并没有理解透彻。
所以,在看例题时,把解答盖住,自己去做,做完或做不出时再去看。这时要想一想,自己做的哪里与解答不同,哪里没想到,该注意什么,哪一种方法更好,还有没有另外的解法。
经过上面的训练,自己的思维空间扩展了,看问题也全面了。如果把题目彻底搞清了,在题后精炼几个批注,说明此题的“题眼”及巧妙之处,收获会更大。
2、研究每题都考什么
数学能力的提高离不开做题,“熟能生巧”这个简单的道理大家都懂。但做题不是搞题海战术,而是要通过一题联想到很多题。
3、错一次反思一次
每次业及考试或多或少会发生些错误,这并不可怕,要紧的是避免类似的错误再次重现。因此平时注意把错题记下来。
学生若能将每次考试或练习中出现的错误记录下来分析,并尽力保证在下次考试时不发生同样错误,那么以后人生中最重要的高考也就能避免犯错了。
4、分析试卷总结经验
每次考试结束试卷发下来,要认真分析得失,总结经验教训。特别是将试卷中出现的错误进行分类。
高中概率总结 第14篇
条件概率的定义:
(1)条件概率的定义:对于任何两个事件A和B,在xxx事件A发生的条件下,事件B发生的概率叫做条件概率,用符号P(B|A)来表示.
(2)条件概率公式:
称为事件A与B的交(或积).
(3)条件概率的求法:
①利用条件概率公式,分别求出P(A)和P(A∩B),得P(B|A)=
②借助古典概型概率公式,先求出事件A包含的基本事件数n(A),再在事件A发生的条件下求出事件B包含的基本事件数,即n(A∩B),得P(B|A)=
P(B|A)的性质:
(1)非负性:对任意的A∈Ω,
; (2)规范性:P(Ω|B)=1;
(3)可列可加性:如果是两个互斥事件,则
P(B|A)概率和P(AB)的区别与联系:
(1)联系:事件A和B都发生了;
(2)区别:a、P(B|A)中,事件A和B发生有时间差异,A先B后;在P(AB)中,事件A、B同时发生。
b、样本空间不同,在P(B|A)中,样本空间为A,事件P(AB)中,样本空间仍为Ω。
高中概率总结 第15篇
一、突出统计学的思维
统计学涵盖范围很广,其中最直接的表现是可以通过对整体中部分数据的分析,发现整体数据的性质。由于数据的统计结果具有很强的随机性,因此,在进行实际操作过程中,会不可避免地出现失误,这也是它不同于定性思维的主要表现。但统计思维与定性思维作为人类重要且不可缺少的思维方式,对人类进行数据分析与整理起着非常重要的作用。因此,这两种思维方式在人类应对大自然事物中具有很大的普遍性与存在性。统计学作为概率统计中随机变化的重要描述,对人类进行数据分析及结果统计中规避失误风险具有很强的指导作用。
使学生明确及了解统计知识的特点及作用是现代统计教学的重要目标。因此,教师在进行教学的过程中,可以通过对重要统计数据的合理分析,使学生了解统计学知识的作用,帮助学生明确统计学思维与定性思维的不同。如教师在进行“运用样本数据对整体进行估计”的教学时,可通过引入具体数据,使学生在分析数据的过程中明确样本数据的随机性与关联性。从另一个角度来讲,在对样本数据进行分析的过程中,抽样方法的合理性对总体概率具有一定影响,也就是说,选用的抽样方法较合理,那么,样本数据的信息就能够充分反映总体变化趋势与性质,对人们解决概率性事件具有很大帮助。
二、教学具体生活案例的引入
为了帮助学生对不确定事件发生概率进行理解,教师可以通过在教学过程中引用实际的生活经历来实现。通过这样的方法不仅可以帮助学生在学习过程中掌握数据处理方法,还可以培养学生应对实际问题的解决能力,帮助学生理解概率学知识的基本思想,使“概率与统计”知识在生活中具有更强的广泛应用性。如教师在进行“最xxx乘法”的课堂教学时,通常会采用最基本也是最直接的方法,就是对“最xxx乘法”进行基本的介绍及解释。但是这种教学方式不仅会造成学生对教学内容实质的不理解,还不利于学生学习以及思维能力的培养,对教学质量的提升有很大的影响。教师可通过学生较为感兴趣的话题进行举例,让学生对统计出来的数据进行散点图的整理与分析,从而发现不同的数据之间存在着线性的变量关系,这时教师再引入“最xxx乘法”概念,引导学生理解与掌握线性回归方程,完成“最xxx乘法”的教学内容。教师在对教材及概率事件进行案例收集时,不能仅仅局限于数学学科,还应加强对其他学科中有关概率事件案例的收集,同时强化学生发现问题的能力,通过引用具有实际生活意义的教学案例,帮助学生更好地掌握“概率与统计”知识。
三、注重对随机概率现象的解释
高中概率总结 第16篇
高中数学知识点汇总
1.必修课程由5个模块组成:
必修1:集合,函数概念与基本初等函数(指数函数,幂函数,对数函数)
必修2:立体几何初步、平面解析几何初步。
必修3:算法初步、统计、概率。
必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。
必修5:解xxx、数列、不等式。
以上所有的知识点是所有高中生必须掌握的,而且要懂得运用。
选修课程分为4个系列:
系列1:2个模块
选修1-1:常用逻辑用语、圆锥曲线与方程、空间向量与立体几何。
选修1-2:统计案例、推理与证明、数系的扩充与复数、框图
系列2:3个模块
选修2-1:常用逻辑用语、圆锥曲线与方程、空间向量与立体几何
选修2-2:导数及其应用、推理与证明、数系的扩充与复数
选修2-3:计数原理、随机变量及其分布列、统计案例
选修4-1:几何证明选讲
选修4-4:坐标系与参数方程
选修4-5:不等式选讲
2.重难点及其考点:
重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数
难点:函数,圆锥曲线
高考相关考点:
1.集合与逻辑:集合的逻辑与运算(一般出现在高考卷的第一道选择题)、简易逻辑、充要条件
2.函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数函数、对数函数、函数的应用
3.数列:数列的有关概念、等差数列、等比数列、数列求通项、求和
4.三角函数:有关概念、同角关系与诱导公式、和差倍半公式、求值、化简、证明、三角函数的图像及其性质、应用
5.平面向量:初等运算、坐标运算、数量积及其应用
6.不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式(经常出现在大题的选做题里)、不等式的应用
7.直线与圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系
8.圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用
9.直线、平面、简单几xxx:空间直线、直线与平面、平面与平面、棱柱、棱锥、球、空间向量
10.排列、组合和概率:排列、组合应用题、二项式定理及其应用
11.概率与统计:概率、分布列、期望、方差、抽样、正态分布
12.导数:导数的概念、求导、导数的应用
13.复数:复数的概念与运算
高中数学学习要注意的方法
1.用心感受数学,欣赏数学,掌握数学思想。有位数学家曾说过:数学是用最小的空间集中了的理想。
2.要重视数学概念的理解。高一数学与初中数学的区别是概念多并且较抽象,学起来“味道”同以往很不一样,解题方法通常就来自概念本身。学习概念时,仅仅知道概念在字面上的含义是不够的,还须理解其隐含着的深层次的含义并掌握各种等价的表达方式。例如,为什么函数y=f(x)与y=f-1(x)的图象关于直线y=x对称,而y=f(x)与x=f-1(y)却有相同的图象;又如,为什么当f(x-1)=f(1-x)时,函数y=f(x)的图象关于y轴对称,而y=f(x-1)与y=f(1-x)的图象却关于直线x=1对称,不透彻理解一个图象的对称性与两个图象的对称关系的区别,两者很容易混淆。
3.对数学学习应抱着二个词――“严谨,创新”,所谓严谨,就是在平时训练的时候,不能一丝马虎,是对就是对,错了就一定要承认,要找原因,要改正,万不可以抱着“好像是对的”的心态,蒙混过关。至于创新呢,要求就高一点了,要求在你会解决此问题的情况下,你还会不会用另一种更简单,更有效的方法,这就需要扎实的基本功。平时,我们看到一些人,做题时从不用常规方法,总爱自己创造一些方法以“偏方”解题,虽然有时候也能让他撞上一些好的方法,但我认为是不可取的。因为你首先必须学会用常规的方法,在此基础上你才能创新,你的创新才有意义,而那些总是片面“追求”新方法的人,他们的思维有如空中楼阁,必然是昙花一现。当然我们要有创新意识,但是,创新是有条件的,必须有扎实的基础,因此我想劝一下那些基础不牢,而平时总爱用“偏方”的同学们,该是清醒一下的时候了,千万不要继续钻那可怜的牛角尖啊!
4.建立良好的学习数学习惯,习惯是经过重复练习而xxx来的稳重持久的条件反射和自然需要。建立良好的学习数学习惯,会使自己学习感到有序而轻松。高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。另外还要保证每天有一定的自学时间,以便加宽知识面和培养自己再学习能力。
5.多听、多作、多想、多问:此“四多”乃培养数学能力的要诀,“听”就是在“学”,作是“练习”(作课本上的习题或其它问题),也就是把您所学的,应用到解决问题上。“听”与“作”难免会碰到疑难,那就要靠“想”的功夫去打通它,假如还想不通,解不来就要“问”――问同学、问老师或参考书,务必将疑难解决为止。这就是所谓的学问:既学又问。
6.要有毅力、要有恒心:基本上要有一个认识:数学能力乃是长期努力累积的结果,而不是一朝一夕之功所能达到的。您可能花一天或一个晚上的功夫把某课文背得滚瓜烂熟,第二天考背诵时对答如流而获高分,也有可能花了一两个礼拜的时间拼命学数学,但到头来数学可能还考不好,这时候您可不能气馁,也不必为花掉的时间惋惜。
高中数学复习的五大要点分析
一、端正态度,切忌浮躁,忌急于求成
在第一轮复习的过程中,心浮气躁是一个非常普遍的现象。主要表现为平时复习觉得没有问题,题目也能做,但是到了考试时就是拿不了高分!这主要是因为:
高中概率总结 第17篇
互斥事件:
事件A和事件B不可能同时发生,这种不可能同时发生的两个事件叫做互斥事件。
如果A1,A2,…,An中任何两个都不可能同时发生,那么就说事件A1,A2,…An彼此互斥。
对立事件:
两个事件中必有一个发生的互斥事件叫做对立事件,事件A的对立事件记做
注:两个对立事件必是互斥事件,但两个互斥事件不一定是对立事件。
事件A+B的意义及其计算公式:
(1)事件A+B:如果事件A,B中有一个发生发生。
(2)如果事件A,B互斥时,P(A+B)=P(A)+P(B),如果事件A1,A2,…An彼此互斥时,那么P(A1+A2+…+An)=P(A1)+P(A2)+…+P(An)。
(3)对立事件:P(A+
)=P(A)+P(
)=1。
概率的几个基本性质:
(1)概率的取值范围:[0,1].
(2)必然事件的概率为1.
(3)不可能事件的概率为0.
(4)互斥事件的概率的加法公式:
如果事件A,B互斥时,P(A+B)=P(A)+P(B),如果事件A1,A2,…An彼此互斥时,那么P(A1+A2+…+An)=P(A1)+P(A2)+…+P(An)。
如果事件A,B对立事件,则P(A+B)=P(A)+P(B)=1。
互斥事件与对立事件的区别和联系:
互斥事件是不可能同时发生的两个事件,而对立事件除要求这两个事件不同时发生外,还要求二者之一必须有一个发生。因此,对立事件是互斥事件的特殊情况,而互斥事件未必是对立事件,即“互斥”是“对立”的必要但不充分条件,而“对立”则是“互斥”的充分但不必要条件。
高中概率总结 第18篇
1.数列的有关概念:
(1)数列:按照一定次序排列的'一列数。数列是有序的。数列是定义在自然数N_它的有限子集{1,2,3,…,n}上的函数。
(2)通项公式:数列的第n项an与n之间的函数关系用一个公式来表示,这个公式即是该数列的通项公式。如:。
(3)递推公式:xxx数列{an}的第1项(或前几项),且任一项an与他的前一项an-1(或前几项)可以用一个公式来表示,这个公式即是该数列的递推公式。
2.数列的表示方法:
(1)列举法:如1,3,5,7,9,…(2)图象法:用(n,an)孤立点表示。
(3)解析法:用通项公式表示。(4)递推法:用递推公式表示。
3.数列的分类:
4.数列{an}及前nxxx之间的关系:
5.等差数列与等比数列对比小结:
等差数列等比数列
一、定义
二、公式1.
三、性质1.,
称为与的等差中项
2.若(、、、),则
3.,,成等差数列
1.,
称为与的等比中项
2.若(、、、),则
3.,,成等比数列
(三)不等式
1、;;.
2、不等式的性质:①;②;③;
④,;⑤;
⑥;⑦;
小结:代数式的大小比较或证明通常用作差比较法:作差、化积(商)、判断、结论。
在字母比较的选择或填空题中,常采用特值法验证。
3、一元二次不等式解法:
(1)化成标准式:;(2)求出对应的一元二次方程的根;
(3)画出对应的二次函数的图象;(4)根据不等号方向取出相应的解集。
高中概率总结 第19篇
一、随机事件
主要掌握好(三四五)
(1)事件的三种运算:并(和)、交(积)、差;注意差A—B可以表示成A与B的逆的积。
(2)四种运算律:交换律、结合律、分配律、德莫根律。
(3)事件的五种关系:包含、相等、互斥(互不相容)、对立、相互独立。
二、概率定义
(1)统计定义:频率稳定在一个数附近,这个数称为事件的概率;(2)古典定义:要求样本空间只有有限个基本事件,每个基本事件出现的可能性相等,则事件A所含基本事件个数与样本空间所含基本事件个数的比称为事件的古典概率;
(3)几何概率:样本空间中的元素有无穷多个,每个元素出现的可能性相等,则可以将样本空间看成一个几何图形,事件A看成这个图形的子集,它的概率通过子集图形的大小与样本空间图形的大小的比来计算;
(4)公理化定义:满足三条公理的任何从样本空间的子集集合到[0,1]的映射。
三、概率性质与公式
(1)加法公式:P(A+B)=p(A)+P(B)—P(AB),特别地,如果A与B互不相容,则P(A+B)=P(A)+P(B);
(2)差:P(A—B)=P(A)—P(AB),特别地,如果B包含于A,则P(A—B)=P(A)—P(B);
(3)乘法公式:P(AB)=P(A)P(B|A)或P(AB)=P(A|B)P(B),特别地,如果A与B相互独立,则P(AB)=P(A)P(B);
(4)全概率公式:P(B)=∑P(Ai)P(B|Ai)。它是由因求果,
xxx公式:P(Aj|B)=P(Aj)P(B|Aj)/∑P(Ai)P(B|Ai)。它是由果索因;
如果一个事件B可以在多种情形(原因)A1,A2,...,An下发生,则用全概率公式求B发生的概率;如果事件B已经发生,要求它是由Aj引起的概率,则用xxx公式。
(5)二项概率公式:Pn(k)=C(n,k)p^k(1—p)^(n—k),k=0,1,2,...,n。当一个问题可以看成n重贝努力试验(三个条件:n次重复,每次只有A与A的逆可能发生,各次试验结果相互独立)时,要考虑二项概率公式。
高中概率总结 第20篇
随着科技的进步与发展,概率论与数理统计的方法已经渗透到社会的各个学科:误差理论、工程建设、保险、生物工程等无一不需要概率论与数理统计知识。概率论与数理统计也是当前数学考研的内容之一。因此,概率论与数理统计也就成了当前高校数学教学的一个重要组成部分。但是由于该课程具有一定的理论深度与难度,中间需要用到高等数学的知识,许多学生学习起来感到抽象吃力。本文从几个方面探讨如何调动学生的学习积极性和主动性,从而提高教学效果。
2教学方法实践
努力培养学生兴趣,调动学生学习积极性
兴趣是最好的老师,在教学中要从提高学生的兴趣入手,调动学生学习的积极性。课程开始时,先不要急于讲解基本概念,应先给学生做一下该课程背景及应用的简单介绍。针对不同专业的学生,让其体会到该课程在其专业中的地位,激发学生进一步思考如何将这门课应用于其专业上,如何学好这门课程。讲解课程的过程中也应尽量选取具有代表性而又与所授课学生专业相关的问题,引导学生积极思考。另外,对于所学过的知识与方法,也可提示学生拿来去解决一些实际的问题。例一:摸球游戏中谁是真正的赢家在街头巷尾常见一类“摸球游戏”。游戏是这样的:一袋中装有16个大小、形状相同、光滑程度一致的玻璃球。其中8个红色、8个白色。游戏者从中一次摸出8个,8个球中,当红白两种颜色出现以下比数时,摸球者可得到相应的“奖励”或“处罚”。此游戏(实为),从表面上看非常有吸引力,5种可能出现的结果有4种可得奖,且最高奖达10元,而只有一种情况受罚,罚金只是2元。吸引了许多人特别是好奇的青少年参加,结果却是受罚的多,何以如此呢?其实,这就是概率知识的具体应用:现在是从16个球中任取8个,所有可能的取法为C816种,即基本事件总数有限,又因为是任意抽取,保证了等可能性,是典型的古典概型问题。由古典概率计算公式,很容易得到上述5种结果。其对应的概率分别是:P(A)2C816=;P(B)2C78C18C816=;P(C)2C68C28C816=;P(D)2C58C38C816=;P(E)C48C48C816=假设进行了1000次摸球试验,5种情况平均出现的次数分别为:0、10、122、487、381次,经营游戏者预期可得10×0+1×10+×122+×487-2×381=(元)。这个例子的结论可能会使我们大吃一惊,然而正是在这一惊之中获得了对古典概率更具体、更生动的知识。实际生活中还有很多类似的应用例子,如在生物、化学、物理、体育、商业、农业等领域就有许多这样的例子,在教学的过程中可以不断给出这方面的例子,不断让学生保持对该门学科的兴趣且让学生逐渐了解它的广泛应用。
积极认真备课,引导学生学习
分散教学难点,提高学生的理解能力
在概率论中需要用到许多高等数学的知识,尤其是变上限积分及二重积分,如何将二重积分转化为二次积分等。由于高等数学课程为大一课程,上述内容又是高等数学的难点内容,概率论与数理统计则往往在大二下半学期开课,许多学生对这些知识大多已遗忘,所以在讲解涉及高等数学知识的内容时学生就会觉得很难,如讲解到二维随机变量的函数分布时,由(x,y)的联合概率密度函数求解z=x+y的概率密度函数,我们通常先由概率论的知识求解出Z的概率分布函数F(2z)=2-z`-∞乙(+∞-∞乙(fu,v)du)dv,然后对F(2z)=2-z`-∞乙(+∞-∞乙(fu,v)du)dv求导得Z的概率密度函数,此时依教材需做换元,将F2(z)表达式简化,但对于非数学专业学生来说,这又是一个难点,由于我们最终是要得到F(2z)的导函数,所以这里令H(v)=+∞-∞乙(fu,v)du,则F(2z)=2-z`-∞乙H(v)dv,x相对于xxx常数,由变上限积分求导可得:F2(''''z)=H(z-x)=+∞-∞乙(fu,z-x)du=+∞-∞乙(fx,z-x)dx,避开了换元过程,学生较易理解。对于其他一些内容,我们也可以做适当的改动,以利于学生接受。
加强课下练习,注重相互交流
概率论与数理统计课程学时数一般为48学时,学时少内容多,仅靠课堂教学远远达不到让学生熟练掌握的程度,因此要注重课后习题的练习,让学生在做题的过程中加深对课堂内容的理解。有很多学生在考试过后总是说感觉自己的成绩和自己的期望值相差很远,查过卷面之后,成绩确实又没错,只是每道题几乎都做得有问题,问到知识点他也能说出,但思路却很乱,一道题颠三倒四、漏洞百出。这样的情况往往是课下练习不够,所学知识没有系统化。因此课下练习的量一定要有,另外还要讲究知识点的分布。另外,教学过程是一个互动的环节,不仅在课堂上要以提问、讨论的方式进行互动,课下还要注重师生之间的交流,了解学生对课堂教学的想法,重视学生提出的问题,在随后的课堂教学中加以改进。每个学期不妨用一两分钟时间让学生不记名地写出对该课程及老师的一些想法和建议,这样不仅有利于提高教学质量,还有利于提升教师的教学水平。
做好归纳总结
由于每次上课学时数的限制,教学内容往往是分散的,如果不归纳总结,学生难以形成清晰连贯的知识点。课前可将本章或前一章所学内容简单做一下归纳总结,将知识点做适当的对比,强调一下重点。例如在讲解二元随机变量时可先将一元随机变量的知识点列出,对比着讲解二元随机变量,顺便给学生提出更多元随机变量的学习。习题课上则可先将选定章节知识系统归纳总结,以利于后面习题的讲解,也可以让学生课下对所学内容作一下归纳总结,这样做一方面利于学生将所学知识融会贯通,顺利实现知识迁移,另一方面也有利于学生学习效率的提高。
高中概率总结 第21篇
1.定义法:判断B是A的条件,实际上就是判断B=>A或者A=>B是否成立,只要把题目中所给的条件按逻辑关系画出箭头示意图,再利用定义判断即可。
2.转换法:当所给命题的充要条件不易判断时,可对命题进行等价装换,例如改用其逆否命题进行判断。
3.集合法
在命题的条件和结论间的关系判断有困难时,可从集合的角度考虑,记条件p、q对应的集合分别为A、B,则:
若A?B,则p是q的充分条件。
若A?B,则p是q的必要条件。
若A=B,则p是q的充要条件。
若A?B,且B?A,则p是q的既不充分也不必要条件。
高中概率总结 第22篇
1.不等式证明的依据
(2)不等式的性质(略)
(3)重要不等式:①|a|≥0;a2≥0;(a-b)2≥0(a、b∈R)
②a2+b2≥2ab(a、b∈R,当且仅当a=b时取“=”号)
2.不等式的证明方法
(1)比较法:要证明a>b(a0(a-b<0),这种证明不等式的方法叫做比较法.
用比较法证明不等式的步骤是:作差——变形——判断符号.
(2)综合法:从xxx条件出发,依据不等式的性质和已证明过的不等式,推导出所要证明的不等式成立,这种证明不等式的方法叫做综合法.
(3)分析法:从欲证的不等式出发,逐步分析使这不等式成立的充分条件,直到所需条件已判断为正确时,从而断定原不等式成立,这种证明不等式的方法叫做分析法.
证明不等式除以上三种基本方法外,还有反证法、数学归纳法等.
高中概率总结 第23篇
高中数学知识点总结如下:
1.概率与统计:包括概率、统计、概率的意义、xxx和二维正态分布、样本和抽样分布、参数估计、假设检验、方差分析、回归分析等。
2.微积分:包括极限、导数、微分、不定积分、定积分、常微分方程、偏微分方程、差分方程等。
3.线性代数:包括矩阵、向量、线性方程组、矩阵的相似对角化、二次型、线性空间、线性变换、矩阵的行列式、矩阵的逆矩阵、矩阵的秩、向量组的相关性、向量组的极大线性无关组等。
4.概率论与数理统计:包括随机事件与概率、概率的基本性质与运算法则、古典概型、条件概率、独立性、随机变量与分布函数、正态分布、二维随机变量与分布函数、条件概率与相互独立性、期望、方差、协方差与相关系数、矩、中心极限定理等。
5.平面几何:包括点和距离、平行和垂直、xxx、四边形、圆和扇形、平面图形和空间图形等。
6.平面解析几何:包括点与线的坐标、直线的方程与性质、圆的标准方程与性质、椭圆的标准方程与性质、双曲线的标准方程与性质、抛物线的标准方程与性质、参数方程与极坐标方程等。
7.集合与函数:包括集合与集合运算、函数与映射、函数图像与性质、指数与指数幂、对数与对数运算、函数图像变换等。
8.三角函数:包括三角函数的概念与图像、同角三角函数基本关系式、正弦函数和xxx函数的图像与性质、正切函数的图像与性质、两角和与差的正弦、xxx和正切函数、二倍角公式等。
9.数列:包括数列的概念与表示、等差数列与等比数列的概念与性质、数列的通项公式与通项公式求法、数列的求和公式、数列的极限等。
10.立体几何:包括多面体和旋转体的体积和表面积、平面基本性质、直线和平面、平面和平面、直线、平面之间的位置关系、平行和垂直的判定和性质、以及角度和平面角、距离等。
以上是高中数学知识点总结,具体的学习方法和应对考试技巧需要根据个人情况来制定。
高中概率总结 第24篇
随机事件的定义:
在随机试验中,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件叫做随机事件,随机事件通常用大写英文字母A、B、C等表示。
必然事件的定义:
必然会发生的事件叫做必然事件;
不可能事件:
肯定不会发生的事件叫做不可能事件;
概率的`定义:
在大量进行重复试验时,事件A发生的频率
总是接近于某个常数,在它附近摆动。这时就把这个常数叫做事件A的概率,记作P(A)。
m,n的意义:事件A在n次试验中发生了m次。
因0≤m≤n,所以,0≤P(A)≤1,必然事件的概率为1,不可能发生的事件的概率0。
随机事件概率的定义:
对于给定的随机事件A,随着试验次数的增加,事件A发生的频率
总是接近于区间[0,1]中的某个常数,我们就把这个常数叫做事件A的概率,记作P(A)。
频率的稳定性:
即大量重复试验时,任何结果(事件)出现的频率尽管是随机的,却“稳定”在某一个常数附近,试验的次数越多,频率与这个常数的偏差大的可能性越小,这一常数就成为该事件的概率;
“频率”和“概率”这两个概念的区别是:
频率具有随机性,它反映的是某一随机事件出现的频繁程度,它反映的是随机事件出现的可能性;概率是一个客观常数,它反映了随机事件的属性。
高中概率总结 第25篇
高中数学知识点总结
一、集合与简易逻辑
1.集合的元素具有确定性、无序性和互异性.
2.对集合,时,必须注意到“极端”情况:或;求集合的子集时是否注意到 是任何集合的子集、是任何非空集合的真子集.
3.判断命题的真假关键是“抓住关联字词”;注意:“不‘或’即‘且’,不‘且’即‘或’”.
4.“或命题”的真假特点是“一真即真,要假全假”;“且命题”的真假特点是“一假即假,要真全真”;“非命题”的真假特点是“一真一假”.
5.四种命题中“‘逆’者‘交换’也”、“‘否’者‘否定’也”.
原命题等价于逆否命题,但原命题与逆命题、否命题都不等价.反证法分为三步:假设、推矛、得果.
8.充要条件
二、函数
1.指数式、对数式,
2.(1)映射是“‘全部射出’加‘一箭一雕’”;映射中第一个集合 中的元素必有像,但第二个集合中的元素不一定有原像( 中元素的像有且仅有下一个,但中元素的原像可能没有,也可任意个);函数是“非空数集上的映射”,其中“值域是映射中像集的子集”.
(2)函数图像与轴垂线至多一个公共点,但与轴垂线的公共点可能没有,也可任意个.
(3)函数图像一定是坐标系中的曲线,但坐标系中的曲线不一定能成为函数图像.
3.单调性和奇偶性
(1)奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同.
偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相反.
(2)复合函数的单调性特点是:“同性得增,增必同性;异性得减,减必异性”.
复合函数的奇偶性特点是:“内偶则偶,xxx同外”.复合函数要考虑定义域的变化。(即复合有意义)
4.对称性与周期性(以下结论要消化吸收,不可强记)
(1)函数与函数的图像关于直线(轴)对称.
推广一:如果函数对于一切,都有成立,那么的图像关于直线 (由“ 和的一半确定”)对称.
推广二:函数,的图像关于直线对称.
(2)函数与函数的图像关于直线(轴)对称.
(3)函数与函数的图像关于坐标原点中心对称.
三、数列
1.数列的通项、数列项的项数,递推公式与递推数列,数列的通项与数列的前xxx公式的关系
2.等差数列中
(1)等差数列公差的取值与等差数列的单调性.
(2)也成等差数列.
(3)两等差数列对应xxx(差)组成的新数列xxx等差数列.
(4) xxx等差数列.
(5)“首正”的递等差数列中,前 xxx的最大值是所有非负项之和;“首负”的递增等差数列中,前 xxx的最小值是所有非正项之和;
(6)有限等差数列中,奇数xxx与偶数xxx的存在必然联系,由数列的总项数是偶数还是奇数决定.若总项数为偶数,则“偶数xxx“奇数xxx=总项数的一半与其公差的积;若总项数为奇数,则“奇数xxx-偶数xxx”=此数列的中项.
(7)两数的等差中项惟一存在.在遇到三数或四数成等差数列时,常考虑选用“中项关系”转化求解.
(8)判定数列是否是等差数列的主要方法有:定义法、中项法、通项法、和式法、图像法(也就是说数列是等差数列的充要条件主要有这五种形式).
3.等比数列中:
(1)等比数列的符号特征(全正或全负或一正一负),等比数列的首项、公比与等比数列的单调性.
(2)两等比数列对应项积(商)组成的新数列xxx等比数列.
(3)“首大于1”的正值递减等比数列中,前 项积的最大值是所有大于或等于1的项的积;“首小于1”的正值递增等比数列中,前 项积的最小值是所有小于或等于1的项的积;
(4)有限等比数列中,奇数xxx与偶数xxx的存在必然联系,由数列的总项数是偶数还是奇数决定.若总项数为偶数,则“偶数xxx”=“奇数xxx”与“公比”的积;若总项数为奇数,则“奇数xxx“首项”加上“公比”与“偶数xxx”积的和.
(5)并非任何两数总有等比中项.仅当实数 同号时,实数 存在等比中项.对同号两实数 的等比中项不仅存在,而且有一对.也就是说,两实数要么没有等比中项(非同号时),如果有,必有一对(同号时).在遇到三数或四数成等差数列时,常优先考虑选用“中项关系”转化求解.
(6)判定数列是否是等比数列的方法主要有:定义法、中项法、通项法、和式法(也就是说数列是等比数列的充要条件主要有这四种形式).
4.等差数列与等比数列的联系
(1)如果数列成等差数列,那么数列( 总有意义)xxx等比数列.
(2)如果数列成等比数列,那么数列xxx等差数列.
(3)如果数列xxx等差数列又成等比数列,那么数列是非零常数数列;但数列是常数数列仅是数列xxx等差数列又成等比数列的必要非充分条件.
(4)如果两等差数列有公共项,那么由他们的公共项顺次组成的新数列也是等差数列,且新等差数列的公差是原两等差数列公差的最小公倍数.
如果一个等差数列与一个等比数列有公共项顺次组成新数列,那么常选用“由特殊到一般的方法”进行研讨,且以其等比数列的项为主,探求等比数列中那些项是他们的公共项,并构成新的数列.
5.数列求和的常用方法:
(1)公式法:①等差数列求和公式(三种形式),
②等比数列求和公式(三种形式),
(2)分组求和法:在直接运用公式法求和有困难时,常将“和式”中“同类项”先合并在一起,再运用公式法求和.
(3)倒序相加法:在数列求和中,若和式中到首尾距离相等的两xxx有其共性或数列的通项与组合数相关联,则常可考虑选用倒序相加法,发挥其共性的作用求和(这也是等差数列前和公式的推导方法).
(4)错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构成,那么常选用错位相减法,将其和转化为“一个新的的等比数列的和”求解(注意:一般错位相减后,其中“新等比数列的项数是原数列的项数减一的差”!)(这也是等比数列前 和公式的推导方法之一).
(5)裂项相消法:如果数列的通项可“分裂成两项差”的形式,且相邻项分裂后相关联,那么常选用裂项相消法求和
(6)通项转换法。
四、三角函数
1.终边与终边相同(的终边在终边所在射线上).
终边与终边共线(的终边在终边所在直线上).
终边与终边关于轴对称
终边与终边关于轴对称
终边与终边关于原点对称
一般地:终边与终边关于角的终边对称.
与 的终边关系由“两等分各象限、一二三四”确定.
2.弧长公式:,扇形面积公式:1弧度(1rad).
3.三角函数符号特征是:一是全正、二正弦正、三是切正、四xxx正.
4.三角函数线的特征是:正弦线“站在轴上(起点在 轴上)”、xxx线“躺在轴上(起点是原点)”、正切线“站在点 处(起点是 )”.务必重视“三角函数值的大小与单位圆上相应点的坐标之间的关系,‘正弦’‘纵坐标’、‘xxx’‘横坐标’、‘正切’‘纵坐标除以横坐标之商’”;务必记住:单位圆中角终边的变化与值的大小变化的关系为锐角
5.三角函数同角关系中,平方关系的运用中,务必重视“根据xxx角的范围和三角函数的取值,精确确定角的范围,并进行定号”;
6.三角函数诱导公式的本质是:奇变偶不变,符号看象限.
7.三角函数变换主要是:角、函数名、次数、系数(常值)的变换,其核心是“角的变换”!
角的变换主要有:xxx角与特殊角的变换、xxx角与目标角的变换、角与其倍角的变换、两角与其和差角的变换.
8.三角函数性质、图像及其变换:
(1)三角函数的定义域、值域、单调性、奇偶性、有界性和周期性
注意:正切函数、余切函数的定义域;绝对值对三角函数周期性的影响:一般说来,某一周期函数解析式加绝对值或平方,其周期性是:弦减半、切不变.既为周期函数又是偶函数的函数自变量加绝对值,其周期性不变;其他不定.如 的周期都是,但的周期为,y=|tanx|的周期不变,问函数y=cos|x|,,y=cos|x|是周期函数吗?
(2)三角函数图像及其几何性质:
(3)三角函数图像的变换:两轴方向的平移、伸缩及其向量的平移变换.
(4)三角函数图像的作法:三角函数线法、五点法(五点横坐标成等差数列)和变换法.
9.xxx中的三角函数:
(1)内角和定理:xxx三角和为,任意两角和与第三个角总互补,任意两半角和与第三个角的半角总互余.锐角xxx三内角都是锐角三内角的xxx值为正值任两角和都是钝角任意两边的平方和大于第三边的平方.
(2)正弦定理:(R为xxx外接圆的半径).
(3)xxx定理:常选用xxx定理鉴定xxx的类型.
五、向量
1.向量运算的几何形式和坐标形式,请注意:向量运算中向量起点、终点及其坐标的特征.
2.几个概念:零向量、单位向量(与 共线的单位向量是,平行(共线)向量(无传递性,是因为有)、相等向量(有传递性)、相反向量、向量垂直、以及一个向量在另一向量方向上的投影(在上的投影是).
3.两非零向量平行(共线)的充要条件
4.平面向量的基本定理:如果e1和e2是同一平面内的两个不共线向量,那么对该平面内的任一向量a,有且只有一对实数,使a= e1+ e2.
5.三点共线;
6.向量的数量积:
六、不等式
1.(1)解不等式是求不等式的解集,最后务必有集合的形式表示;不等式解集的端点值往往是不等式对应方程的根或不等式有意义范围的端点值.
(2)解分式不等式 的一般解题思路是什么?(移项通分,分子分母分解因式,x的系数变为正值,标根及奇穿过偶弹回);
(3)含有两个绝对值的不等式如何去绝对值?(一般是根据定义分类讨论、平方转化或换元转化);
(4)解含参不等式常分类等价转化,必要时需分类讨论.注意:按参数讨论,最后按参数取值分别说明其解集,但若按未知数讨论,最后应求并集.
2.利用重要不等式 以及变式 等求函数的最值时,务必注意a,b (或a ,b非负),且“等号成立”时的条件是积ab或和a+b其中之一应是定值(一正二定三等四同时).
3.常用不等式有: (根据目标不等式左右的运算结构选用)
a、b、c R, (当且仅当 时,取等号)
4.比较大小的方法和证明不等式的方法主要有:差比较法、商比较法、函数性质法、综合法、分析法
5.含绝对值不等式的性质:
6.不等式的xxx,能成立,恰成立等问题
(1)xxx问题
若不等式 在区间 上xxx,则等价于在区间上
若不等式 在区间 上xxx,则等价于在区间上
(2)能成立问题
(3)恰成立问题
若不等式在区间上恰成立, 则等价于不等式的解集为 .
若不等式在区间上恰成立, 则等价于不等式的解集为 ,
七、直线和圆
1.直线倾斜角与斜率的存在性及其取值范围;直线方向向量的意义(或)及其直线方程的向量式((为直线的方向向量)).应用直线方程的点斜式、斜截式设直线方程时,一般可设直线的斜率为k,但你是否注意到直线垂直于x轴时,即斜率k不存在的情况?
2.知直线纵截距,常设其方程为或;知直线横截距,常设其方程为(直线斜率k存在时,为k的倒数)或知直线过点,常设其方程为.
(2)直线在坐标轴上的截距可正、可负、也可为0.直线两截距相等 直线的斜率为-1或直线过原点;直线两截距互为相反数 直线的斜率为1或直线过原点;直线两截距绝对值相等 直线的斜率为 或直线过原点.
(3)在解析几何中,研究两条直线的位置关系时,有可能这两条直线重合,而在立体几何中一般提到的两条直线可以理解为它们不重合.
3.相交两直线的夹角和两直线间的到角是两个不同的概念:夹角特指相交两直线xxx的较小角,范围是。而其到角是带有方向的角,范围是
4.线性规划中几个概念:约束条件、可行解、可行域、目标函数、最优解.
5.圆的方程:最xxx ;标准方程 ;
6.解决直线与圆的关系问题有“函数方程思想”和“数形结合思想”两种思路,等价转化求解,重要的是发挥“圆的平面几何性质(如半径、半弦长、弦心距构成直角xxx,切线长定理、割线定理、弦切角定理等等)的作用!”
(1)过圆 上一点 圆的切线方程
过圆 上一点 圆的切线方程
过圆 上一点 圆的切线方程
如果点在圆外,那么上述直线方程表示过点 两切线上两切点的“切点弦”xxx
如果点在圆内,那么上述直线方程表示与圆相离且垂直于(为圆心)的直线方程, (为圆心 到直线的距离).
7.曲线与的交点坐标方程组的解;
过两圆交点的圆(公共弦)系为,当且仅当无平方项时,为两圆公共弦所在直线xxx
八、圆锥曲线
1.圆锥曲线的两个定义,及其“括号”内的限制条件,在圆锥曲线问题中,如果涉及到其两焦点(两相异定点),那么将优先选用圆锥曲线第一定义;如果涉及到其焦点、准线(一定点和不过该点的一定直线)或离心率,那么将优先选用圆锥曲线第二定义;涉及到焦点xxx的问题,也要重视焦半径和xxx中正xxx定理等几何性质的应用.
(1)注意:①圆锥曲线第一定义与配方法的综合运用;
②圆锥曲线第二定义是:“点点距为分子、点线距为分母”,椭圆 点点距除以点线距商是小于1的正数,双曲线 点点距除以点线距商是大于1的正数,抛物线 点点距除以点线距商是等于1.
2.圆锥曲线的几何性质:圆锥曲线的对称性、圆锥曲线的范围、圆锥曲线的特殊点线、圆锥曲线的变化趋势.其中 ,xxx 、双曲线中 .
重视“特征直角xxx、焦半径的最值、焦点弦的最值及其‘顶点、焦点、准线等相互之间与坐标系无关的几何性质’”,尤其是双曲线中焦半径最值、焦点弦最值的特点.
3.在直线与圆锥曲线的位置关系问题中,有“函数方程思想”和“数形结合思想”两种思路,等价转化求解.特别是:
①直线与圆锥曲线相交的必要条件是他们构成的方程组有实数解,当出现一元二次方程时,务必“判别式≥0”,尤其是在应用韦达定理解决问题时,必须先有“判别式≥0”.
②直线与抛物线(相交不一定交于两点)、双曲线位置关系(相交的四种情况)的特殊性,应谨慎处理.
③在直线与圆锥曲线的位置关系问题中,常与“弦”相关,“平行弦”问题的关键是“斜率”、“中点弦”问题关键是“韦达定理”或“小小直角xxx”或“点差法”、“长度(弦长)”问题关键是长度(弦长)公式
④如果在一条直线上出现“三个或三个以上的点”,那么可选择应用“斜率”为桥梁转化.
4.要重视常见的寻求曲线方程的方法(待定系数法、定义法、直译法、代点法、参数法、交轨法、向量法等), 以及如何利用曲线的方程讨论曲线的几何性质(定义法、几何法、代数法、方程函数思想、数形结合思想、分类讨论思想和等价转化思想等),这是解析几何的两类基本问题,也是解析几何的基本出发点.
注意:①如果问题中涉及到平面向量知识,那么应从xxx向量的特点出发,考虑选择向量的几何形式进行“摘帽子或脱靴子”转化,还是选择向量的代数形式进行“摘帽子或脱靴子”转化.
②曲线与曲线方程、轨迹与轨迹方程是两个不同的概念,寻求轨迹或轨迹方程时应注意轨迹上特殊点对轨迹的“完备性与纯粹性”的影响.
③在与圆锥曲线相关的综合题中,常借助于“平面几何性质”数形结合(如角平分线的双重身份)、“方程与函数性质”化解析几何问题为代数问题、“分类讨论思想”化整为零分化处理、“求值构造等式、求变量范围构造不等关系”等等.
九、直线、平面、简单多面体
1.计算异面直线xxx角的关键是平移(补形)转化为两直线的夹角计算
2.计算直线与平面xxx的角关键是作面的垂线找射影,或向量法(直线上向量与平面法向量夹角的余角),三xxx公式(最小角定理),或先运用等积法求点到直线的距离,后虚拟直角xxx求解.注:一斜线与平面上以斜足为顶点的角的两边xxx角相等 斜线在平面上射影为角的平分线.
3.空间平行垂直关系的证明,主要依据相关定义、公理、定理和空间向量进行,请重视线面平行关系、线面垂直关系(三垂线定理及其逆定理)的桥梁作用.注意:书写证明过程需规范.
4.直棱柱、正棱柱、平行六面体、长方体、正方体、正四面体、棱锥、正棱锥关于侧棱、侧面、对角面、平行于底的截面的几xxx性质.
如长方体中:对角线长,棱长总和为,全(表)面积为,(结合可得关于他们的等量关系,结合基本不等式还可建立关于他们的不等关系式),
如三棱锥中:侧棱长相等(侧棱与底面xxx角相等)顶点在底上射影为底面外心,侧棱两两垂直(两对对棱垂直)顶点在底上射影为底面垂心,斜高长相等(侧面与底面xxx相等)且顶点在底上在底面内顶点在底上射影为底面内心.
5.求几xxx体积的常规方法是:公式法、割补法、等积(转换)法、比例(性质转换)法等.注意:补形:三棱锥 三棱柱平行六面体
6.多面体是由若干个多边形围成的几xxx.棱柱和棱锥是特殊的多面体.
正多面体的每个面都是相同边数的正多边形,以每个顶点为其一端都有相同数目的棱,这样的多面体只有五种,即正四面体、正六面体、正八面体、正十二面体、正二十面体.
7.球体积公式。球表面积公式,是两个关于球的几何度量公式.它们都是球半径及的函数.
十、导数
1.导数的意义:曲线在该点处的切线的斜率(几何意义)、瞬时速度、边际成本(成本为因变量、产量为自变量的函数的导数,C为常数)
2.多项式函数的导数与函数的单调性
在一个区间上(个别点取等号)在此区间上为增函数.
在一个区间上(个别点取等号)在此区间上为减函数.
3.导数与极值、导数与最值:
(1)函数处有且“左正右负”在处取极大值;
函数在处有且左负右正”在处取极小值.
注意:①在处有是函数在处取极值的必要非充分条件.
②求函数极值的方法:先找定义域,再求导,找出定义域的分界点,列表求出极值.特别是给出函数极大(小)值的条件,一定要既考虑,又要考虑验“左正右负”(“左负右正”)的转化,否则条件没有用完,这一点一定要切记.
③单调性与最值(极值)的研究要注意列表!
(2)函数在一闭区间上的最大值是此函数在此区间上的极大值与其端点值中的“最大值”
函数 在一闭区间上的最小值是此函数在此区间上的极小值与其端点值中的“最小值”;
注意:利用导数求最值的步骤:先找定义域 再求出导数为0及导数不存在的的点,然后比较定义域的端点值和导数为0的点对应函数值的大小,其中最大的就是最大值,最小就为最小。
怎么样学好高中数学
一、数学公式定理掌握好
基本的是做课本上的例题,课本上的例题思路比较简单,一个知识点对应的一个例题,把这些例题看过一遍后,能自己做出来,做题过程是最好的记忆数学公式定理的过程,这一步不能省,不要想办法背数学公式定理,只有边用边记忆,才能真正的理解和应用。
课本上的例题做完,接着课后练习也要跟着做,课后练习的一些题目是综合题,把新的知识点和前面学过的知识点结合起来,帮助进步一步学习和巩固。
二、进行专题、难题训练提高
做题的时候不要怕难题,有的学生看到难题就放下来,一直练习自己会做的题目,这样很难得到提高,可以尝试多做难题,不要有畏惧心理,如果一直不去攻克难题,那考试分数肯定提不上来。
首先,看到难题要大胆的去做,思维活跃起来,多想知识点,这个方法不行,没关系,再分析,再审题,找其他的方法,如果一直不会,可以参考答案,看看答案里是怎样答题的,解题思路是什么样的,里面的解题方法是自己不会的还是自己会的没有想到的,然后自己去总结去反思。
三、记错题、看错题、解错题
高中数学建议准备一个错题本,特别是高三的学生!高中一般的错题都是学生这道题考的知识点没有掌握好,或者不知道这种题型该如何去解答,基本上没有因为计算失误而出现的错题了。
高考数学复习技巧
1.精准备考、对考试卷中的每一个常考点,准备相类似的试题进行专题集中突破训练。强化训练学生对试题文字信息的提取能力、图像信息的提取能力、强化基本技能,增强数学计算能力,并能熟练应用以前建立的模型解决实际问题。
2.对于需要记忆的二级结论,应熟练掌握其来龙去脉,要让学生使用“连推带记”的方法,提炼出使用二级结论的严格条件,并找出一些易混题加强练习。
3.加强套卷训练、训练学生的答题节奏,让学生合理分配时间,强化稳定得分点,同时利用严格的阅卷标准,来规范学生答题,让学生养成良好的答题习惯。做到逢考必改,逢改必评。