数学测量总结 第1篇
第一单元长度单位
1、常用的长度单位:米、厘米。
2、测量较短物体通常用厘米作单位,测量较长物体通常用米作单位。
3、测量物体长度的方法:将物体的左端对准直尺的“0”刻度,看物体的右端对着直尺上的刻度是几,这个物体的长度就是几厘米。
4、米和厘米的关系:1米=100厘米100厘米=1米
5、线段
⑴线段的特点:①线段是直的;②线段有两个端点;③线段有长有短,是可以量出长度的。
⑵画线段的方法:先用笔对准尺子的’0”刻度,在它的上面点一个点,再对准要画到的长度的厘米刻度,在它的上面也点一个点,然后把这两个点连起来,写出线段的长度。
⑶测量物体的长度时,当不是从“0”刻度量起时,要用终点的刻度数减去起点的刻度数。
6、填上合适的长度单位。
xxx身高1(米)30(厘米)
练习本宽13(厘米)
铅笔长17(厘米)
黑板长2(米)图钉长1(厘米)
一张床长2(米)一口井深3(米)
学校进行100(米)赛跑
教学楼高25(米)宝宝身高80(厘米)
跳绳长2(米)一棵树高3(米)
一把钥匙长5(厘米)
一个文具盒长24(厘米)
讲台高90(厘米)
门高2(米)教室长12(米)
筷子长20(厘米)
一棵小树苗高1(米)
小朋友的头围48厘米
爸爸的身高1米75厘米或175厘米
小朋友的身高120厘米或1米20厘米
第二单元100以内的加法和减法
一、两位数加两位数
1、两位数加两位数不进位加法的计算法则:把相同数位对齐列竖式,在把相同数位上的数相加。
2、两位数加两位数进位加法的计算法则:①相同数位对齐;②从个位加起;③个位满十向十位进1。
3、笔算两位数加两位数时,相同数位要对齐,从个位加起,个位满十要向十位进“1”,十位上的数相加时,不要遗漏进上来的“1”。
4、和=加数+加数
一个加数=和-另一个加数
二、两位数减两位数
1、两位数减两位数不退位减的笔算:相同数位对齐列竖式,再把相同数位上的数相减
2、两位数减两位数退位减的笔算法则:①相同数位对齐;②从个位减起;③个位不够减,从十位退1,在个位上加10再减。
3、笔算两位数减两位数时,相同数位要对齐,从个位减起,个位不够减,从十位退1,个位加10再减,十位计算时要先减去退走的1再算。
4、差=被减数-减数
被减数=减数+差
减数=被减数+差
三、连加、连减和加减混合
1、连加、连减
连加、连减的笔算顺序和连加、连减的口算顺序一样,都是从左往右依次计算。
①连加计算可以分步计算,也可以写成一个竖式计算,计算方法与两个数相加一样,都要把相同数位对齐,从个位加起。
②连减运算可以分步计算,也可以写成一个竖式计算,计算方法与两个数相减一样,都要把相同数位对齐,从个位减起。
2、加减混合
加、减混合算式,其运算顺序、竖式写法都与连加、连减相同。
3、加减混合运算写竖式时可以分步计算,方法与两个数相加(减)一样,要把相同数位对齐,从个位算起;也可以用简便的写法,列成一个竖式,先完成第一步计算,再用第一步的结果加(减)第二个数。
四、解决问题(应用题)
1、步骤:xxx读题②列横式,写结果,千万别忘记写单位(单位为:多少或者几后面的那个字或词)③作答。
2、求“一个已知数”比“另一个已知数”多多少、少多少?用减法计算。用“比”字两边的较大数减去较小数。
3、比一个数多几、少几,求这个数的问题。先通过关键句分析,“比”字前面是大数还是小数,“比”字后面是大数还是小数,问题里面要求大数还是小数,求大数用加法,求小数用减法。
4、关于提问题的题目,可以这样提问:
①…….和……一共…….?
②……比……..多多少/几……?
③……比……..少多少/几……?
第三单元元角的初步认识
1、角的初步认识
(1)角是由一个顶点和两条边组成的;
(2)画角的方法:从一个点起,用尺子向不同的方向画两条直线。
(3)角的大小与边的长短没有关系,与角的两条边张开的大小有关,角的两条边张开得越大,角就越大,角的两条边张开得越小,角就越小。
2、直角的初步认识
(1)直角的判断方法:用三角尺上的直角比一比(顶点对顶点,一边对一边,再看另一条边是否重合)。
(2)画直角的方法:xxx画一个顶点,再从这个点出发画一条直线②用三角尺上的直角顶点对齐这个点,一条直角边对齐这条线③再从这点出发沿着三角尺上的另一条直角边画一条线④最后标出直角标志。
(3)比直角小的是锐角,比直角大的是钝角:锐角<直角<钝角。
(4)所有的直角都一样大
(5)每个三角尺上都有1个直角,两个锐角。红领巾上有3个角,其中一个是钝角,两个是锐角。一个长方形中和正方形中都是有4个直角。
数学测量总结 第2篇
时分秒
1、钟面上有3根针,它们是(时针)、(分针)、(秒针),其中走得最快的是(秒针),走得最慢的是(时针)。
2、钟面上有(12)个数字,(12)个大格,(60)个小格;每两个数间是(1)个大格,也就是(5)个小格。
3、时针走1大格是(1)小时;分针走1大格是(5)分钟,走1小格是( 1)分钟;秒针走1大格是(5)秒钟,走1小格是(1)秒钟。
4、时针走1大格,分针正好走(1)圈,分针走1圈是(60)分,也就是(1)小时。时针走1圈,分针要走(12)圈。
5、分针走1小格,秒针正好走(1)圈,秒针走1圈是(60)秒,也就是(1)分钟。
6、时针从一个数走到下一个数是(1小时)。分针从一个数走到下一个数是(5分钟)。秒针从一个数走到下一个数是(5秒钟)。
7、钟面上时针和分针正好成直角的时间有:(3点整)、(9点整)。
8、公式。(每两个相邻的时间单位之间的进率是60)
1时=60分1分=60秒
半时=30分60分=1时
60秒=1分30分=半时
万以内的加法和减法
1、认识整千数(记忆:10个一千是一万)
2、读数和写数(读数时写汉字写数时写阿拉伯数字)
①一个数的末尾不管有一个0或几个0,这个0都不读。
②一个数的中间有一个0或连续的两个0,都只读一个0。
3、数的大小比较:
①位数不同的数比较大小,位数多的数大。
②位数相同的数比较大小,先比较这两个数的最高位上的数,如果最高位上的数相同,就比较下一位,以此类推。
4、求一个数的近似数:
记忆:看最位的后面一位,如果是0-4则用四舍法,如果是5-9就用五入法。
最大的三位数是位999,最小的三位数是100,最大的四位数是9999,最小的四位数是1000。最大的三位数比最小的四位数小1。
5、被减数是三位数的连续退位减法的运算步骤:
①列竖式时相同数位一定要对齐;
②减法时,哪一位上的数不够减,从前一位退1;如果前一位是0,则再从前一位退1。
6、在做题时,我们要注意中间的0,因为是连续退位的,所以从百位退1到十位当10后,还要从十位退1当10,借给个位,那么十位只剩下9,而不是10。(两个三位数相加的和:可能是三位数,也有可能是四位数。)
7、公式
和=加数+另一个加数
加数=和-另一个加数
减数=被减数-差
被减数=减数+差
差=被减数-减数
1、在生活中,量比较短的物品,可以用(毫米、厘米、分米)做单位;量比较长的物体,常用(米)做单位;测量比较长的路程一般用(千米)做单位,千米也叫(公里)。
2、1厘米的长度里有(10)小格,每小格的长度(相等),都是(1)毫米。
3、1枚1分的硬币、尺子、磁卡、小纽扣、钥匙的厚度大约是1毫米。
4、在计算长度时,只有相同的长度单位才能相加减。
小技巧:换算长度单位时,把大单位换成小单位就在数字的末尾添加0(关系式中有几个0,就添几个0);把小单位换成大单位就在数字的末尾去掉0(关系式中有几个0,就去掉几个0)。
5、长度单位的关系式有:(每两个相邻的长度单位之间的进率是10 )
①进率是10:
1米=10分米, 1分米=10厘米,
1厘米=10毫米, 10分米=1米,
10厘米=1分米, 10毫米=1厘米,
②进率是100:
1米=100厘米, 1分米=100毫米,
100厘米=1米, 100毫米=1分米
③进率是1000:
1千米=1000米, 1公里==1000米,
1000米=1千米, 1000米=1公里
6、当我们表示物体有多重时,通常要用到(质量单位)。在生活中,称比较轻的物品的质量,可以用(克)做单位;称一般物品的质量,常用(千克)做单位;计量较重的或大宗物品的质量,通常用(吨)做单位。
小技巧:在“吨”与“千克”的换算中,把吨换算成千克,是在数字的.末尾加上3个0;
把千克换算成吨,是在数字的末尾去掉3个0。
7、相邻两个质量单位进率是1000。
1吨=1000千克1千克=1000克
1000千克= 1吨1000克=1千克
倍的认识
1、求一个数是另一个数的几倍用除法:一个数÷另一个数=倍数
2、求一个数的几倍是多少用乘法:这个数×倍数=这个数的几倍
多位数乘一位数
1、估算。(先求出多位数的近似数,再进行计算。如497×7≈3500)
2、① 0和任何数相乘都得0;② 1和任何不是0的数相乘还得原来的数。
3、因数末尾有几个0,就在积的末尾添上几个0。
4、三位数乘一位数:积有可能是三位数,也有可能是四位数。
公式:速度×时间=路程
每节车厢的人数×车厢的数量=全车的人数
5、(关于“大约)应用题:
①条件中出现“大约”,而问题中没有“大约”,求准确数。→(=)
②条件中没有,而问题中出现“大约”。求近似数,用估算。→(≈)
③条件和问题中都有“大约”,求近似数,用估算。→(≈)
四边形
1、有4条直的边和4个角封闭图形我们叫它四边形。
2、四边形的特点:有四条直的边,有四个角。
3、长方形的特点:长方形有两条长,两条宽,四个直角,对边相等。
4、正方形的特点:有4个直角,4条边相等。
5、长方形和正方形是特殊的平行四边形。
6、平行四边形的特点:
①对边相等、对角相等。
②平行四边形容易变形。(三角形不容易变形)
7、封闭图形一周的长度,就是它的周长。
8、公式。
正方形的周长=边长×4
正方形的边长=周长÷4,
长方形的周长=(长+宽)×2
长方形的长=周长÷2-宽,
长方形的宽=周长÷2-长
分数的初步认识
1、把一个物体或一个图形平均分成几份,取其中的几份,就是这个物体或图形的几分之几。
2、把一个整体平均分得的份数越多,它的每一份所表示的数就越小。
3、①分子相同,分母小的分数反而大,分母大的分数反而小。
②分母相同,分子大的分数就大,分子小的分数就小。
4、①相同分母的分数相加、减:分母不变,只和分子相加、减。
② 1与分数相减:1可以看作是与减数分母相同的,同分子分母的分数。
数学测量总结 第3篇
平面图形【认识、周长、面积】
一、用直尺把两点连接起来,就得到一条线段;把线段的一端无限延长,可以得到一条射线;把线段的两端无限延长,可以得到一条直线。线段、射线都是直线上的一部分。线段有两个端点,长度是有限的;射线只有一个端点,直线没有端点,射线和直线都是无限长的。
二、从一点引出两条射线,就组成了一个角。角的大小与两边叉开的大小有关,与边的长短无关。角的大小的计量单位是。
三、角的分类:小于90度的角是锐角;等于90度的角是直角;大于90度小于180度的角是钝角;等于180度的角是平角;等于360度的角是xxx。
四、相交成直角的两条直线互相垂直;在同一平面不相交的两条直线互相平行。
五、三角形是由三条线段xxx的图形。xxx三角形的每条线段叫做三角形的边,每两条线段的交点叫做三角形的顶点。
六、三角形按角分,可以分为锐角三角形、直角三角形和钝角三角形。
按边分,可以分为等边三角形、等腰三角形和任意三角形。
七、三角形的内角和等于180度。
八、在一个三角形中,任意两边之和大于第三边。
九、在一个三角形中,最多只有一个直角或最多只有一个钝角。
十、四边形是由四条边xxx的图形。常见的特殊四边形有:平行四边形、长方形、正方形、梯形。
十一、圆是一种曲线图形。圆上的任意一点到圆心的距离都相等,这个距离就是圆的半径的长。通过圆心并且两端都在圆的线段叫做圆的直径。
十二、有一些图形,把它沿着一条直线对折,直线两侧的图形能够完全重合,这样的图形就是轴对称图形。这条直线叫做对称轴。
十三、xxx一个图形的所有边长的总和就是这个图形的周长。
十四、物体的表面或xxx的平面图形的大小,叫做它们的面积。
十五、平面图形的面积计算公式推导:
【1】平行四边形面积公式的推导过程?
①把平行四边形通过剪切、平移可以转化成一个长方形。
②长方形的长等于平行四边形的底,长方形的宽等于平行四边形的高,长方形的面积等于平行四边形的面积。
③因为:长方形面积=长宽,所以:平行四边形面积=底高。即:S=ah。
【2】三角形面积公式的推导过程?
①用两个完全一样的三角形可以拼成一个平行四边形。
②平行四边形的底等于三角形的底,平行四边形的高等于三角形的高,三角形面积等于和它等底等高的平行四边形面积的一半
③因为:平行四边形面积=底高,所以:三角形面积=底高2。即:S=ah2。
【3】梯形面积公式的推导过程?
①用两个完全一样的梯形可以拼成一个平行四边形。
②平行四边形的底等于梯形的上底和下底的和,平行四边形的高等于梯形的高,梯形面积等于平行四边形面积的一半。
③因为:平行四边形面积=底高,所以:梯形面积=(上底+下底)高2。即:S=(a+b)h2。
【4】画图说明圆面积公式的推导过程
①把圆分成若干等份,剪开后,拼成了一个近似的长方形。
②长方形的长相当于圆周长的一半,宽相当于圆的半径。
③因为:长方形面积=长宽,所以:圆面积=r=r2。即:S=r2。
十六、平面图形的周长和面积计算公式:
十七、常用数据:
[小学图形测量知识点总结]
数学测量总结 第4篇
一根铁丝用去40米,还剩28米。原来这根铁丝长多少米?
二年级数学知识点总结整理总结是事后对某一阶段的学习、工作或其完成情况加以回顾和分析的一种书面材料,它可以给我们下一阶段的学习和工作生活做指导,让我们好好写一份总结吧......
二年级数学第一单元知识点整理1、厘米和米(1)厘米和米是计量长度的单位。厘米可以用“cm”表示。量比较短的物体,可以用“厘米”作单位。(2)食指宽大约1厘米;田字格宽大约1厘米;图......
小学数学二年级知识点总结 第一单元厘米=1米或者1米=100厘米。2.线段是直的,有两个端点,可以测量其长度。两点之间,线段最短。 3.射线是直的,有一个端点,不可以测量其长度。......
二年级上册数学知识点总结第一单元长度单位1、常用的长度单位:米、厘米。2、测量较短物体通常用厘米作单位,测量较长物体通常用米作单位。3、测量物体长度的方法:将物体的左端......
二年级下册数学知识点总结归纳学期期末考试很快就要开始了,为方便大家备考,学习整理了二年级数学下册知识点复习总结,希望能够对同学们有所帮助,预祝大家取得好成绩。第一单元......
数学测量总结 第5篇
1、空间向量的概念:
(1)在空间,具有大小和方向的量称为空间向量。
(2)向量可用一条有向线段来表示.有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向。
(3)向量的大小称为向量的模(或长度),记作。
(4)模(或长度)为0的向量称为零向量;模为1的向量称为单位向量。
(5)与向量长度相等且方向相反的向量称为的相反向量,记作。
(6)方向相同且模相等的向量称为相等向量。
2、空间向量的加法和减法:
(1)求两个向量和的运算称为向量的加法,它遵循平行四边形法则;即:在空间以同一点o为起点的两个已知向量、为邻边作平行四边形oacb,则以o起点的对角线就是与的和,这种求向量和的方法,称为向量加法的平行四边形法则。
(2)求两个向量差的运算称为向量的减法,它遵循三角形法则;即:在空间任取一点a,作,,则。
3、实数λ与空间向量的乘积是一个向量,称为向量的数乘运算。当λ>0时,与方向相同;当λ<0时,与方向相反;当λ=0时,为零向量,记为。的长度是的长度的?λ?倍。
4、设λ,μ为实数,,是空间任意两个向量,则数乘运算满足分配律及结合律:
5、如果表示空间的有向线段所在的直线互相平行或重合,则这些向量称为共线向量或平行向量,并规定零向量与任何向量都共线.
6、向量共线的充要条件:对于空间任意两个向量,(≠0),的充要条件是存在实数λ,使。
7、平行于同一个平面的向量称为共面向量。
8、向量共面定理:空间一点p位于xxxbc内的充要条件是存在有序实数对x,y,
9、已知两个非零向量和,在空间任取一点p,作,,,则∠aob称为向量,的夹角,记作;两个向量夹角的取值范围是:∈[0,Π]。
10、对于两个非零向量和,若=Π/2,则向量,互相垂直,记作。
11、已知两个非零向量和,则????cos称为,的数量积,记作;即
零向量与任何向量的数量积为0。
12、等于的长度与在的方向上的投影
13、若,为非零向量,为单位向量,则有
14、量数乘积的运算律:
15、空间向量基本定理:若三个向量,,不共面,则对空间任一向量,存在实数组{x,y,z},使得
16、三个向量,,不共面,则所有空间向量组成的*是:这个*可看作是由向量,,生成的,称为空间的一个基底,,,称为基向量,空间任意三个不共面的向量都可以构成空间的一个基底。
17、设,,为有公共起点o的三个两两垂直的单位向量(称它们为单位正交基底),以,,的公共起点o为原点,分别以,,的方向为x轴,y轴,z轴的正方向建立空间直角坐标系oxyz,则对于空间任意一个向量,一定可以把它平移,使它的起点与原点o重合,得到向量=。存在有序实数组{x,y,z},使得把x,y,z称作向量在单位正交基底,,下的坐标,记作={x,y,z},此时,向量的坐标是点p在空间直角坐标系oxyz中的坐标(x,y,z)。
19、在空间中,取一定点o作为基点,那么空间中任意一点p的位置可以用向量来表示.向量称为点p的位置向量.
20、空间中任意一条直线l的位置可以由l上一个定点a以及一个定方向确定.点a是直线l上一点,向量表示直线l的方向向量,则对于直线l上的任意一点p,有,这样点a和向量不仅可以确定直线l的位置,还可以具体表示出直线l上的任意一点。
21、空间中平面α的位置可以由α内的两条相交直线来确定.设这两条相交直线相交于点o,它们的方向向量分别为,;p为平面α上任意一点,存在有序实数对(x,y),使得,这样点o与向量,就确定了平面α的位置。
22、直线l垂直α,取直线l的方向向量,则向量称为平面α的法向量.
23、若空间不重合两条直线a,b的方向向量分别为,,
24、若直线l的方向xxx,平面α的法xxx,且a∉α,则25、若空间不重合的两个平面α,β的法向量分别为,,则
26、设异面直线a,b的夹角为θ,方向xxx,,其夹角为Ψ,则有
27、设直线l的方向xxx,平面α的法xxx,l与α所成的角为θ,与的夹角为Ψ,则有
28、设,是二面角的两个面α,β的法向量,则向量,的夹角(或其补角)就是二面角的平面角的大小;若二面角的平面角为θ,则
29、点a与点b之间的距离可以转化为两点对应向量的模计算。
30、在直线l上找一点p,过定点a且垂直于直线l的xxx,则定点a到直线l的距离为
31、点p是平面α外一点,a是平面α内的一定点,为平面α的一个法向量,则点p到平面α的距离为
数学测量总结 第6篇
1、正方形(C:xxx:面积a:边长)周长=边长×4C=4a面积=边长×边长S=a×a
2、正方体(V:体积a:棱长)
表面积=棱长×棱长×6S表=a×a×6
体积=棱长×棱长×棱长V=a×a×a
3、长方形(C:xxx:面积a:边长)
周长=(长+宽)×2C=2(a+b)
面积=长×宽S=ab
4、长方体(V:体积s:面积a:长b:宽h:高)
(1)表面积(长×宽+长×高+宽×高)×2S=2(ab+ah+bh)
(2)体积=长×宽×高V=abh
5、三角形(s:面积a:底h:高)
面积=底×高÷2s=ah÷2
三角形高=面积×2÷底三角形底=面积×2÷高
6、平行四边形(s:面积a:底h:高)
面积=底×xxx=ah
7、梯形(s:面积a:上底b:下底h:高)
面积=(上底+下底)×高÷2s=(a+b)×h÷2
8、圆形(S:面积C:周长лd=直径r=半径)
(1)周长=直径×л=2×л×半径C=лd=2лr
(2)面积=半径×半径×л
9、圆柱体(v:体积h:xxx:底面积r:底面半径c:底面周长)
(1)侧面积=底面周长×高=ch(2лr或лd)(2)表面积=侧面积+底面积×2
(3)体积=底面积×高(4)体积=侧面积÷2×半径
10、圆锥体(v:体积h:xxx:底面积r:底面半径)
体积=底面积×高÷3
11、总数÷总份数=平均数
12、和差问题的公式
(和+差)÷2=大数(和-差)÷2=小数
13、和倍问题
和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)
14、差倍问题
差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)
15、相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
17、利润与折扣问题
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)
[小学数学图形计算公式归纳总结]
数学测量总结 第7篇
二年级数学测量知识点总结
二年级数学测量知识点总结
认识分米、毫米、千米
1、分米用字母dm表示,1分米写成1dm
2、毫米用字母mm表示,1毫米写成1mm
3、千米用字母km表示,1千米写成1km
米、分米、厘米、毫米、千米之间的换算
1、1厘米=10毫米或1cm=10mm
2、1分米=10厘米或1dm=10cm
3、1米=100厘米或1m=100cm
4、1米=10分米或1m=10dm
5、1千米=1000米或1km=1000m
感受1分米、1毫米、1千米间的.实际长度
1、一xxx卡的厚度大约是1毫米
2、1扎的长度大约是1分米
3、公共汽车两站地间的距离大约是1千米
4、根据具体情境选择合适的长度单位
铅笔有多长(分米、毫米的认识)
知识点:
通过实际测量,了解米、分米、厘米、毫米之间的关系。
1分米=10厘米或1dm=10cm;
1米=10分米或1m=10dm;
1厘米=10毫米或1cm=10mm;
2.知道1分米或1毫米的实际长度。
3.能利用长度单位之间关系进行单位换算
1千米有多长(千米的认识)
知识点:
1.体验1千米有多长。
2.了解千米和米之间的关系;1千米=1000米或1km=1000m。
3、能正确使用长度单位。
数学测量总结 第8篇
相似图形的知识点总结
知识点1.概念
把形状相同的图形叫做相似图形。(即对应角相等、对应边的比也相等的图形)
解读:(1)两个图形相似,其中一个图形可以看做由另一个图形放大或缩小得到.
(2)全等形可以看成是一种特殊的相似,即不仅形状相同,大小也相同.
(3)判断两个图形是否相似,就是看这两个图形是不是形状相同,与其他因素无关.
知识点2.比例线段
对于四条线段a,b,c,d ,如果其中两条线段的长度的比与另两条线段的长度的比相等,即(或a:b=c:d)那么这四条线段叫做成比例线段,简称比例线段.
知识点3.相似多边形的性质
相似多边形的性质:相似多边形的对应角相等,对应边的比相等.
解读:(1)正确理解相似多边形的定义,明确“对应”关系.
(2)明确相似多边形的“对应”来自于书写,且要明确相似比具有顺序性.
知识点4.相似三角形的概念
对应角相等,对应边之比相等的三角形叫做相似三角形.
解读:(1)相似三角形是相似多边形中的一种;
(2)应结合相似多边形的性质来理解相似三角形;
(3)相似三角形应满足形状一样,但大小可以不同;
(4)相似用“∽”表示,读作“相似于”;
(5)相似三角形的对应边之比叫做相似比.
知识点5.相似三角的判定方法
(1)定义:对应角相等,对应边成比例的两个三角形相似;
(2)平行于三角形一边的直线截其他两边(或其他两边的延长线)所构成的三角形与原三角形相似.
(3)如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似.
(4)如果一个三角的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.
(5)如果一个三角形的三条边分别与另一个三角形的三条边对应成比例,那么这两个三角形相似.
(6)直角三角形被斜边上的高分成的两个直角三角形与原三角形都相似.
知识点6.相似三角形的性质
(1)对应角相等,对应边的比相等;
(2)对应高的比,对应中线的比,对应角平分线的比都等于相似比;
(3)相似三角形周长之比等于相似比;面积之比等于相似比的平方.
(4)射影定理
数学测量总结 第9篇
小学数学图形的运动知识点
1、轴对称图形:沿一条直线对折,两边完全重合。对折后能够完全重合的图形是轴对称图形,折痕所在的直线叫对称轴。
成轴对称图形的汉字:
2、平移:当物体水平方向或竖直方向运动,并且物体的方向不发生改变,这种运动是平移。只有形状、大小、方向完全相同的图形通过平移才能互相重合。
3、旋转:物体绕着某一点或轴进行圆周运动的现象就是旋转。
家长怎么辅导小学数学
注意锻炼孩子的数学思维
家长辅导孩子数学,首先要训练孩子的数学思维,其次才是讲数学的实用性。
很多家长认为提高孩子数学成绩的最好途径就是让他们多做题, 其实这是一个错误的想法。
做题是为了训练思维,要掌握适当的量。凡事需要追根溯源,从探寻数学的源头开始,就会让孩子觉得数学其实是一门十分有趣的学科。
家长要注意培养孩子的“数感”
有的孩子在上到小学一年级后,还会把加法运算当做减法来做,多数有两种可能:一是孩子比较粗心大意,还有可能是孩子尚未理解加、减的意义,混淆概念造成失误。家长不要因此过多责骂孩子,最好借助身边的实物给孩子讲解加、减各代表什么。
遇到这种情况,家长不能失去信心,首先要跟孩子的数学老师沟通,希望老师在校期间能给予适当训练,并及时鼓励。同时,家长要有意识地培养孩子的数感。比如:带孩子买东西,让孩子帮忙算算该付多少钱,该找多少钱,让其感受数在生活中无处不在以及对生活的影响。
单位换算公式大全
重量单位换算:
1吨=1000千克。
1千克=1000克。
1千克=1公斤。
人民币单位换算:
1元=10角。
1角=10分。
1元=100分。
数学测量总结 第10篇
知识框架
有趣的图形
1、认识图形---(长方形、正方形、三角形和圆)
2、动手做(一)
3、动手做(二)
4、动手做(三)
【知识点】
认识图形(长方形、正方形、三角形和圆)
1、对长方形、正方形、三角形和圆的认识,能分辨出四种基本的图形。
2、学会观察,能在生活中找出基本的形状,会举例。
3、能区分出面和体的关系,体会“面在体上”。
4、能找出一组图形的规律。
5、能在复杂的图案中找出基本的图形。
动手做(一)
1、学生能自己动手折一折、剪一剪,剪拼出喜欢的图案。
2、通过折纸、剪拼等活动进一步认识平面图形。
3、通过折纸对简单的图形进行分解和拼补。
动手做(二)
1、了解七巧板的组成。通过用七巧板拼图的活动,进一步熟悉学过的平面图形。
2、初步认识平行四边形,只让学生直观认识,知道形状和名称即可。
动手做(三)
通过欣赏和设计图案的活动,进一步认识正方形、长方形、三角形和圆。
小小运动会
1、应用100以内的进位加法与退位减法的计算方法进行正确的计算。
2、经历与他人交流各自算法的过程,体会算法多样化。
3、体会长方形、正方形、三角形和圆在生活中的普遍存在。
4、能利用图形设计美丽的图案
[关于小学一年级数学有趣的图形知识点总结范例]
数学测量总结 第11篇
加法交换律 a+b=b+a
结合律 (a+b)+c=a+(b+c)
减法性质 a-b-c=a-(b+c)
a-(b-c)=a-b+c
乘法交换律 a×b=b×a
结合律 (a×b)×c=a×(b×c)
分配律 (a+b)×c=a×c+b×c
除法性质 a÷(b×c)=a÷b÷c
a÷(b÷c)=a÷b×c
(a+b)÷c=a÷c+b÷c
(a-b)÷c=a÷c-b÷c
商不变性质m≠0 a÷b=(a×m)÷(b×m) =(a÷m)÷(b÷m)
■积的变化规律:在乘法中,一个因数不变,另一个因数扩大(或缩小)若干倍,积也扩大(或缩小)相同的倍数.
推广:一个因数扩大A倍,另一个因数扩_倍,积扩大AB倍.
一个因数缩小A倍,另一个因数缩小B倍,积缩小AB倍.
■商不变规律:在除法中,被除数和除数同时扩大(或缩小)相同的倍数,商不变.
推广:被除数扩大(或缩小)A倍,除数不变,商也扩大(或缩小)A倍.
被除数不变,除数扩大(或缩小)A倍,商反而缩小(或扩大)A倍.
■利用积的变化规律和商不变规律性质可以使一些计算简便.但在有余数的除法中要注意余数.
如:8500÷200= 可以把被除数、除数同时缩小100倍来除,即85÷2= ,商不变,但此时的余数1是被缩小100被后的,所以还原成原来的余数应该是100.
数学测量总结 第12篇
■用字母表示数
用字母表示数是代数的基本特点.既简单明了,又能表达数量关系的一般规律.
■用字母表示数的注意事项
1、数字与字母、字母和字母相乘时,乘号可以简写成““或省略不写.数与数相乘,乘号不能省略.
2、当1和xxx母相乘时,“ 1” 省略不写.
3、数字和字母相乘时,将数字写在字母前面.
■含有字母的式子及求值
求含有字母的式子的值或利用公式求值,应注意书写格式
■等式与方程
表示相等关系的式子叫等式.
含有未知数的等式叫方程.
判断一个式子是不是方程应具备两个条件:一是含有未知数;二是等式.所以,方程一定是等式,但等式不一定是方程.
■方程的解和解方程
使方程左右两边相等的未知数的值,叫方程的解.
求方程的解的过程叫解方程.
■在列方程解文字题时,如果题中要求的未知数已经用字母表示,解答时就不需要写设,否则首先演将所求的未知数设为x.
■解方程的方法
1、直接运用四则运算中各部分之间的关系去解.如x-8=12
加数+加数=和 一个加数=和-另一个加数
被减数-减数=差 减数=被减数-差 被减数=差+减数
被乘数×乘数=积 一个因数=积÷另一个因数
被除数÷除数=商 除数=被除数÷商 被除数=除数×商
2、先把含有未知数x的项看作一个数,然后再解.如3x+20=41
先把3x看作一个数,然后再解.
3、按四则运算顺序先计算,使方程变形,然后再解.如×4-x=,
要先求出×4的积,使方程变形为10-x=,然后再解.
4、利用运算定律或性质,使方程变形,然后再解.如:
先利用运算定律或性质使方程变形为()x=20,然后计算括号里面使方程变形为10x=20,最后再解.