高中数学必修四知识点总结 第1篇
第一章三角函数
正角:按逆时针方向旋转形成的角
1、任意角负角:按顺时针方向旋转形成的角
零角:不作任何旋转形成的角
2、角的顶点与原点重合,角的始边与x轴的非负半轴重合,终边落在第几象限,则称为第几象限角。
第二象限角的集合为k36090k360180,k
第三象限角的集合为k360180k360270,k第四象限角的集合为k360270k360360,k终边在x轴上的角的集合为k180,k
终边在y轴上的角的集合为k18090,k终边在坐标轴上的角的集合为k90,k
第一象限角的集合为k360k36090,k
3、与角终边相同的角的集合为k360,k
4、长度等于半径长的弧所对的圆心角叫做1弧度。
5、半径为r的圆的圆心角所对弧的长为l,则角的弧度数的绝对值是
180
6、弧度制与角度制的换算公式:2360,1,
7、若扇形的圆心角为
为弧度制,半径为r,弧长为l,周长为C,面积为S,则lr,C2rl,
Slrr2.
、设是一个任意大小的角,它与原点的距离是rr的终边上任意一点的坐标是x,y,则sin
yxy
,cos,
9、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,
第三象限正切为正,第四象限xxx为正。
10、三角函数线:sin,cos,tan.
2222
11、角三角函数的基本关系:1sin2cos21sin1cos,cos1sin
sin
tancos
sin
sintancos,cos.
tan
12、函数的诱导公式:
1sin2ksin,cos2kcos,,coscos,,coscos,,coscos,tantan.
口诀:函数名称不变,符号看象限。
5sin
cos,,
口诀:正弦与xxx互换,符号看象限。
13、①的图象上所有点向左(右)平移个单位长度,得到函数ysinx的图象;再将函数ysinx的图象上所有点的横坐标伸长(缩短)到原来的
倍(纵坐标不变),得到函数ysinx的图象;再将
函数ysinx的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数
ysinx的图象。
②数ysinx的图象上所有点的横坐标伸长(缩短)到原来的
倍(纵坐标不变),得到函数
ysinx的图象;再将函数ysinx的图象上所有点向左(右)平移
个单位长度,得到函数
ysinx的图象;再将函数ysinx的图象上所有点的纵坐标伸长(缩短)到原来的倍(横
坐标不变),得到函数ysinx的图象。14、函数ysinx0,0的性质:①振幅:;②周期:
;③频率:f
;④相位:x;⑤初相:。2
函数ysinx,当x-x1时,取得最小值为ymin;当x-x2时,取得值为ymax,则
22,,2.
yASinx,A0,0,T
15周期问题
yACosx,A0,0,T
yASinx,A0,0,T
yACosx,A0,0,T
yASinxb,A0,0,b0,T
yACosxb,A0,0,b0,T
TyAcotx,A0,0,
yAtanx,A0,0,T
yAcotx,A0,0,T
yAtanx,A0,0,T
第二章平面向量
16、向量:既有大小,又有方向的量。数量:只有大小,没有方向的量。有向线段的三要素:起点、方向、长度。零向量:长度为0的向量。单位向量:长度等于1个单位的向量。平行向量(共线向量):方向相同或相反的非零向量。零向量与任一向量平行。
相等向量:长度相等且方向相同的向量。
17、向量加法运算:
⑴三角形法则的特点:首尾相连。⑵平行四边形法则的特点:共起点。
⑶三角形不等式:ababab.
⑷运算性质:①交换律:abba;
abcabc②结合律:;③a00aa.
abCC
⑸坐标运算:设ax1,y1,bx2,y2,则abx1x2,y1y2.
18、向量减法运算:
⑴三角形法则的特点:共起点,连终点,方向指向被减向量。
⑵坐标运算:设ax1,y1,bx2,y2,则abx1x2,y1y2.
设、两点的坐标分别为x1,y1,x2,y2,则x1x2,y1y2.
19、向量数乘运算:
⑴实数与向量a的积是一个向量的运算叫做向量的数乘,记作a.①
aa;
②当0时,a的方向与a的方向相同;当0时,a的方向与a的方向相反;当0时,a0.
⑵运算律:①aa;②aaa;③abab.
⑶坐标运算:设ax,y,则ax,yx,y.
20、向量共线定理:向量aa0与b共线,当且仅当有一个实数,使ba.
设ax1,y1,bx2,y2,其中b0,则当且仅当x1y2x2y10时,向量a、bb0共线。
21、平面向量基本定理:如果e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a,有
且只有一对实数1、2,使a1e12e2.(不共线的向量e1、e2作为这一平面内所有向量的一组基底)22、分点坐标公式:设点是线段12上的一点,1、2的坐标分别是x1,y1,x2,y2,当12时,
点的坐标是
x1x2y1y2
时,就为中点公式。)(当1,。
23、平面向量的数量积:
⑴ababcosa0,b0,0180.零向量与任一向量的数量积为0.
⑵性质:设a和b都是非零向量,则①abab0.②当a与b同向时,abab;当a与b反向
时,abab;aaaa或a.③abab.
⑶运算律:①abba;②ababab;③abcacbc.
⑷坐标运算:设两个非零向量ax1,y1,bx2,y2,则abx1x2y1y2.
222
若ax,y,则axy,
或a设ax1,y1,则abx-x12yy12bx2,y2,
高中数学必修四知识点总结 第2篇
集合间的基本关系
1.“包含”关系—子集
(1)定义:如果集合A的任何一个元素都是集合B的元素,我们说这两个集合有包含关系,称集合A是集合B的子集。记作:(或BA)
注意:有两种可能(1)A是B的一部分,;
(2)A与B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA
2.“相等”关系:A=B (5≥5,且5≤5,则5=5)
实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”
即:① 任何一个集合是它本身的子集。A?A
②真子集:如果A?B,且A?B那就说集合A是集合B的真子集,记作AB(或BA) 或若集合A?B,存在xB且x A,则称集合A是集合B的真子集。
③如果A?B, B?C ,那么A?C
④ 如果A?B 同时B?A那么A=B
3.不含任何元素的集合叫做空集,记为Φ
规定:空集是任何集合的子集, 空集是任何非空集合的真子集。
有n个元素的集合,含有2n个子集,2n-1个真子集
高中数学必修四知识点总结 第3篇
2.函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数函数、对数函数、函数的应用
3.数列:数列的有关概念、等差数列、等比数列、数列求通项、求和
4.三角函数:有关概念、同角关系与诱导公式、和差倍半公式、求值、化简、证明、三角函数的图像及其性质、应用
5.平面向量:初等运算、坐标运算、数量积及其应用
6.不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式(经常出现在大题的选做题里)、不等式的应用
7.直线与圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系
8.圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用
9.直线、平面、简单几xxx:空间直线、直线与平面、平面与平面、棱柱、棱锥、球、空间向量
10.排列、组合和概率:排列、组合应用题、二项式定理及其应用
11.概率与统计:概率、分布列、期望、方差、抽样、正态分布
12.导数:导数的概念、求导、导数的应用
13.复数:复数的概念与运算
高中数学必修四知识点总结 第4篇
基本初等函数有哪些
基本初等函数包括以下几种:
(1)常数函数y = c( c为常数)
(2)幂函数y = x^a( a为常数)
(3)指数函数y = a^x(a>0, a≠1)
(4)对数函数y =log(a) x(a>0, a≠1,真数x>0)
(5)三角函数以及反三角函数(如正弦函数:y =sinx反正弦函数:y = arcsin x等)
基本初等函数性质是什么
幂函数
形如y=x^a的函数,式中a为实常数。
指数函数
形如y=a^x的函数,式中a为不等于1的正常数。
对数函数
指数函数的反函数,记作y=loga a x,式中a为不等于1的正常数。指数函数与对数函数之间成立关系式,loga ax=x。
三角函数
即正弦函数y=sinx,xxx函数y=cosx,正切函数y=tanx,余切函数y=cotx,正割函数y=secx,余割函数y=cscx(见三角学)。
反三角函数
高中数学必修四知识点总结 第5篇
【公式一】
设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)=sinα(k∈Z)
cos(2kπ+α)=cosα(k∈Z)
tan(2kπ+α)=tanα(k∈Z)
cot(2kπ+α)=cotα(k∈Z)
【公式二】
设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
【公式三】
任意角α与-α的三角函数值之间的关系:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
【公式四】
利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
【公式五】
利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
高中数学必修四知识点总结 第6篇
①(a+b)n=Cn0ax+Cn1an-1b1+Cn2an-2b2+Cn3an-3b3+…+Cnran-rbr+-…+Cnn-1abn-1+Cnnbn
特别地:(1+x)n=1+Cn1x+Cn2x2+…+Cnrxr+…+Cnnxn
②主要性质和主要结论:对称性Cnm=Cnn-m
二项式系数在中间。(要注意n为奇数还是偶数,答案是中间一项还是中间两项)
所有二项式系数的和:Cn0+Cn1+Cn2+Cn3+Cn4+…+Cnr+…+Cnn=2n
奇数项二项式系数的和=偶数项而是系数的和
Cn0+Cn2+Cn4+Cn6+Cn8+…=Cn1+Cn3+Cn5+Cn7+Cn9+…=2n-1
③通项为第r+1项:Tr+1=Cnran-rbr作用:处理与指定项、特定项、常数项、有理项等有关问题。
高中数学必修四知识点总结 第7篇
1、函数的值域取决于定义域和对应法则,不论采用何种方法求函数值域都应先考虑其定义域,求函数值域常用方法如下:
(1)直接法:亦称观察法,对于结构较为简单的函数,可由函数的解析式应用不等式的性质,直接观察得出函数的值域.
(2)换元法:运用代数式或三角换元将所给的复杂函数转化成另一种简单函数再求值域,若函数解析式中含有根式,当根式里一次式时用代数换元,当根式里是二次式时,用三角换元.
(3)反函数法:利用函数f(x)与其反函数f-1(x)的定义域和值域间的关系,通过求反函数的定义域而得到原函数的值域,形如(a≠0)的函数值域可采用此法求得.
(4)配方法:对于二次函数或二次函数有关的函数的值域问题可考虑用配方法.
(5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函数的值域,不过应注意条件“一正二定三相等”有时需用到平方等技巧.
(6)判别式法:把y=f(x)变形为关于x的一元二次方程,利用“△≥0”求值域.其题型特征是解析式中含有根式或分式.
(7)利用函数的单调性求值域:当能确定函数在其定义域上(或某个定义域的子集上)的单调性,可采用单调性法求出函数的值域.
(8)数形结合法求函数的值域:利用函数所表示的几何意义,借助于几何方法或图象,求出函数的值域,即以数形结合求函数的值域.
2、求函数的最值与值域的区别和联系
求函数最值的常用方法和求函数值域的方法基本上是相同的,事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同,因而答题的方式就有所相异.
如函数的值域是(0,16],最大值是16,无最小值.再如函数的值域是(-∞,-2]∪[2,+∞),但此函数无最大值和最小值,只有在改变函数定义域后,如x>0时,函数的最小值为2.可见定义域对函数的值域或最值的影响.
3、函数的最值在实际问题中的应用
函数的最值的应用主要体现在用函数知识求解实际问题上,从文字表述上常常表现为“工程造价最低”,“利润最大”或“面积(体积)最大(最小)”等诸多现实问题上,求解时要特别关注实际意义对自变量的制约,以便能正确求得最值.
高中数学必修四知识点总结 第8篇
高中数学必修四知识点总结
高中数学必修四知识点总结
角的概念的推广
弧度制
任意角的三角函数
同角三角函数的基本关系
正xxx诱导公式
两角和与差
二倍角的正弦、xxx、正切
正xxx函数的.图像和性质
函数y=Asin(ωx+φ)的图像
正切函数的图像和性质
已知三角函数值求角
平面向量的基本概念
向量的加法与减法
实数与向量的积
平面向量的坐标计算
线段的定比分点
平面向量的数量积与运算律
平面向量数量积得坐标表示
高中数学必修四知识点总结 第9篇
第一章 集合与函数概念
集合
阅读与思考 集合中元素的个数
函数及其表示
阅读与思考 函数概念的发展历程
函数的基本性质
信息技术应用 用计算机绘制函数图象
实习作业
复习参考题
第二章 基本初等函数(Ⅰ)
指数函数
信息技术应用 借助信息技术探究指数函数的性质
对数函数
阅读与思考 对数的发明
探究与发现 互为反函数的两个函数图象之间的关系
幂函数
复习参考题
第三章 函数的应用
函数与方程
阅读与思考 中外历史上的方程求解
信息技术应用 借助信息技术求方程的近似解
函数模型及其应用
信息技术应用 收集数据并建立函数模型
实习作业
复习参考题
如何学好高中数学
先看笔记后做作业。有的高中学生感到。老师讲过的,自己已经听得明明白白了。但是,为什么自己一做题就困难重重了呢?其原因在于,学生对教师所讲的内容的理解,还没能达到教师所要求的层次。因此,每天在做作业之前,一定要把课本的有关内容和当天的课堂笔记先看一看。能否坚持如此,常常是好学生与差学生的最大区别。尤其练习题不太配套时,作业中往往没有老师刚刚讲过的题目类型,因此不能对比消化。如果自己又不注意对此落实,天长日久,就会造成极大损失。
高中数学必修四知识点总结 第10篇
2.复数中的难点
(1)复数的向量表示法的运算.对于复数的向量表示有些学生掌握得不好,对向量的运算的几何意义的灵活掌握有一定的困难.对此应认真体会复数向量运算的几何意义,对其灵活地加以证明.
(2)复数三角形式的乘方和开方.有部分学生对运算法则知道,但对其灵活地运用有一定的困难,特别是开方运算,应对此认真地加以训练.
(3)复数的辐角主值的求法.
(4)利用复数的几何意义灵活地解决问题.复数可以用向量表示,同时复数的模和辐角都具有几何意义,对他们的理解和应用有一定难度,应认真加以体会.
3.复数中的重点
(1)理解好复数的概念,弄清实数、虚数、纯虚数的不同点.
(2)熟练掌握复数三种表示法,以及它们间的互化,并能准确地求出复数的模和辐角.复数有代数,向量和三角三种表示法.特别是代数形式和三角形式的互化,以及求复数的模和辐角在解决具体问题时经常用到,是一个重点内容.
(3)复数的三种表示法的各种运算,在运算中重视共轭复数以及模的有关性质.复数的运算是复数中的主要内容,掌握复数各种形式的运算,特别是复数运算的几何意义更是重点内容.
(4)复数集中一元二次方程和二项方程的解法.
高中数学必修四知识点总结 第11篇
形如a+bi(a,b∈R)的数叫复数,其中i叫做虚数单位。全体复数所成的集合叫做复数集,用字母C表示。
复数的表示:
复数通常用字母z表示,即z=a+bi(a,b∈R),这一表示形式叫做复数的代数形式,其中a叫复数的实部,b叫复数的虚部。
复数的几何意义:
(1)复平面、实轴、虚轴:
点Z的横坐标是a,纵坐标是b,复数z=a+bi(a、b∈R)可用点Z(a,b)表示,这个建立了直角坐标系来表示复数的平面叫做复平面,x轴叫做实轴,y轴叫做虚轴。显然,实轴上的点都表示实数,除原点外,虚轴上的点都表示纯虚数
(2)复数的几何意义:复数集C和复平面内所有的点所成的集合是一一对应关系,即
这是因为,每一个复数有复平面内惟一的一个点和它对应;反过来,复平面内的每一个点,有惟一的一个复数和它对应。
这就是复数的一种几何意义,也就是复数的另一种表示方法,即几何表示方法。
复数的模:
复数z=a+bi(a、b∈R)在复平面上对应的点Z(a,b)到原点的距离叫复数的模,记为|Z|,即|Z|=
虚数单位i:
(1)它的平方等于-1,即i2=-1;
(2)实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律仍然成立
(3)i与-1的关系:i就是-1的一个平方根,即xxx2=-1的一个根,xxx2=-1的另一个根是-i。
(4)i的周期性:i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1。
复数模的性质:
复数与实数、虚数、纯虚数及0的关系:
对于复数a+bi(a、b∈R),当且仅当b=0时,复数a+bi(a、b∈R)是实数a;当b≠0时,复数z=a+bi叫做虚数;当a=0且b≠0时,z=bi叫做纯虚数;当且仅当a=b=0时,z就是实数0。