榆树范文网

八年级上册数学知识点归纳总结(精选25篇)

118

八年级上册数学知识点归纳总结 第1篇

一、全等xxx

1.定义:能够完全重合的两个xxx叫做全等xxx。

理解:

xxx等xxx形状与大小完全相等,与位置无关;

②一个xxx经过平移、翻折、旋转可以得到它的全等形;

③xxx全等不因位置发生变化而改变。

2、全等xxx有哪些性质

(1)全等xxx的对应边相等、对应角相等。

理解:

①长边对长边,短边对短边;最大角对最大角,最小角对最小角;

②对应角的对边为对应边,对应边对的角为对应角。

(2)全等xxx的周长相等、面积相等。

(3)全等xxx的对应边上的对应中线、角平分线、高线分别相等。

3、全等xxx的判定

边边边:三边对应相等的两个xxx全等(可简写成“SSS”)

边角边:两边和它们的夹角对应相等两个xxx全等(可简写成“SAS”)

角边角:两角和它们的夹边对应相等的两个xxx全等(可简写成“ASA”)

角角边:两角和其中一角的对边对应相等的两个xxx全等(可简写成“AAS”)

斜边.直角边:斜边和一条直角边对应相等的两个直角xxx全等(可简写成“HL”)

二、角的平分线:从一个角的顶点得出一条射线把这个角分成两个相等的角,称这条射线为这个角的平分线。

1、性质:角的平分线上的点到角的两边的距离相等.

2、判定:角的内部到角的两边的距离相等的点在角的平分线上。三、学习全等xxx应注意以下几个问题:

(1)要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义;

(2)表示两个xxx全等时,表示对应顶点的字母要写在对应的位置上;

(3)“有三个角对应相等”或“有两边xxx一边的对角对应相等”的两个xxx不一定全等;

(4)时刻注意图形中的隐含条件,如“公共角”、“公共边”、“对顶角”

(5)截长补短法证xxx全等。

一、轴对称图形

1.把一个xxx着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。这条直线就是它的对称轴。这时我们也说这个图形关于这条直线(成轴)对称。

2.把一个xxx着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。这条直线叫做对称轴。折叠后重合的点是对应点,叫做对称点3.轴对称与轴对称图形的性质

①关于某直线对称的两个图形是全等形。

②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。

③轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

④如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。

⑤两个图形关于某条直线成轴对称,如果它们的对应线段或延长线相交,那么交点在对称轴上。

二、线段的垂直平分线

1.定义:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线。

2.性质:线段垂直平分线上的点与这条线段的两个端点的距离相等

3.判定:与一条线段两个端点距离相等的点,在线段的垂直平分线上

三、用坐标表示轴对称小结:

1.在平面直角坐标系中

①关于x轴对称的点横坐标相等,纵坐标互为相反数;

②关于y轴对称的点横坐标互为相反数,纵坐标相等;

③关于原点对称的点横坐标和纵坐标互为相反数;

④与X轴或Y轴平行的直线的两个点横(纵)坐标的关系;

⑤关于与直线X=C或Y=C对称的坐标点(x,y)关于x轴对称的点的坐标为_(x,-y)_____.点(x,y)关于y轴对称的点的坐标为___(-x,y)___.

2.xxx三条边的垂直平分线相交于一点,这个点到xxx三个顶点的距离相等

四、(等腰xxx)知识点回顾1.等腰xxx的性质

①.等腰xxx的两个底角相等。(等边对等角)

②.等腰xxx的顶角平分线、底边上的中线、底边上的高互相重合。(三线合一)

理解:已知等腰xxx的一线就可以推知另两线。

2、等腰xxx的判定:

如果一个xxx有两个角相等,那么这两个角所对的边也相等。(等角对等边)

五、(等边xxx)知识点回顾1.等边xxx的性质:

等边xxx的三个角都相等,并且每一个角都等于600。

2、等边xxx的判定:

①三个角都相等的xxx是等边xxx。

②有一个角是600的等腰xxx是等边xxx。

3.在直角xxx中,如果一个锐角等于300,那么它所对的直角边等于斜边的一半。

1、勾股定理:B直角xxx两直角边的平方和等于斜边的平方。

c数学式子:a

∠C=900a2b2c2

ACb

2、神秘的数组(勾股定理的逆定理):

222

如果xxx的三边长a、b、c满足a+b=c,那么这个xxx是直角xxx.数学式子:

a2b2c2∠C=900

满足a+b=c三个数a、b、c叫做勾股数。

3.一般的,如果一个数的平方等xxx,那么这个数叫做a的平xxx,也叫做二次xxx。

一个正数的平xxx有两个,他们互为相反数。

0只有一个平xxx,它是0本身。负数没有平xxx。

一般的,如果一个数的立方等xxx,那么这个数就叫做a的立xxx,也称为三次xxx。正数的立xxx是正数,负数的立xxx是负数,0的立xxx是0.无限不循环小数称为无理数。有理数和无理数统称为实数。常见的无理数有:

⑴无限不循环小数:如……

⑵开不尽的根号:如3、5、34、37等

⑶圆周率:如、4、近似数的认识:

实际生产生活中的许多数据都是近似数,例如测量长度,时间,速度所得的结果都是近似数,且由于测量工具不同,其测量的精确程度也不同。在实际计算中对于像π这样的数,也常常需取它们的近似值.请说说生活中应用近似数的例子。

取一个数的近似值有多种方法,四舍五入是最常用的一种方法。用四舍五入法取一个数的近似数时,四舍五入到哪一位,就说这个近似数精确到哪一位。

例如,圆周率π=…

取π≈3,就是精确到个位(或精确到1)

取π≈,就是精确到十分位(或精确到)取π≈,就是精确到百分位(或精确到)取π≈,就是精确到千分位(或精确到)

5、有效数字:

对一个近似数,从左面第一个不是0的数字起,到末位数字止,所有的数字都称为这个近似数的有效数字。

例如:上面圆周率π的近似值中,有3个有效数字3,1,4;

有4个有效数字3,1,4,2.等。

3第四章数量、位置的变化

数量、位置的变化、平面直角坐标系

1、数量的变化:

⑴生活中处处有变化的数量关系,并且这些变化的数量之间往往有一定的联系;感受用变化的观点分析数字信息的重要意义。

⑵实际问题中的数量常常会发生变化,表示这种变化通常有3种各具特色的表达方式表格、图形、式子,可根据实际情况灵活选用。

2、位置的变化:

现实生活中,人们既关心事物的数量变化,也关心事物的位置变化,如行驶中的车辆、飞行中的火箭、航行中的船只、移动中的台风等位置的变化。

3、平面直角坐标系:

⑴有关概念:平面上有公共原点且互相垂直的2条数轴构成平面直角坐标系,简称直角坐标系。水平方向的数轴称为x轴或横轴;竖直方向的数轴称为y轴或纵轴。它们统称坐标轴。公共原点O称为坐标原点。

⑵确定点的位置(点坐标)

①若平面内有一点P(如图),我们应该如何确定它的位置?

(过点P分别作x、y轴的垂线,将垂足对应的数组合起来形成一对有序实数,这样的有序实数对叫做点的坐标,可表示为P(a,b)

②若已知点Q的坐标为(m,n),该如何确定点Q的位置?

(分别过x、y轴上表示m、n的点作x、y轴的垂线,两线的交点即为点Q)

4、点坐标的特征:

⑴四个象限内点坐标的特征:

两条坐标轴将平面分成4个区域称为象限,按逆时针顺序分别记作第一、二、三、四象限。

⑵数轴上点坐标的特征:

x轴上的点的纵坐标为0,可表示为(a,0);y轴上的点的横坐标为0,可表示为(0,b)。

⑶象限角平分线上点坐标的特征:

第一、三象限角平分线上点的横、纵坐标相等,可表示为(a,a);

第二、四象限角平分线上点的横、纵坐标互为相反数,可表示为(a,-a)。

⑷对称点坐标的特征:

P(a,b)关于x轴对称的点的坐标为(a,-b);P(a,b)关于y轴对称的点的坐标为(-a,b);P(a,b)关于原点对称的点的坐标为(-a,-b)。

第五章一次函数

一.常量、变量:

在一个变化过程中,数值发生变化的量叫做变量;数值始终不变的量叫做常量。

二、函数的概念:

函数的定义:一般的,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的'值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.

三、函数中自变量取值范围的求法:

(1)用整式表示的函数,自变量的取值范围是全体实数。

(2)用分式表示的函数,自变量的取值范围是使分母不为0的一切实数。

(3)用寄次根式表示的函数,自变量的取值范围是全体实数。

用偶次根式表示的函数,自变量的取值范围是使被开方数为非负数的一切实数。

(4)若解析式由上述几种形式综合而成,须先求出各部分的取值范围,然后再求其公共范围,即为自变量的取值范围。

(5)对于与实际问题有关系的,自变量的取值范围应使实际问题有意义。

四、函数图象的定义:一般的,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么在坐标平面内由这些点组成的图形,就是这个函数的图象.

五、用描点法画函数的图象的一般步骤

1、列表(表中给出一些自变量的值及其对应的函数值。)注意:列表时自变量由小到大,相差一样,有时需对称。

2、描点:(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点。

3、连线:(按照横坐标由小到大的顺序把所描的各点用平滑的曲线连接起来)。

六、函数有三种表示形式:

(1)列表法

(2)图像法

(3)解析式法

七、正比例函数与一次函数的概念:

一般地,形如y=kx(k为常数,且k≠0)的函数叫做正比例函数.其中k叫做比例系数。一般地,形如y=kx+b(k,b为常数,且k≠0)的函数叫做一次函数.当b=0时,y=kx+b即为y=kx,所以正比例函数,是一次函数的特例.八、正比例函数的图象与性质:

(1)图象:正比例函数y=kx(k是常数,k≠0))的图象是经过原点的一条直线,我们称它为直线y=kx。

(2)性质:当k>0时,直线y=kx经过第三,一象限,从左向右上升,即随着x的增大y也增大;当k

八年级上册数学知识点归纳总结 第2篇

轴对称

1.如果一个平面xxx着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。

2.性质

(1)成轴对称的两个图形全等;

(2)如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线。

一次函数

(一)一次函数是函数中的一种,一般形如y=kx+b(k,b是常数,k≠0),其中x是自变量,y是因变量。特别地,当b=0时,y=kx+b(k为常数,k≠0),y叫做x的正比例函数。

(二)函数三要素

1.定义域:设x、y是两个变量,变量x的变化范围为D,如果对于每一个数x∈D,变量y遵照一定的法则总有确定的数值与之对应,则称y是x的函数,记作y=f(x),x∈D,x称为自变量,y称为因变量,数集D称为这个函数的定义域。

2.在函数经典定义中,因变量改变而改变的取值范围叫做这个函数的值域,在函数现代定义中是指定义域中所有元素在某个对应法则下对应的所有的象所组成的集合。如:f(x)=x,那么f(x)的取值范围就是函数f(x)的值域。

3.对应法则:一般地说,在函数记号y=f(x)中,“f”即表示对应法则,等式y=f(x)表明,对于定义域中的任意的x值,在对应法则“f”的作用下,即可得到值域中唯一y值。

(三)一次函数的表示方法

1.解析式法:用含自变量x的式子表示函数的方法叫做解析式法。

2.列表法:把一系列x的值对应的函数值y列成一个表来表示的函数关系的方法叫做列表法。

3.图像法:用图象来表示函数关系的方法叫做图象法。

(四)一次函数的性质

的变化值与对应的x的变化值成正比例,比值为k。即:y=kx+b(k≠0)(k不等于0,且k,b为常数)。

2.当x=0时,b为函数在y轴上的交点,坐标为(0,b)。当y=0时,该函数图象在x轴上的交点坐标为(-b/k,0)。

为一次函数y=kx+b的斜率,k=tanθ(角θ为一次函数图象与x轴正方向夹角,θ≠90°)。

4.当b=0时(即y=kx),一次函数图象变为正比例函数,正比例函数是特殊的一次函数。

5.函数图象性质:当k相同,且b不相等,图像平行;当k不同,且b相等,图象相交于Y轴;当k互为负倒数时,两直线垂直。

6.平移时:上加下减在末尾,左加右减在中间。

直角xxx

1.勾股定理及其逆定理

定理:直角xxx的两条直角边的等于的平方。

逆定理:如果xxx两边的平方和等于第三边的平方,那么这个xxx是直角xxx。

2.含30°的直角xxx的边的性质

定理:在直角xxx中,如果一个锐角等于30°,那么等于的一半。

3.直角xxx斜边上的中线等于斜边的一半。

要点诠释:①勾股定理的逆定理在语言叙述的时候一定要注意,不能说成“两条边的平方和等于斜边的平方”,应该说成“xxx两边的平方和等于第三边的平方”。

②直角xxx的全等判定方法,HL还有SSS,SAS,ASA,AAS,一共有5种判定方法。

图形的平移与旋转

1.平移,是指在同一平面内,将一个图形上的所有点都按照某个直线方向做相同距离的移动,这样的图形运动叫做图形的平移运动,简称平移。

2.平移性质

(1)图形平移前后的形状和大小没有变化,只是位置发生变化。

(2)图形平移后,对应点连成的线段平行(或在同一直线上)且相等。

拓展阅读:初中数学提高解题速度的方法

认真仔细审题

对于一道具体的习题,解题时最重要的`环节是审题。审题的第一步是读题,这是获取信息量和思考的过程。读题要慢,一边读,一边想,应特别注意每一句话的内在涵义,并从中找出隐含条件。

有些学生没有养成读题、思考的习惯,心里着急,匆匆一看,就开始解题,结果常常是漏掉了一些信息,花了很长时间解不出来,还找不到原因,想快却慢了。所以,在实际解题时,应特别注意,审题要认真、仔细。

做好归纳总结

在解过一定数量的习题之后,对所涉及到的知识、解题方法进行归纳总结,以便使解题思路更为清晰,就能达到举一反三的效果,对于类似的习题一目了然,可以节约大量的解题时间。

熟悉习题内容

解题、做练习只是学习过程中的一个环节,而不是学习的全部,你不能为解题而解题。解题时,我们的概念越清晰,对公式、定理和规则越熟悉,解题速度就越快。

因此,我们在解题之前,应通过阅读教科书和做简单的练习,先熟悉、记忆和辨别这些基本内容,正确理解其涵义的本质,接着马上就做后面所配的练习,一刻也不要停留。

学会主动画图

画图是一个翻译的过程,把解题时的抽象思维,变成了形象思维,从而降低了解题难度。有些题目,只要分析图一画出来,其中的关系就变得一目了然。尤其是对于几何题,包括解析几何题,若不会画图,有时简直是无从下手。

因此,牢记各种题型的基本作图方法,牢记各种函数的图像和意义及演变过程和条件,对于提高解题速度非常重要。

逐步增加难度

人们认识事物的过程都是从简单到复杂。简单的问题解多了,从而使概念清晰了,对公式、定理以及解题步骤熟悉了,解题时就会形成跳跃性思维,解题的速度就会大大提高。

我们在学习时,应根据自己的能力,先去解那些看似简单,却很重要的习题,以不断提高解题速度和解题能力。随着速度和能力的提高,再逐渐增加难度,就会达到事半功倍的效果。

八年级上册数学知识点归纳总结 第3篇

全等xxx

知识与技能目标考点课标要求了解理解掌握用画出任意xxx的角平分线、中线和xxx等xxx的概念xxx全等的条件xxx的中位线xxx等腰xxx、直角xxx、等边xxx的概念等腰xxx的性质和成为等腰xxx的条件直角xxx的性质和成为直角xxx的条件等边xxx的性质运用勾股定理及其逆定理解决简单问题∨∨∨∨∨∨∨∨∨灵活应轴对称

知识与技能目标考课标要求点了解理解掌握用认识轴对称,探索它的基本性质对应点所连的线段被对称轴垂直平分的性质作出简单平面图形经过一次或两次轴对称后的图形图探索简单图形之间的轴对称关系,并能指出对称轴形的对称探索基本图形(等腰xxx,矩形。菱形.等腰梯形,正多边形,圆)的轴对称性及其相关性质欣赏现实生活中的轴对称图形欣赏物体的镜面对称利用轴对称进行图案设计对应点连线平行且相等的性质∨∨∨∨∨∨∨∨∨灵活应按要求作出简单平面图形平移后的图形利用平移进行图案设计∨∨数据的描述

知识与技能目标考点课标要求会用扇形统计图表示数据理解频数、频率的概念数据的描述了解频率分布的意义和作用会列频数分布表,画频数分布直方图和频数折线图能解决简单的实际问题了解∨∨理解掌握∨∨灵活应用∨

2.频数分布

当一组数据有n个数时,频数之和=n,频率=,频率之和=1,小长方形的高代表频数。

一次函数

知识与技能目标考课标要求点理解一次函数(包括正比例函数)的概念一次函会画一次函数(包括正比例函数)的图像理解一次函数的性质并会应用了解理解∨∨∨∨∨掌握应用∨∨∨灵活能根据实际问题列出一次函数及用待定系数法确数定一次函数的解析式用一次函数的图像求二元一次方程组的近似解

1.正比例函数与一次函数的关系:正比例函数是当y=kx+xxxb=0时特殊的一次函数。

2.待定系数法确定正比例函数、一次函数的解析式:通常已知一点便可用待定系数法确定出正比例函数的解析式,已知两点便可确定一次函数解析式。

3.一次函数的图像:正比例函数y=kx(k≠0)是过(0,0),(1,k)两点的一条直线;一

次函数y=kx+b(k≠0)是过(0,b),(

,0)两点的一条直线。4.直线y=kx+b(k≠0)的位置与k、b符号的关系:当k>0是直线y=kx+b过第一、三象限,当k0直线交y轴于正半轴,b是负数时,要特别注意符号。

3.公式的探求与应用:探求公式时要先观察其中的规律,通过尝试,归纳出公式,再加以验证,这几个环节都是必不可少的,再就是灵活运用公式解决实际问题。

4.正确理解整式的概念:整式的系数、次数、项、同类项等概念必须清楚,是今后学习方程、整式乘除、分式和二次函数的基础。

5.熟练掌握合并同类项、去(添)括号法则:要处理好合并同类项及去(添)括号中各项符号处理,式的运算是数的运算的深化,加强式与数的运算对比与分析,体会其中渗透的转化思想。

6.能熟练地运用幂的运算性质进行计算:幂的运算是整式的乘法的基础,也是考试的重点内容,要求熟练掌握。运算中注意“符号”问题和区分各种运算时指数的不同运算。

7.能熟练运用整式的乘法法则进行计算:整式运算常以混合运算出现,其中单项式乘法是关键,其他乘除都要转化为单项式乘法。

8.能灵活运用乘法公式进行计算:乘法公式的运用是重点也是难点,计算时,要注意观察每个因式的结构特点,经过适当调整后,表面看来不能运用乘法公式的式子就可以运用乘法公式,从而使计算大大简化。

9.区分因式分解与整式的乘法:它们的关系是意义上正好相反,结果的特征是因式分解是积的形式,整式的乘法是和的形式,抓住这一特征,就不容易混淆因式分解与整式的乘法。

10.因式分解的两种方法的灵活应用:对于给出的多项式,首先要观察是否有公因式,有公因式的话,首先要提公因式,然后再观察运用公式还是分组。分解因式要分解到不能分解为止。

扩展阅读:人教版初二数学(上)知识点归纳

初二数学(上)应知应会的知识点

因式分解

1.因式分解:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解;注意:因式分解与乘法是相反的两个转化.

2.因式分解的方法:常用“提取公因式法”、“公式法”、“分组分解法”、“十字相乘法”.3.公因式的确定:系数的最大公约数相同因式的最低次幂.

注意公式:a+b=b+a;a-b=-(b-a);(a-b)2=(b-a)2;(a-b)3=-(b-a).因式分解的公式:

(1)平方差公式:a2-b2=(a+b)(a-b);

(2)完全平方公式:a2+2ab+b2=(a+b)2,a2-2ab+b2=(a-b).因式分解的注意事项:

(1)选择因式分解方法的一般次序是:一提取、二公式、三分组、四十字;(2)使用因式分解公式时要特别注意公式中的字母都具有整体性;(3)因式分解的最后结果要求分解到每一个因式都不能分解为止;(4)因式分解的最后结果要求每一个因式的首项符号为正;(5)因式分解的最后结果要求加以整理;

(6)因式分解的最后结果要求相同因式写成乘方的形式.

6.因式分解的解题技巧:(1)换位整理,加括号或去括号整理;(2)提负号;(3)全变号;(4)换元;(5)配方;(6)把相同的式子看作整体;(7)灵活分组;(8)提取分数系数;(9)展开部分括号或全部括号;(10)拆项或补项.

7.完全平方式:能化为(m+n)2的多项式叫完全平方式;对于二次三项式x2+px+q,有“x2+px+xxx完全平方式分式

Apq22”.

1.分式:一般地,用A、B表示两个整式,A÷B就可以表示为B的形式,如果B

A中含有字母,式子B叫做分式.

整式有理式分式2.有理式:整式与分式统称有理式;即.

3.对于分式的两个重要判断:(1)若分式的分母为零,则分式无意义,反之有意义;(2)若分式的分子为零,而分母不为零,则分式的值为零;注意:若分式的分子为零,而分母也为零,则分式无意义.4.分式的基本性质与应用:

(1)若分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变;

(2)注意:在分式中,分子、分母、分式本身的符号,改变其中任何两个,分式的值不变;即

分子分母分子分母分子分母分子分母

(3)繁分式化简时,采用分子分母同乘小分母的最小公倍数的方法,比较简单.5.分式的xxx:把一个分式的分子与分母的公因式约去,叫做分式的xxx;注意:分式xxx前经常需要先因式分解.

6.最简分式:一个分式的分子与分母没有公因式,这个分式叫做最简分式;注意:分式计算的最后结果要求化为最简分式.

acac,bdbd7.分式的乘除法法则:

nna

bcdadadbcbc.

aan.(n为正整数)b8.分式的乘方:b.

9.负整指数计算法则:

1(1)公式:a0=1(a≠0),a-n=a(a≠0);(2)正整指数的运算法则都可用于负整指数计算;

a(3)公式:bnnbananm,bbamn;

(4)公式:(-1)-2=1,(-1)-3=-1.

10.分式的通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分;注意:分式的通分前要先确定最xxx分母.11.最xxx分母的确定:系数的最小公倍数相同因式的最高次幂.

.同分母与异分母的分式加减法法则:

c;.

13.含有字母系数的一元一次方程:在xxxx+b=0(a≠0)中,x是未知数,a和b是用字母表示的已知数,对x来说,字母a是x的系数,叫做字母系数,字母b是常数项,我们称它为含有字母系数的一元一次方程.注意:在字母方程中,一般用a、b、c等表示已知数,用x、y、z等表示未知数.

14.公式变形:把一个公式从一种形式变换成另一种形式,叫做公式变形;注意:公式变形的本质就是解含有字母系数的方程.特别要注意:字母方程两边同时乘以含字母的代数式时,一般需要先确认这个代数式的值不为0.

15.分式方程:分母里含有未知数的方程叫做分式方程;注意:以前学过的,分母里不含未知数的方程是整式方程.

16.分式方程的增根:在解分式方程时,为了去分母,方程的两边同乘以了含有未知数的代数式,所以可能产生增根,故分式方程必须验增根;注意:在解方程时,方程的两边一般不要同时除以含未知数的代数式,因为可能丢根.

17.分式方程验增根的方法:把分式方程求出的根代入最xxx分母(或分式方程的每个分母),若值为零,求出的根是增根,这时原方程无解;若值不为零,求出的根是原方程的解;注意:xxx判断,使分母的值为零的未知数的值可能是原方程的增根.18.分式方程的应用:列分式方程解应用题与列整式方程解应用题的方法一样,但需要增加“验增根”的程序.数的开方

1.平xxx的定义:若x2=a,那么x叫a的平xxx,(即a的平xxx是x);注意:(1)a叫x的平方数,(2)已知x求a叫乘方,已知a求x叫开方,乘方与开方互为逆运算.2.平xxx的性质:

(1)正数的平xxx是一对相反数;(2)0的平xxx还是0;(3)负数没有平xxx.

3.平xxx的表示方法:a的平xxx表示为也可以认为是一个数开二次方的运算.

4.算术平xxx:正数a的正的平xxx叫a的算术平xxx,表示为平xxx还是0.

5.三个重要非负数:a2≥0,|a|≥0,0.

6.两个重要公式:(1)aa2a和a.注意:

a可以看作是一个数,

a.注意:0的算术

a≥0.注意:非负数之和为0,说明它们都是

2a;(a≥0)

(a0)aaa(a0)

7.立xxx的定义:若x3=a,那么x叫a的立xxx,(即a的立xxx是x).注意:(1)a叫x的立方数;(2)a的立xxx表示为8.立xxx的性质:

(1)正数的立xxx是一个正数;(2)0的立xxx还是0;

-3-

3a;即把a开三次方.(3)负数的立xxx是一个负数.9.立xxx的特性:

3a3a.

10.无理数:无限不循环小数叫做无理数.注意:和开方开不尽的数是无理数.

11.实数:有理数和无理数统称实数.

12.正有理数0负有理数有限小数与无限循环小数正无理数无限不循环小数负无理数(2)

13.数轴的性质:数轴上的点与实数一一对应.

14.无理数的近似值:实数计算的结果中若含有无理数且题目无近似要求,则结果应该用无理数表示;如果题目有近似要求,则结果应该用无理数的近似值表示.注意:(1)近似计算时,中间过程要多保留一位;(2)要求记忆:

正实数实数0负实数xxx

几何A级概念:(要求深刻理解、熟练运用、主要用于几何证明)1.xxx的角平分线定义:xxx的一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做xxx的角平分线.(如图)2.xxx的中线定义:在xxx中,连结一个顶点和它的对边的中点的线段叫做xxx的中线.(如图)3.xxx的高线定义:从xxx的一个顶点向它的对边画垂-4-

BDCA几何表达式举例:(1)∵AD平分∠BAC∴∠BAD=∠CADBDC(2)∵∠BAD=∠CAD∴AD是角平分线几何表达式举例:A(1)∵AD是xxx的中线∴BD=CD(2)∵BD=CD∴AD是xxx的中线几何表达式举例:(1)∵AD是ΔABC的高线,顶点和垂足间的线段叫做xxx的高线.(如图)※4.xxx的三边关系定理:xxx的两边之和大于第三边,xxx的两边之差小于第三边.(如图)5.等腰xxx的定义:有两条边相等的xxx叫做等腰xxx.(如图)6.等边xxx的定义:有三条边相等的xxx叫做等边xxx.(如图)BBBA∴∠ADB=90°(2)∵∠ADB=90°∴AD是ΔABC的高BDC几何表达式举例:(1)∵AB+BC>AC∴(2)∵AB-BC∠A∴CBBCDAA(1)(2)(3)(4)8.直角xxx的定义:有一个角是直角的xxx叫直角xxx.(如图)CBA几何表达式举例:(1)∵∠C=90°∴ΔABC是直角xxx(2)∵ΔABC是直角xxx∴∠C=90°9.等腰直角xxx的定义:腰直角xxx.(如图)A几何表达式举例:(1)∵∠C=90°CA=CB∴ΔABC是等腰直角xxx(2)∵ΔABC是等腰直角三角CB两条直角边相等的直角xxx叫等形∴∠C=90°CA=CB10.全等xxx的性质:(1)全等xxx的对应边相等;(如图)(2)全等xxx的对应角相等.(如图)BAE几何表达式举例:(1)∵ΔABC≌ΔEFG∴AB=EF(2)∵ΔABC≌ΔEFG∴∠A=∠ECFG几何表达式举例:(1)∵AB=EF∵∠B=∠F又∵BC=FG∴ΔABC≌ΔEFG(2)(3)在RtΔABC和RtΔEFG中∵AB=EF又∵AC=EG∴RtΔABC≌RtΔEFG11.全等xxx的判定:“SAS”“ASA”“AAS”“SSS”“HL”.(如图)BCFG(1)(2)CBF(3)GAEAE12.角平分线的性质定理及逆定理:(1)在角平分线上的点到角的两边距离相等;(如图)(2)到角的两边距离相等的点在角平分线上.(如图)13.线段垂直平分线的定义:-6-

OEBDCA几何表达式举例:(1)∵OC平分∠AOB又∵CD⊥OACE⊥OB∴CD=CE(2)∵CD⊥OACE⊥OB又∵CD=CE∴OC是角平分线几何表达式举例:垂直于一条线段且平分这条线段的直线,叫做这条线段的垂直平分线.(如图)14.线段垂直平分线的性质定理及逆定理:(1)线段垂直平分线上的点和这条线段的两个端点的距离相等;(如图)(2)和一条线段的两个端点的距离相等的点,在这条线段的垂直平分线上.(如图)15.等腰xxx的性质定理及推论:AAOE(1)∵EF垂直平分AB∴EF⊥ABOA=OBB(2)∵EF⊥ABOA=OB∴EF是AB的垂直平分线几何表达式举例:(1)∵MN是线段AB的垂直平FMP分线∴PA=PBBC(2)∵PA=PB∴点P在线段AB的垂直平分线上几何表达式举例:N(1)等腰xxx的两个底角相等;(即等边对等角)(如图)(1)∵AB=AC(2)等腰xxx的“顶角平分线、底边中线、底边上的高”∴∠B=∠C三线合一;(如图)(3)等边xxx的各角都相等,并且都是60°.(如图)A(2)∵AB=AC又∵∠BAD=∠CAD∴BD=CDAAAD⊥BC(3)∵ΔABC是等边xxxCBC(1)BDC(2)B(3)∴∠A=∠B=∠C=60°几何表达式举例:∴AB=AC(2)∵∠A=∠B=∠C16.等腰xxx的判定定理及推论:也相等;(即等角对等边)(如图)(2)三个角都相等的xxx是等边xxx;(如图)(1)如果一个xxx有两个角都相等,那么这两个角所对边(1)∵∠B=∠C(3)有一个角等于60°的等腰xxx是等边xxx;(如图)∴ΔABC是等边xxx(4)在直角xxx中,如果有一个角等于30°,那么它所对(3)∵∠A=60°的直角边是斜边的一半.(如图)A又∵AB=AC∴ΔABC是等边xxxAA(4)∵∠C=90°∠B=30°1CBC(1)B(2)(3)CB(4)∴AC=2AB17.关于轴对称的定理(1)关于某条直线对称的两个图形是全等形;(如图)(2)如果两个图形关于某条直线对称,那么对称轴是对应点连线的垂直平分线.(如图)18.勾股定理及逆定理:的平方和等于斜边c的平方,即a2+b2=c2;(如图)(2)如果xxx的三边长有下面关系:a2+b2=c2,那么这个xxx是直角xxx.(如图)Δ斜边中线定理及逆定理:是斜边的一半;(如图)(2)如果xxx一边上的中线是这边的一半,那么这个xxx是直角xxx.(如图)

MAOCFE几何表达式举例:(1)∵ΔABC、ΔEGF关于MN轴对称∴ΔABC≌ΔEGFGNB(2)∵ΔABC、ΔEGF关于MN轴对称∴OA=OEMN⊥AE几何表达式举例:(1)∵ΔABC是直角xxxA(1)直角xxx的两直角边a、b∴a2+b2=c2(2)∵a2+b2=c2∴ΔABC是直角xxxCB几何表达式举例:∵ΔABC是直角xxx∵D是AB的中点A(1)直角xxx中,斜边上的中线D1∴CD=CB2AB(2)∵CD=AD=BD∴ΔABC是直角xxx几何B级概念:(要求理解、会讲、会用,主要用于填空和选择题)一基本概念:

xxx、不等边xxx、锐角xxx、钝角xxx、xxx的外角、全等xxx、角平分线的集合定义、原命题、逆命题、逆定理、尺规作图、辅助线、线段垂直平分线的集合定义、轴对称的定义、轴对称图形的定义、勾股数.二常识:

1.xxx中,第三边长的判断:另两边之差<第三边<另两边之和.

2.xxx中,有三条角平分线、三条中线、三条高线,它们都分别交于一点,其中前两个交点都在xxx内,而第三个交点可在xxx内,xxx上,xxx外.注意:xxx的角平分线、中线、高线都是线段.

3.如图,xxx中,有一个重要的面积等式,即:若CD⊥AB,BE⊥CA,则CDAB=BECA.

4.xxx能否成立的条件是:最长边<另两边之和.

5.直角xxx能否成立的条件是:最长边的平方等于另两边的平方和.

-8-

BDECA6.分别含30°、45°、60°的直角xxx是特殊的直角xxx.

7.如图,双垂图形中,有两个重要的性质,即:(1)ACCB=CDAB;(2)∠1=∠B,∠2=∠.xxx中,最多有一个内角是钝角,但最少有两个外角是钝角.边是对应边.

10.等边xxx是特殊的等腰xxx.

11.几何习题中,“文字叙述题”需要自己画图,写已知、求证、证明.12.符合“AAA”“SSA”条件的xxx不能判定全等.

13.几何习题经常用四种方法进行分析:(1)分析综合法;(2)方程分析法;(3)代入分析法;(4)图形观察法.

14.几何基本作图分为:(1)作线段等于已知线段;(2)作角等于已知角;(3)作已知角的平分线;(4)过已知点作已知直线的垂线;(5)作线段的中垂线;(6)过已知点作已知直线的平行线.

15.会用尺规完成“SAS”、“ASA”、“AAS”、“SSS”、“HL”、“等腰xxx”、“等边xxx”、“等腰直角xxx”的作图.

16.作图题在分析过程中,首先要画出草图并标出字母,然后确定先画什么,后画什么;注意:每步作图都应该是几何基本作图.

17.几何画图的类型:(1)估画图;(2)工具画图;(3)尺规画图.※18.几何重要图形和辅助线:(1)选取和作辅助线的原则:

①构造特殊图形,使可用的定理增加;②一举多得;

③聚合题目中的分散条件,转移线段,转移角;④作辅助线必须符合几何基本作图.

(2)已知角平分线.(若BD是角平分线)

①在BA上截取BE=BC构造全等,转②过D点作DE∥BC交AB于E,构造等移线段和角;

(3)已知xxx中线(若AD是BC的中线)

①过D点作DE∥AC交AB②延长AD到E,使DE=AD③∵AD是中线

-9-

BEDEDAAD12CB9.全等xxx中,重合的点是对应顶点,对应顶点所对的角是对应角,对应角所对的

腰xxx.ACBCABDC于E,构造中位线;

BDCAE连结CE构造全等,转移线段和角;∴SΔABD=SΔADC(等底等高的xxx等面积)ABDC(4)已知等腰xxxABC中,AB=AC

①作等腰xxxABC底边的中线AD②作等腰xxxABC一边的平行线DE,构造(顶角的平分线或底边的高)构造全等xxx;

(5)其它作等边xxxABC一边的平行线DE,构造新的等边xxx;

④多边形转化为三角⑤延长BC到D,使⑥若a∥b,AC,BC是角平形;

BCEADOBDCBDC新的等腰xxx.AAAEDEBC②作CE∥AB,转移角;③延长BD与AC交于E,AE不规则图形转化为规则图形;BCDDAEAEBDCBCCD=BC,连结AD,直角xxx转化为等腰xxx;ABCD分线,则∠C=90°.BAaCb

八年级上册数学知识点归纳总结 第4篇

中线

1、等腰xxx底边上的中线垂直底边,平分顶角;

2、等腰xxx两腰上的中线相等,并且它们的交点与底边两端点距离相等。

1、两边上中线相等的xxx是等腰xxx;

2、如果一个xxx的一边中线垂直这条边(平分这个边的对角),那么这个xxx是等腰xxx

角平分线

1、等腰xxx顶角平分线垂直平分底边;

2、等腰xxx两底角平分线相等,并且它们的交点到底边两端点的距离相等。

1、如果xxx的顶角平分线垂直于这个角的对边(平分对边),那么这个xxx是等腰xxx;

2、xxx中两个角的平分线相等,那么这个xxx是等腰xxx。

高线

1、等腰xxx底边上的高平分顶角、平分底边;

2、等腰xxx两腰上的高相等,并且它们的.交点和底边两端点距离相等。

1、如果一个xxx一边上的高平分这条边(平分这条边的对角),那么这个xxx是等腰xxx;

2、有两条高相等的xxx是等腰xxx。

八年级上册数学知识点归纳总结 第5篇

多边形

1、多边形的概念:

在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。组成多边形的各条线段叫做多边形的边;每相邻两条边的公共端点叫做多边形的顶点;多边形相邻两边组成的角叫多边形的内角,一个n边形有n个内角;多边形的边与它的邻边的延长线组成的角叫做多边形的外角。在定义中应注意:

①一些线段(多边形的边数是大于等于3的正整数);

②首尾顺次相连,二者缺一不可;

③理解时要特别注意“在同一平面内”这个条件,其目的是为了排除几个点不共面的情况,即空间多边形。

2、多边形的分类:

多边形可分为凸多边形和凹多边形,画出多边形的任何一条边所在的直线,如果整个多边形都在这条直线的同一侧,则此多边形为凸多边形,反之为凹多边形。

凸多边形 凹多边形 各个角都相等、各个边都相等的多边形叫做正多边形。

3、多边形的对角线:

连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。

(1)从n边形一个顶点可以引(n-3)条对角线,将多边形分成(n-2)个xxx。

(2)n边形共有条对角线。

4、多边形的内角和外角

(1)多边形的内角和公式:n边形的内角和为(n-2)×180°(2)多边形的外角和等于360°,它与边数的多少无关。

推论:(1)内角和与边数成正比:边数增加,内角和增加;边数减少,内角和减少。每增加一条边,内角的和就增加180°(反过来也成立),且多边形的内角和必须是180°的整数倍。

(2)多边形最多有三个内角为锐角,最少没有锐角(如矩形);多边形的外角中最多有三个钝角,最少没有钝角。

八年级上册数学知识点归纳总结 第6篇

一、平面直角坐标系:

在平面内有公共原点而且互相垂直的两条数轴,构成了平面直角坐标系。

二、知识点与题型总结:

1、由点找坐标:

A点的坐标记作A(2,1),规定:横坐标在前,纵坐标在后。

2、由坐标找点:例找点B(3,-2)?

由坐标找点的方法:先找到表示横坐标与纵坐标的点,然后过这两点分别作x轴与y轴的垂线,垂线的交点就是该坐标对应的点。

各象限点坐标的符号:

①若点P(x,y)在第一象限,则x > 0,y > 0;

②若点P(x,y)在第二象限,则x < 0,y > 0;

③若点P(x,y)在第三象限,则x < 0,y < 0;

④若点P(x,y)在第四象限,则x > 0,y < 0 。

典型例题:

例1、点P的坐标是(2,-3),则点P在第四象限。

例2、若点P(x,y)的坐标满足xy>0,则点P在第一或三象限。

例3、若点A的坐标为(a^2+1, -2–b^2),则点A在第四象限。

4、坐标轴上点的坐标符号:

坐标轴上的点不属于任何象限。

① x轴上的点的纵坐标为0,表示为(x,0),

② y轴上的点的横坐标为0,表示为(0,y),

③原点(0,0)既在x轴上,又在y轴上。

例4、点P(x,y)满足xy = 0,则点P在x轴上或y轴上。 。

5、与坐标轴平行的两点连线:

①若AB‖ x轴,则A、B的纵坐标相同;

②若AB‖ y轴,则A、B的横坐标相同。

例5、已知点A(10,5),B(50,5),则直线AB的位置特点是(A)

A、与x轴平行B、与y轴平行C、与x轴相交,但不垂直D、与y轴相交,但不垂直

6、象限角平分线上的点:

①若点P在第一、三象限角的平分线上,则P(m, m);

②若点P在第二、四象限角的平分线上,则P(m, -m)。

例6、已知点A(2a+1,2+a)在第二象限的平分线上,试求A的坐标。

解:由条件可知:2a+1 +(2+a)=0,解得a = -1,

∴ A(-1,1)。

例7、已知点M(a+1,3a-5)在两坐标轴夹角的平分线上,试求M的坐标。

解:当在一、三象限角平分线上时,a+1=3a-5,

解得:a=3 ∴ M(4,4)

当在二、四象限角平分线上时,a+1+(3a-5)=0,

解得:a=1 ∴ M(2,-2)

∴M的坐标为(4,4)或(2,-2)

7、关于坐标轴、原点的对称点:

①点(a, b)关于X轴的对称点是(a,-b);

②点(a, b)关于Y轴的对称点是(-a,b);

③点(a, b)关于原点的对称点是(-a,-b)。

例8、已知点A(3a-1,1+a)在第一象限的平分线上,试求A关于原点的对称点的坐标。

解:由条件得:3a-1=1+a解得:a=1,∴ A(2,2),

∴ A关于原点的对称点的坐标为(-2,-2)。

8、点到坐标轴的距离:

①点(x, y)到x轴的距离是∣y∣;

②点(x, y)到x轴的距离是∣x∣。

例9、点P到x轴、y轴的距离分别是2,1,则点P的坐标可能为?

答案:(1,2)、(1,-2)、(-1,2)、(-1,-2) 。

三、知识拓展与提高:

例10、在平面直角坐标系中,已知两点A(0,1),B(8,5),点P在x轴上,则PA + PB的最小值是多少?

解:作点A(0,1)关于x轴的对称点A(0,-1),连接AB与x轴交于点P,

则AB路径最短,即PA + PB最小。

根据勾股定理得:AB = √[(1+5)^2 + 8^2] = 10 。

∴PA + PB的最小值是10 。

如何学好初中数学的方法

多做练习题

要想学好初中数学,必须多做练习,我们所说的“多做练习”,不是搞“题海战术”。只做不思,不能起到巩固概念,拓宽思路的'作用,而且有“副作用”:把已学过的知识搅得一塌糊涂,理不出头绪,浪费时间又收获不大,我们所说的“多做练习”,是要大家在做了一道新颖的题目之后,多想一想:它究竟用到了哪些知识,是否可以多解,其结论是否还可以加强、推广等等。

课后总结和反思

在进行单元小结或学期总结时,要做到以下几点:一看:看书、看笔记、看习题,通过看,回忆、熟悉所学内容;二列:列出相关的知识点,标出重点、难点,列出各知识点之间的关系,这相当于写出总结要点;三做:在此基础上有目的、有重点、有选择地解一些各种档次、类型的习题,通过解题再反馈,发现问题、解决问题。

初中数学有理数知识点

1、有理数的加法运算

同号两数来相加,绝对值加不变号。

异号相加大减小,大数决定和符号。

互为相反数求和,结果是零须记好。

“大”减“小”是指绝对值的大小。

2、有理数的减法运算

减正等于加负,减负等于加正。

有理数的乘法运算符号法则。

同号得正异号负,一项为零积是零。

3、有理数混合运算的四种运算技巧

转化法:一是将除法转化为乘法,二是将乘方转化为乘法,三是在乘除混合运算中,通常将小数转化为分数进行xxx计算。

凑整法:在加减混合运算中,通常将和为零的两个数,分母相同的两个数,和为整数的两个数,乘积为整数的两个数分别结合为一组求解。

分拆法:先将带分数分拆成一个整数与一个真分数的和的形式,然后进行计算。

巧用运算律:在计算中巧妙运用加法运算律或乘法运算律往往使计算更简便。

八年级上册数学知识点归纳总结 第7篇

四边形的相关概念

1、四边形

在同一平面内,由不在同一直线上的四条线段首尾顺次相接组成的图形叫做四边形。

2、四边形具有不稳定性

3、四边形的内角和定理及外角和定理

四边形的内角和定理:四边形的内角和等于360°。

四边形的外角和定理:四边形的外角和等于360°。

推论:多边形的内角和定理:n边形的内角和等于(n?2)?180°;

多边形的外角和定理:任意多边形的外角和等于360°。

6、设多边形的边数为n,则多边形的对角线共有n(n?3)条。从n边形的一个顶点出2

发能引(n-3)条对角线,将n边形分成(n-2)个xxx。

平行四边形

1、平行四边形的定义

两组对边分别平行的四边形叫做平行四边形。

2、平行四边形的性质

(1)平行四边形的对边平行且相等。

(2)平行四边形相邻的角互补,对角相等

(3)平行四边形的对角线互相平分。

(4)平行四边形是中心对称图形,对称中心是对角线的交点。

常用点:(1)若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段

的中点是对角线的交点,并且这条直线二等分此平行四边形的面积。

(2)推论:夹在两条平行线间的平行线段相等。

3、平行四边形的判定

(1)定义:两组对边分别平行的四边形是平行四边形

(2)定理1:两组对角分别相等的四边形是平行四边形

(3)定理2:两组对边分别相等的四边形是平行四边形

(4)定理3:对角线互相平分的四边形是平行四边形

(5)定理4:一组对边平行且相等的四边形是平行四边形

4、两条平行线的距离

两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线的距离。平行线间的距离处处相等。

5、平行四边形的面积

S平行四边形=底边长×高=ah

八年级上册数学知识点归纳总结 第8篇

第一章勾股定理

1、探索勾股定理

①勾股定理:直角xxx两直角边的平方和等于斜边的平方,如果用a,b和c分别表示直角xxx的两直角边和斜边,那么a2+b2=c2

2、一定是直角xxx吗

①如果xxx的三边长a b c满足a2+b2=c2,那么这个xxx一定是直角xxx

3、勾股定理的应用

第二章实数

1、认识无理数

①有理数:总是可以用有限小数和无限循环小数表示

②无理数:无限不循环小数

2、平xxx

①算数平xxx:一般地,如果一个正数x的平方等xxx,即x2=a,那么这个正数x就叫做a的算数平xxx

②特别地,我们规定:0的算数平xxx是0

③平xxx:一般地,如果一个数x的平方等xxx,即x2=a。那么这个数x就叫做a的平xxx,也叫做二次xxx

④一个正数有两个平xxx;0只有一个平xxx,它是0本身;负数没有平xxx

⑤正数有两个平xxx,一个是a的算数平方,另一个是—,它们互为相反数,这两个平xxx合起来可记作±

⑥开平方:求一个数a的平xxx的运算叫做开平方,a叫做被开方数

3、立xxx

①立xxx:一般地,如果一个数x的立方等xxx,即x3=a,那么这个数x就叫做a的立xxx,也叫三次xxx

②每个数都有一个立xxx,正数的立xxx是正数;0立xxx是0;负数的立xxx是负数。

③开立方:求一个数a的立xxx的运算叫做开立方,a叫做被开方数

4、估算

①估算,一般结果是相对复杂的小数,估算有精确位数

5、用计算机开平方

6、实数

①实数:有理数和无理数的统称

②实数也可以分为正实数、0、负实数

③每一个实数都可以在数轴上表示,数轴上每一个点都对应一个实数,在数轴上,右边的点永远比左边的点表示的数大

7、二次根式

①含义:一般地,形如(a≥0)的式子叫做二次根式,a叫做被开方数

② =(a≥0,b≥0),=(a≥0,b>0)

③最简二次根式:一般地,被开方数不含分母,也不含能开的尽方的因数或因式,这样的二次根式,叫做最简二次根式

④化简时,通常要求最终结果中分母不含有根号,而且各个二次根式时最简二次根式

第三章位置与坐标

1、确定位置

①在平面内,确定一个物体的位置一般需要两个数据

2、平面直角坐标系

①含义:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系

②通常地,两条数轴分别置于水平位置与竖直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做x轴或者横轴,竖直的数轴叫y轴和纵轴,二者统称为坐标轴,它们的公共原点o被称为直角坐标系的原点

③建立了平面直角坐标系,平面内的点就可以用一组有序实数对来表示

④在平面直角坐标系中,两条坐标轴将坐标平面分成了四部分,右上方的部分叫第一象限,其他三部分按逆时针方向叫做第二象限,第三象限,第四象限,坐标轴上的点不在任何一个象限

⑤在直角坐标系中,对于平面上任意一点,都有唯一的一个有序实数对(即点的坐标)与它对应;反过来,对于任意一个有序实数对,都有平面上唯一的一点与它对应

3、轴对称与坐标变化

①关于x轴对称的两个点的坐标,横坐标相同,纵坐标互为相反数;关于y轴对称的两个点的坐标,纵坐标相同,横坐标互为相反数

第四章一次函数

1、函数

①一般地,如果在一个变化过程中有两个变量x和y,并且对于变量x的每一个值,变量y都有唯一的值与它对应,那么我们称y是x的函数其中x是自变量

②表示函数的方法一般有:列表法、关系式法和图象法

③对于自变量在可取值范围内的一个确定的值a,函数有唯一确定的对应值,这个对应值称为当自变量等xxx的函数值

2、一次函数与正比例函数

①若两个变量x,y间的对应关系可以表示成y=kx+b(k、b为常数,k≠0)的形式,则称y是x的一次函数,特别的,当b=0时,称y是x的正比例函数

3、一次函数的图像

①正比例函数y=kx的图像是一条经过原点(0,0)的直线。因此,画正比例函数图像是,只要再确定一点,过这个点与原点画直线就可以了

②在正比例函数y=kx中,当k>0时,y的值随着x值的增大而减小;当k<0时,y的值随着x的值增大而减小

③一次函数y=kx+b的图像是一条直线,因此画一次函数图像时,只要确定两个点,再过这两点画直线就可以了。一次函数y=kx+b的图像也称为直线y=kx+b

④一次函数y=kx+b的图像经过点(0,b)。当k>0时,y的值随着x值的增大而增大;当k<0时,y的值随着x值的增大而减小

4、一次函数的应用

①一般地,当一次函数y=kx+b的函数值为0时,相应的自变量的值就是方程kx+b=0的解,从图像上看,一次函数y=kx+b的图像与x轴交点的横坐标就是方程kx+b=0

第五章二元一次方程组

1、认识二元一次方程组

①含有两个未知数,并且所含有未知数的项的次数都是1的方程叫做二元一次方程

②共含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组

③二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解

2、求解二元一次方程组

①将其中一个方程中的某个未知数用含有另一个未知数的代数式表示出来,并代入另个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程,这种解方程组的方法称为代入消元法,简称代入法

②通过两式子加减,消去其中一个未知数,这种解二元一次方程组的方法叫做加减消元法,简称加减法

3、应用二元一次方程组

①鸡兔同笼

4、应用二元一次方程组

①增减收支

5、应用二元一次方程组

①里程碑上的数

6、二元一次方程组与一次函数

①一般地,以一个二元一次方程的解为坐标的点组成的图像与相应的一次函数的图像相同,是一条直线

②一般地,从图形的角度看,确定两条直线相交点的坐标,相当于求相应的二元一次方程组的解,解一个二元一次方程组相当于确定相应两条直线交点的坐标

7、用二元一次方程组确定一次函数表达式

①先设出函数表达式,再根据所给条件确定表达式中未知的系数,从而得到函数表达式的方法,叫做待定系数法。

8、三元一次方程组

①在一个方程组中,各个式子都含有三个未知数,并且所含有未知数的项的次数都是1,这样的方程叫做三元一次方程

②像这样,共含有三个未知数的三个一次方程所组成的一组方程,叫做三元一次方程组

③三元一次方程组中各个方程的公共解,叫做这个三元一次方程组的解。

第六章数据的分析

1、平均数

①一般地,对于n个数x1x2.....xn,我们把(x1+x2+···+xn)叫做这n个数的算数平均数,简称平均数记为。

②在实际问题中,一组数据里的各个数据的“重要程度”未必相同,因而在计算,这组数据的平均数时,往往给每个数据一个权,叫做加权平均数

2、中位数与众数

①中位数:一般地,n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数

②一组数据中出现次数最多的那个数据叫做这组数据的众数

③平均数、中位数和众数都是描述数据集中趋势的统计量

④计算平均数时,所有数据都参加运算,它能充分地利用数据所提供的信息,因此在现实生活中较为常用,但他容易受极端值影响。

⑤中位数的优点是计算简单,受极端值影响较小,但不能充分利用所有数据的信息

⑥各个数据重复次数大致相等时,众数往往没有特别意义

3、从统计图分析数据的集中趋势

4、数据的离散程度

①实际生活中,除了关心数据的集中趋势外,人们还关注数据的离散程度,即它们相对于集中趋势的偏离情况。一组数据中最大数据与最小数据的差,(称为极差),就是刻画数据离散程度的一个统计量

②数学上,数据的离散程度还可以用方差或标准差刻画

③方差是各个数据与平均数差的平方的平均数

④其中是x1x2......xn平均数,s2是方差,而标准差就是方差的算术平xxx

⑤一般而言,一组数据的极差、方差或标准差越小,这组数据就越稳定。

第七章平行线的证明

1、为什么要证明

①实验、观察、归纳得到的结论可能正确,也可能不正确,因此,要判断一个数学结论是否正确,仅仅依靠实验、观察、归纳是不够的,必须进行有根有据的证明

2、定义与命题

①证明时,为了交流方便,必须对某些名称和术语形成共同的认识,为此,就要对名称和术语的含义加以描述,做出明确的规定,也就是给它们的定义

②判断一件事情的句子,叫做命题

③一般地,每个命题都由条件和结论两部分组成。条件是已知的选项,结论是已知选项推出的事项。命题通常可以写成“如果....那么....”的形式,其中“如果”引出的部分是条件,“那么”引出的部分是结论

④正确的命题称为真命题,不正确的命题称为假命题

⑤要说明一个命题是假命题,常常可以举出一个例子,使它具备命题的条件,而不具有命题的结论,这种例子称为反例

⑥欧几里得在编写《原本》时,挑选了一部分数学名词和一部分公认的真命题作为证实其他命题的出发点和依据。其中数学名词称为原名,公认的真命题称为公理,除了公理外,其他命题的真假都需要通过演绎推理的方法进行判断

⑦演绎推理的过程称为证明,经过证明的真命题称为定理,每个定理都只能用公理、定义和已经证明为真的命题来证明

a.本套教科书选用九条基本事实作为证明的出发点和依据,其中八条是:两点确定一条直线

b.两点之间线段最短

c.同一平面内,过一点有且只有一条直线与已知直线垂直

d.两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行(简述为:同位角相等,两直线平行)

e.过直线外一点有且只有一条直线与这条直线平行

f.两边及其夹角分别相等的两个xxx全等

g.两角及其夹边分别相等的两个xxx全等

h.三边分别相等的两个xxx全等

⑧此外,数与式的运算律和运算法则、等式的有关性质,以及反映大小关系的有关性质都可以作为证明的依据

⑨ 定理:同角(等角)的补角相等

同角(等角)的余角相等

xxx的任意两边之和大于第三边

对顶角相等

3、平行线的判定

① 定理:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行,简述为:内错角相等,两直线平行

② 定理:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行,简述为:同旁内角互补,两直线平行。

4、平行线的性质

① 定理:两条平行直线被第三条直线所截,同位角相等。简述为:两直线平行,同位角相等

② 定理:两条平行直线被第三条直线所截,内错角相等。简述为:两直线平行,内错角相等

③ 定理:两条平行直线被第三条直线所截,同旁内角互补。简述为:两直线平行,同旁内角互补

④ 定理:平行于同一条直线的两条直线平行

5、xxx内角和定理

① xxx内角和定理:xxx的内角和等于180°

② 定理:xxx的一个外角等于和它不相邻的两个内角的和

定理:xxx的一个外角大于任何一个和它不相邻的内角

③ 我们通过xxx的内角和定理直接推导出两个新定理。像这样,由一个基本事实或定理直接推出的定理,叫做这个基本事实或定理的推论,推论可以当定理使用。

初二数学上册知识点汇总

(一)运用公式法:

我们知道整式乘法与因式分解互为逆变形。如果把乘法公式反过来就是把多项式分解因式。于是有:

a2—b2=(a+b)(a—b)

a2+2ab+b2=(a+b)2

a2—2ab+b2=(a—b)2

如果把乘法公式反过来,就可以用来把某些多项式分解因式。这种分解因式的方法叫做运用公式法。

(二)平方差公式

1.平方差公式

(1)式子: a2—b2=(a+b)(a—b)

(2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。这个公式就是平方差公式。

(三)因式分解

1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。

2.因式分解,必须进行到每一个多项式因式不能再分解为止。

(四)完全平方公式

(1)把乘法公式(a+b)2=a2+2ab+b2 和 (a—b)2=a2—2ab+b2反过来,就可以得到:

a2+2ab+b2 =(a+b)2

a2—2ab+b2 =(a—b)2

这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。

把a2+2ab+b2和a2—2ab+b2这样的式子叫完全平方式。

上面两个公式叫完全平方公式。

(2)完全平方式的形式和特点

①项数:三项

②有两项是两个数的的平方和,这两项的符号相同。

③有一项是这两个数的积的两倍。

(3)当多项式中有公因式时,应该先提出公因式,再用公式分解。

(4)完全平方公式中的a、b可表示单项式,也可以表示多项式。这里只要将多项式看成一个整体就可以了。

(5)分解因式,必须分解到每一个多项式因式都不能再分解为止。

(五)分组分解法

我们看多项式am+ an+ bm+ bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式。

如果我们把它分成两组(am+ an)和(bm+ bn),这两组能分别用提取公因式的方法分别分解因式。

原式=(am +an)+(bm+ bn)

=a(m+ n)+b(m +n)

做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义。但不难看出这两项还有公因式(m+n),因此还能继续分解,所以

原式=(am +an)+(bm+ bn)

=a(m+ n)+b(m+ n)

=(m +n)×(a +b)。

这种利用分组来分解因式的方法叫做分组分解法。从上面的例子可以看出,如果把一个多项式的项分组并提取公因式后它们的另一个因式正好相同,那么这个多项式就可以用分组分解法来分解因式。

(六)提公因式法

1.在运用提取公因式法把一个多项式因式分解时,首先观察多项式的结构特点,确定多项式的公因式。当多项式各项的公因式是一个多项式时,可以用设辅助元的方法把它转化为单项式,也可以把这个多项式因式看作一个整体,直接提取公因式;当多项式各项的公因式是隐含的时候,要把多项式进行适当的变形,或改变符号,直到可确定多项式的公因式。

2. 运用公式x2 +(p+q)x+pq=(x+q)(x+p)进行因式分解要注意:

1.必须先将常数项分解成两个因数的积,且这两个因数的代数和等于一次项的系数。

2.将常数项分解成满足要求的两个因数积的多次尝试,一般步骤:

① 列出常数项分解成两个因数的积各种可能情况;

②尝试其中的哪两个因数的和恰好等于一次项系数。

3.将原多项式分解成(x+q)(x+p)的形式。

(七)分式的乘除法

1.把一个分式的分子与分母的公因式约去,叫做分式的xxx。

2.分式进行xxx的目的是要把这个分式化为最简分式。

3.如果分式的分子或分母是多项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分子与分母的公因式。如果分子或分母中的多项式不能分解因式,此时就不能把分子、分母中的某些项单独xxx。

4.分式xxx中注意正确运用乘方的符号法则,如x—y=—(y—x),(x—y)2=(y—x)2,(x—y)3=—(y—x)3。

5.分式的分子或分母带符号的n次方,可按分式符号法则,变成整个分式的符号,然后再按—1的偶次方为正、奇次方为负来处理。当然,简单的分式之分子分母可直接乘方。

6.注意混合运算中应先算括号,再算乘方,然后乘除,最后算加减。

(八)分数的加减法

1.通分与xxx虽都是针对分式而言,但却是两种相反的变形。xxx是针对一个分式而言,而通分是针对多个分式而言;xxx是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来。

2.通分和xxx都是依据分式的基本性质进行变形,其共同点是保持分式的值不变。

3.一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备。

4.通分的依据:分式的基本性质。

5.通分的关键:确定几个分式的公分母。

通常取各分母的所有因式的最高次幂的积作公分母,这样的公分母叫做最xxx分母。

6.类比分数的通分得到分式的通分:

把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分。

7.同分母分式的加减法的法则是:同分母分式相加减,分母不变,把分子相加减。

同分母的分式加减运算,分母不变,把分子相加减,这就是把分式的运算转化为整式运算。

8.异分母的分式加减法法则:异分母的分式相加减,先通分,变为同分母的分式,然后再加减。

9.同分母分式相加减,分母不变,只须将分子作加减运算,但注意每个分子是个整体,要适时添上括号。

10.对于整式和分式之间的加减运算,则把整式看成一个整体,即看成是分母为1的分式,以便通分。

11.异分母分式的加减运算,首先观察每个公式是否最简分式,能xxx的先xxx,使分式简化,然后再通分,这样可使运算简化。

12.作为最后结果,如果是分式则应该是最简分式。

(九)含有字母系数的一元一次方程

1.含有字母系数的一元一次方程

引例:一数的a倍(a≠0)等于b,求这个数。用x表示这个数,根据题意,可得方程 ax=b(a≠0)

在这个方程中,x是未知数,a和b是用字母表示的已知数。对x来说,字母a是x的系数,b是常数项。这个方程就是一个含有字母系数的一元一次方程。

含有字母系数的方程的解法与以前学过的只含有数字系数的方程的解法相同,但必须特别注意:用含有字母的式子去乘或除方程的两边,这个式子的值不能等于零

八年级上册数学知识点归纳总结 第9篇

八年级上册数学知识点总结

一、轴对称图形

1、把一个xxx着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。这条直线就是它的对称轴。这时我们也说这个图形关于这条直线(成轴)对称。

2、把一个xxx着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。这条直线叫做对称轴。折叠后重合的点是对应点,叫做对称点。

3、轴对称图形和轴对称的区别与联系。

4、轴对称的性质。

①关于某直线对称的两个图形是全等形。

②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。

③轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

④如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。

二、线段的垂直平分线

1、经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线。

2、线段垂直平分线上的点与这条线段的两个端点的距离相等。

3、与一条线段两个端点距离相等的点,在线段的`垂直平分线上。

三、用坐标表示轴对称小结:

在平面直角坐标系中,关于x轴对称的点横坐标相等,纵坐标互为相反数。关于y轴对称的点横坐标互为相反数,纵坐标相等。

2、xxx三条边的垂直平分线相交于一点,这个点到xxx三个顶点的距离相等。

四、(等腰xxx)知识点回顾

1、等腰xxx的性质。

①、等腰xxx的两个底角相等。(等边对等角)

②、等腰xxx的顶角平分线、底边上的中线、底边上的高互相重合。(三线合一)

2、等腰xxx的判定:

如果一个xxx有两个角相等,那么这两个角所对的边也相等。(等角对等边)

五、(等边xxx)知识点回顾

1、等边xxx的性质:

等边xxx的三个角都相等,并且每一个角都等于600。

2、等边xxx的判定:

①三个角都相等的xxx是等边xxx。

②有一个角是600的等腰xxx是等边xxx。

3、在直角xxx中,如果一个锐角等于300,那么它所对的直角边等于斜边的一半。

1、等腰xxx的性质

(1)等腰xxx的性质定理及推论:

定理:等腰xxx的两个底角相等(简称:等边对等角)

推论1:等腰xxx顶角平分线平分底边并且垂直于底边。即等腰xxx的顶角平分线、底边上的中线、底边上的高重合。

推论2:等边xxx的各个角都相等,并且每个角都等于60°。

(2)等腰xxx的其他性质:

①等腰直角xxx的两个底角相等且等于45°

②等腰xxx的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角)。

③等腰xxx的三边关系:设腰长为a,底边长为b,则

④等腰xxx的三角关系:设顶角为顶角为∠A,底角为∠B、∠C,则∠A=180°—2∠B,∠B=∠C=

2、等腰xxx的判定

等腰xxx的判定定理及推论:

定理:如果一个xxx有两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。这个判定定理常用于证明同一个xxx中的边相等。

推论1:三个角都相等的xxx是等边xxx。

推论2:有一个角是60°的等腰xxx是等边xxx。

推论3:在直角xxx中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。

等腰xxx的性质与判定

等腰xxx性质

等腰xxx判定

1、等腰xxx底边上的中线垂直底边,平分顶角;

2、等腰xxx两腰上的中线相等,并且它们的交点与底边两端点距离相等。

1、两边上中线相等的xxx是等腰xxx;

2、如果一个xxx的一边中线垂直这条边(平分这个边的对角),那么这个xxx是等腰xxx。

角平分线

1、等腰xxx顶角平分线垂直平分底边;

2、等腰xxx两底角平分线相等,并且它们的交点到底边两端点的距离相等。

1、如果xxx的顶角平分线垂直于这个角的对边(平分对边),那么这个xxx是等腰xxx;

2、xxx中两个角的平分线相等,那么这个xxx是等腰xxx。

1、等腰xxx底边上的高平分顶角、平分底边;

2、等腰xxx两腰上的高相等,并且它们的交点和底边两端点距离相等。

1、如果一个xxx一边上的高平分这条边(平分这条边的对角),那么这个xxx是等腰xxx;

2、有两条高相等的xxx是等腰xxx。

等边对等角

等角对等边

底的一半<腰长<周长的一半

两边相等的xxx是等腰xxx

4、xxx中的中位线

连接xxx两边中点的线段叫做xxx的中位线。

(1)xxx共有三条中位线,并且它们又重新构成一个新的xxx。

(2)要会区别xxx中线与中位线。

xxx中位线定理:xxx的中位线平行于第三边,并且等于它的一半。

xxx中位线定理的作用:

位置关系:可以证明两条直线平行。

数量关系:可以证明线段的倍分关系。

常用结论:任一个xxx都有三条中位线,由此有:

结论1:三条中位线组成一个xxx,其周长为原xxx周长的一半。

结论2:三条中位线将原xxx分割成四个全等的xxx。

结论3:三条中位线将原xxx划分出三个面积相等的平行四边形。

结论4:xxx一条中线和与它相交的中位线互相平分。

结论5:xxx中任意两条中位线的夹角与这夹角所对的xxx的顶角相等。

八年级上册数学知识点归纳总结 第10篇

分式知识点

1、分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变。

2、通分:利用分式的基本性质,使分子和分母都乘以适当的整式,不改变分式的值,把几个异分母分式化成同分母的分式,这样的分式变形叫做分式的通分。

通分的关键是:确定几个分式的最xxx分母。确定最xxx分母的一般方法是:(1)如果各分母都是单项式,那么最xxx分母就是各系数的最小公倍数、相同字母的次幂、所有不同字母及指数的积。

(2)如果各分母中有多项式,就先把分母是多项式的分解因式,再参照单项式求最xxx分母的方法,从系数、相同因式、不同因式三个方面去确定。

3、xxx:根据分式的基本性质,约去分式的分子和分母的公因式,不改变分式的值,这样的分式变形叫做分式的xxx。

在xxx时要注意:(1)如果分子、分母都是单项式,那么可直接约去分子、分母的公因式,即约去分子、分母系数的公约数,相同字母的最低次幂;(2)如果分子、分母中至少有一个多项式就应先分解因式,然后找出它们的公因式再xxx;(3)xxx一定要把公因式约完。

实数知识点

1、实数的分类:有理数和无理数

2、数轴:规定了原点、正方向和单位长度的直线叫数轴.实数和数轴上点一一对应.

3、相反数:符号不同的两个数,叫做互为相反数.a的相反数是-a,0的相反数是0.(若a与b护卫相反数,则a+b=0)

4、绝对值:在数轴上表示数a的点到原点的距离叫数a的绝对值,记作∣a∣,正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0.

5、倒数:乘积为1的两个数

6、乘方:求相同因数的积的运算叫乘方,乘方运算的结果叫幂.(平方和立方)

7、平xxx:一般地,如果一个数x的平方等xxx,即x2=a那么这个数x就叫做a的平xxx(也叫做二次xxx).一个正数有两个平xxx,它们互为相反数;0只有一个平xxx,它是0本身;负数没有平xxx.(算术平xxx:一般地,如果一个正数x的平方等xxx,即x2=a,那么这个正数x就叫做a的算术平xxx,0的算术平xxx是0.)

实数,是有理数和无理数的总称。数学上,实数定义为与数轴上的点相对应的数。实数可以直观地看作有限小数与无限小数,它们能把数轴“填满”。但仅仅以列举的方式不能描述实数的整体。实数和虚数共同构成复数。

实数可以用来测量连续的量。理论上,任何实数都可以用无限小数的方式表示,小数点的右边是一个无穷的数列(可以是循环的,也可以是非循环的)。在实际运用中,实数经常被近似成一个有限小数(保留小数点后n位,n为正整数,包括整数)。在计算机领域,由于计算机只能存储有限的小数位数,实数经常用浮点数来表示。

1)相反数(只有符号不同的两个数,它们的和为零,我们就说其中一个是另一个的相反数,叫做互为相反数)实数a的相反数是-a,a和-a在数轴上到原点0的距离相等。

2)绝对值(在数轴上一个数a与原点0的距离)实数a的绝对值是:|a|

①a为正数时,|a|=a(不变),a是它本身;

②a为0时,|a|=0,a也是它本身;

③a为负数时,|a|=-a(为a的绝对值),-a是a的相反数。

(任何数的绝对值都大于或等于0,因为距离没有负数。)

3)倒数(两个实数的乘积是1,则这两个数互为倒数)实数a的倒数是:1/a(a≠0)

4)数轴

定义:规定了原点,正方向和单位长度的直线叫数轴

(1)数轴的三要素:原点、正方向和单位长度。

(2)数轴上的点与实数一一对应。

平xxx与立xxx知识点

平xxx:

概括1:一般地,如果一个数的平方等xxx,这个数就叫做a的平xxx(或二次xxx)。就是说,如果x=a,那么x就叫做a的平xxx。如:23与-23都是529的平xxx。

因为(±23)=529,所以±23是529的平xxx。问:(1)16,49,100,1100都是正数,它们有几个平xxx?平xxx之间有什么关系?(2)0的平xxx是什么?

概括2:一个正数有两个平xxx,它们互为相反数;0有一个平xxx,它是0本身;负数没有平xxx。

概括3:求一个数a(a≥0)的平xxx的运算,叫做开平方。

开平方运算是已知指数和幂求底数。平方与开平方互为逆运算。一个数可以是正数、负数或者是0,它的平方数只有一个,正数或负数的平方都是正数,0的平方是0。但一个正数的平xxx却有两个,这两个数互为相反数,0的平xxx是0。负数没有平xxx。因为平方与开平方互为逆运算,因此我们可以通过平方运算来求一个数的平xxx,也可以通过平方运算来检验一个数是不是另一个数的平xxx。

一、算术平xxx的概念

正数a有两个平xxx(表示为?

根,表示为a。

0的平xxx也叫做0的算术平xxx,因此0的算术平xxx是0,即0?0。“

”是算术平xxx的符号,a就表示a的算术平xxx。a的意义有两点:

a),我们把其中正的平xxx,叫做a的算术平方

(1)被开方数a表示非负数,即a≥0;

(2)a也表示非负数,即a≥0。也就是说,非负数的“算术”平xxx是非负数。负数不存在算术平xxx,即a<0时,xxx义。

如:=3,8是64的算术平xxx,?6无意义。

9既表示对9进行开平方运算,也表示9的正的平xxx。

二、平xxx与算术平xxx的区别在于

①定义不同;

②个数不同:一个正数有两个平xxx,而一个正数的算术平xxx只有一个;③表示方法不同:正数a的平xxx表示为?a,正数a的算术平xxx表示为a;④取值范围不同:正数的算术平xxx一定是正数,正数的平xxx是一正一负.⑤0的平xxx与算术平xxx都是0.三、例题讲解:

例1、求下列各数的算术平xxx:

(1)100;

(2)49;

(3)

注意:由于正数的算术平xxx是正数,零的算术平xxx是零,可将它们概括成:非负数的算

术平xxx是非负数,即当a≥0时,a≥0(当a<0时,xxx义)

用几何图形可以直观地表示算术平xxx的意义如有一个面积为a(a应是非负数)、边长为

的正方形就表示a的算术平xxx。

这里需要说明的是,算术平xxx的符号“”不仅是一个运算符号,如a≥0时,a表示对非负数a进行开平方运算,另一方面也是一个性质符号,即表示非负数a的正的平xxx。

3、立xxx

(1)立xxx的定义:如果一个数x的立方等xxx,这个数叫做a的立xxx(也叫做三次xxx),即如果x?a,那么x叫做a的立xxx

(2)一个数a的立xxx,读作:“三次根号a”,其中a叫被开方数,3叫根指数,不能省略,若省略表示平方。

(3)一个正数有一个正的立xxx;0有一个立xxx,是它本身;一个负数有一个负的立xxx;任何数都有的立xxx。

(4)利用开立方和立方互为逆运算关系,求一个数的立xxx,就可以利用这种互逆关系,检验其正确性,求负数的立xxx,可以先求出这个负数的绝对值的立xxx,再取其相反数。

直角xxx知识点

一、解直角xxx

1.定义:已知边和角(两个,其中必有一边)→所有未知的边和角。

2.依据:①边的关系:初中数学复习提纲

②角的关系:A+B=90°

③边角关系:三角函数的定义。

注意:尽量避免使用中间数据和除法。

二、对实际问题的处理

1.初中数学复习提纲俯、仰角

2.方位角、象限角

3.坡度:

4.在两个直角xxx中,都缺解直角xxx的条件时,可用列方程的办法解决。

图形的轴对称知识点

I线段的垂直平分线

①定义:垂直并且平分已知线段的直线叫做线段的垂直平分线或中垂线

②性质:

a、线段的垂直平分线上的点到线段两端点的距离相等的点在线段的垂直平分线上;

b、到线段两端点距离相等的点在线段的垂直平分线上;

c、线段是轴对称图形,线段的垂直平分线是线段的一条对称轴,另一条是线段所在的直线。

II角平分线的性质

①角平分线上的点到已知角两边的距离相等

②到已知角两边距离相等的点在已知角的角平分线上

③角是轴对称图形,角平分线所在的直线是该角的对称轴。

二次根式知识点

1.二次根式:式子(≥0)叫做二次根式。

2.最简二次根式:

(1)最简二次根式的定义:①被开方数是整数,因式是整式;②被开方数中不含能开得尽方的数或因式;③分母中不含根式。

(2)最简二次根式必须同时满足下列条件:

①被开方数中不含开方开的尽的因数或因式;

②被开方数中不含分母;

③分母中不含根式。

3.同类二次根式(可合并根式):

几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式就叫做同类二次根式,即可以合并的两个根式。

4.二次根式的性质

非负性:是一个非负数.

注意:此性质可作公式记住,后面根式运算中经常用到.

①字母不一定是正数.

②能开得尽方的因式移到根号外时,必须用它的算术平xxx代替.

③可移到根号内的因式,必须是非负因式,如果因式的值是负的,应把负号留在根号外.

(4)公式与的区别与联系:

①表示求一个数的平方的算术根,a的范围是一切实数.

②表示一个数的算术平xxx的平方,a的范围是非负数.

③和的运算结果都是非负的.

八年级上册数学知识点归纳总结 第11篇

一、平移

1、定义

在平面内,将一个图形整体沿某方向移动一定的距离,这样的图形运动称为平移。2、性质

平移前后两个图形是全等图形,对应点连线平行且相等,对应线段平行且相等,对应角相等。

二、旋转

1、定义

在平面内,将一个图形绕某一定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角叫做旋转角。

2、性质

旋转前后两个图形是全等图形,对应点到旋转中心的距离相等,对应点与旋转中心的连线所成的角等于旋转角。

三、四边形的相关概念

1、四边形

在同一平面内,由不在同一直线上的四条线段首尾顺次相接组成的图形叫做四边形。

2、四边形具有不稳定性

3、四边形的内角和定理及外角和定理

四边形的内角和定理:四边形的内角和等于360°。四边形的外角和定理:四边形的外角和等于360°。

推论:多边形的内角和定理:n边形的内角和等于(n2)180°;多边形的外角和定理:任意多边形的外角和等于360°。6、设多边形的边数为n,则多边形的对角线共有

n(n3)2条。从n边形的一个顶点出

发能引(n-3)条对角线,将n边形分成(n-2)个xxx。

四.平行四边形

1、平行四边形的定义

两组对边分别平行的四边形叫做平行四边形。2、平行四边形的性质

(1)平行四边形的对边平行且相等。

(2)平行四边形相邻的角互补,对角相等

(3)平行四边形的对角线互相平分。

(4)平行四边形是中心对称图形,对称中心是对角线的交点。

常用点:(1)若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段的中点是对角线的交点,并且这条直线二等分此平行四边形的面积。

(2)推论:夹在两条平行线间的平行线段相等。

3、平行四边形的判定

(1)定义:两组对边分别平行的四边形是平行四边形(2)定理1:两组对角分别相等的四边形是平行四边形(3)定理2:两组对边分别相等的四边形是平行四边形(4)定理3:对角线互相平分的四边形是平行四边形

(5)定理4:一组对边平行且相等的四边形是平行四边形

4、两条平行线的距离

两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线的距离。

平行线间的距离处处相等。5、平行四边形的面积

S平行四边形=底边长×高=ah

五、矩形

1、矩形的定义

有一个角是直角的平行四边形叫做矩形。

2、矩形的性质

(1)矩形的对边平行且相等

(2)矩形的四个角都是直角

(3)矩形的对角线相等且互相平分

(4)矩形既是中心对称图形又是轴对称图形;对称中心是对角线的交点(对称中心到矩形四个顶点的距离相等);对称轴有两条,是对边中点连线所在的直线。

3、矩形的判定

(1)定义:有一个角是直角的平行四边形是矩形

(2)定理1:有三个角是直角的四边形是矩形

(3)定理2:对角线相等的平行四边形是矩形

4、矩形的面积S矩形=长×宽=ab

六、菱形

1、菱形的定义

有一组邻边相等的平行四边形叫做菱形

2、菱形的性质

(1)菱形的四条边相等,对边平行

(2)菱形的相邻的角互补,对角相等

(3)菱形的对角线互相垂直平分,并且每一条对角线平分一组对角

(4)菱形既是中心对称图形又是轴对称图形;对称中心是对角线的交点(对称中心到菱形四条边的距离相等);对称轴有两条,是对角线所在的直线。

3、菱形的判定

(1)定义:有一组邻边相等的平行四边形是菱形

(2)定理1:四边都相等的四边形是菱形

(3)定理2:对角线互相垂直的平行四边形是菱形

4、菱形的面积

S菱形=底边长×高=两条对角线乘积的一半

七.正方形

1、正方形的定义

有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。

2、正方形的性质

(1)正方形四条边都相等,对边平行

(2)正方形的四个角都是直角

(3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角

(4)正方形既是中心对称图形又是轴对称图形;对称中心是对角线的交点;对称轴有四条,是对角线所在的直线和对边中点连线所在的直线。

3、正方形的判定

判定一个四边形是正方形的主要依据是定义,途径有两种:先证它是矩形,再证它是菱形。先证它是菱形,再证它是矩形。

4、正方形的面积

设正方形边长为a,对角线长为bS正方形=a2b22

八、梯形

(一)1、梯形的相关概念

一组对边平行而另一组对边不平行的四边形叫做梯形。

梯形中平行的两边叫做梯形的底,通常把较短的底叫做上底,较长的底叫做下底。梯形中不平行的两边叫做梯形的腰。梯形的两底的距离叫做梯形的高。

2、梯形的判定

(1)定义:一组对边平行而另一组对边不平行的四边形是梯形。

(2)一组对边平行且不相等的四边形是梯形。

(二)直角梯形的定义:一腰垂直于底的梯形叫做直角梯形。一般地,梯形的分类如下:一般梯形

梯形直角梯形特殊梯形

等腰梯形

(三)等腰梯形

1、等腰梯形的定义

两腰相等的梯形叫做等腰梯形。

2、等腰梯形的性质

(1)等腰梯形的两腰相等,两底平行。

(2)等腰梯形同一底上的两个角相等,同一腰上的两个角互补。

(3)等腰梯形的对角线相等。

(4)等腰梯形是轴对称图形,它只有一条对称轴,即两底的垂直平分线。3、等腰梯形的判定

(1)定义:两腰相等的梯形是等腰梯形

(2)定理:在同一底上的两个角相等的梯形是等腰梯形

(3)对角线相等的梯形是等腰梯形。(选择题和填空题可直接用)

(四)梯形的面积

(1)如图,S梯形ABCD12(CDAB)DE

(2)梯形中有关图形的面积:

①SABDSBAC;

②SAODSBOC;

③SADCSBCD八、中心对称图形

1、定义

在平面内,一个图形绕某个点旋转180°,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心。

2、性质

(1)关于中心对称的两个图形是全等形。

(2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。

(3)关于中心对称的'两个图形,对应线段平行(或在同一直线上)且相等。

3、判定

如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。

第四章数量、位置的变化

一、在平面内,确定物体的位置一般需要两个数据。

二、平面直角坐标系及有关概念

1、平面直角坐标系

在平面内,两条互相垂直且有公共原点的数轴,组成平面直角坐标系。其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;x轴和y轴统称坐标轴。它们的公共原点O称为直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。

2、为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。

注意:x轴和y轴上的点(坐标轴上的点),不属于任何一个象限。

3、点的坐标的概念

对于平面内任意一点P,过点P分别x轴、y轴向作垂线,垂足在上x轴、y轴对应的数a,b分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标。

点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。平面内点的坐标是有序实数对,当ab时,(a,b)和(b,a)是两个不同点的坐标。

平面内点的与有序实数对是一一对应的。

4、不同位置的点的坐标的特征(

1)、各象限内点的坐标的特征点P(x,y)在第一象限x0,y0

点P(x,y)在第二象限x0,y0点P(x,y)在第三象限x0,y0点P(x,y)在第四象限x0,y0

(2)、坐标轴上的点的特征

点P(x,y)在x轴上y0,x为任意实数点P(x,y)在y轴上x0,y为任意实数

点P(x,y)既在x轴上,又在y轴上x,y同时为零,即点P坐标为(0,0)即原点

(3)、两条坐标轴夹角平分线上点的坐标的特征

点P(x,y)在第一、三象限夹角平分线(直线y=x)上x与y相等点P(x,y)在第二、四象限夹角平分线上x与y互为相反数

(4)、和坐标轴平行的直线上点的坐标的特征位于平行于x轴的直线上的各点的纵坐标相同。位于平行于y轴的直线上的各点的横坐标相同。

(5)、关于x轴、y轴或原点对称的点的坐标的特征

点P与点p’关于x轴对称横坐标相等,纵坐标互为相反数,即点P(x,y)关于x轴的对称点为P’(x,-y)

点P与点p’关于y轴对称纵坐标相等,横坐标互为相反数,即点P(x,y)关于y轴的对称点为P’(-x,y)

点P与点p’关于原点对称横、纵坐标均互为相反数,即点P(x,y)关于原点的对称点为P’(-x,-y)

(6)、点到坐标轴及原点的距离

点P(x,y)到坐标轴及原点的距离:

(1)点P(x,y)到x轴的距离等于y

(2)点P(x,y)到y轴的距离等于x

(3)点P(x,y)到原点的距离等于x2y2

三、坐标变化与图形变化的规律:

坐标(x,y)的变化x×a或y×ax×a,y×ax×(-1)或y×(-1)x×(-1),y×(-1)x+a或y+ax+a,y+a图形的变化被横向或纵向拉长(压缩)为原来的a倍放大(缩小)为原来的a倍关于y轴或x轴对称关于原点成中心对称沿x轴或y轴平移a个单位沿x轴平移a个单位,再沿y轴平移a个单第五章一次函数

一、函数:

一般地,在某一变化过程中有两个变量x与y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。

二、自变量取值范围

使函数有意义的自变量的取值的全体,叫做自变量的取值范围。一般从整式(取全体实数),分式(分母不为0)、二次根式(被开方数为非负数)、实际意义几方面考虑。三、函数的三种表示法

(1)关系式(解析)法

两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做关系式(解析)法。

(2)列表法

把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。

(3)图象法

用图象表示函数关系的方法叫做图象法。

四、由函数关系式画其图像的一般步骤

(1)列表:列表给出自变量与函数的一些对应值

(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点

(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。

五、正比例函数和一次函数1、正比例函数和一次函数的概念

一般地,若两个变量x,y间的关系可以表示成ykxb(k,b为常数,k0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。

特别地,当一次函数ykxxxx的b=0时(即ykx)(k为常数,k0),称y是x的正比例函数。

2、一次函数的图像:所有一次函数的图像都是一条直线3、一次函数、正比例函数图像的主要特征:

一次函数ykxb的图像是经过点(0,b)的直线;正比例函数ykx的图像是经过原点(0,0)的直线。

k的符号b的符号函数图像yb>00xyb0xyb0时,图像经过第一、三象限,y随x的增大而增大;

(2)当k0时,y随x的增大而增大(2)当k(1)平均数:一般地,对于n个数x1,x2,,xn,我们把个数的算术平均数,简称平均数,记为x。

(2)加权平均数:

1n(x1x2xn)叫做这n

3、众数

一组数据中出现次数最多的那个数据叫做这组数据的众数。

4、中位数

一般地,将一组数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。

八年级上册数学知识点归纳总结 第12篇

初二上学期数学知识点归纳

xxx知识概念

1、xxx:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做xxx。

2、三边关系:xxx任意两边的和大于第三边,任意两边的差小于第三边。

3、高:从xxx的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做xxx的高。

4、中线:在xxx中,连接一个顶点和它对边中点的线段叫做xxx的中线。

5、角平分线:xxx的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做xxx的角平分线。

6、xxx的稳定性:xxx的形状是固定的,xxx的这个性质叫xxx的稳定性。

7、多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。

8、多边形的内角:多边形相邻两边组成的角叫做它的内角。

9、多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。

10、多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。

11、正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形。

12、平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。

13、公式与性质:

(1)xxx的内角和:xxx的内角和为180°

(2)xxx外角的性质:

性质1:xxx的一个外角等于和它不相邻的两个内角的和。

性质2:xxx的一个外角大于任何一个和它不相邻的内角。

(3)多边形内角和公式:边形的内角和等于?180°

(4)多边形的外角和:多边形的外角和为360°

(5)多边形对角线的条数:①从边形的一个顶点出发可以引条对角线,把多边形分成个xxx。②边形共有条对角线。

初二数学课文知识点

一.知识框架

二.知识概念

1.算术平xxx:一般地,如果一个正数x的平方等xxx,即x2=a,那么正数x叫做a的算术平xxx,记作。0的算术平xxx为0;从定义可知,只有当a≥0时,xxx有算术平xxx。

2.平xxx:一般地,如果一个数x的平xxx等xxx,即x2=a,那么数x就叫做a的平xxx。

3.正数有两个平xxx(一正一负)它们互为相反数;0只有一个平xxx,就是它本身;负数没有平xxx。

4.正数的立xxx是正数;0的立xxx是0;负数的立xxx是负数。

5.数a的相反数是-a,一个正实数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0

实数部分主要要求学生了解无理数和实数的概念,知道实数和数轴上的点一一对应,能估算无理数的大小;了解实数的运算法则及运算律,会进行实数的运算。重点是实数的意义和实数的分类;实数的运算法则及运算律。

初二数学复习方法总结

一、初中数学中考复习方法:

数学家华罗庚曾经说过:“聪明在于学习,天才在于勤奋”,勤能补拙是良训,一分辛劳一分才。

1.复习一定要做到勤

勤动手:做题不要看,一定要算,不会的知识点写下来,记在笔记本上。

勤动口:不会的有疑问的一定要问老师,时间不等人,在没有时间可以浪费。而且学会与同学讨论问题。

勤动耳:老师讲的复习课一定要听,不要认为这道题会,老师讲就可以溜号,须知温故可知新。

勤动脑:善于思考问题,积极思考问题——吸收、储存信息

勤动腿:不要参加过于激烈的运动,防止受伤影响学习,但要运动,每天慢跑30分钟即可,报至状态。

2.初中数学复习还要强调两个要点:

一要:动手,二要:动脑。

动脑就是要学会观察分析问题,学会思考,不要拿到题就做,找到已知和未知之间的联系,多问几个为什么,多体会考的哪个知识点。

动手就是多实践,多做题,要拳不离手曲不离口。同学就是题不离手,这两个要点大家要记住并且要坚持住。动脑又动手,才能地发挥大脑的效率。这也是老师的经验。

3.用心做到三个一遍

上课要认真听一遍:听老师讲的方法知识等。

动手算一遍:按照老师的思路算一遍看看是否融会贯通。

认真想一遍:想想为什么这么做题,考的哪个知识。

4.重视简单的学习过程

读好一本教科书它是教学、中考的主要依据;

记好一本笔记方法知识是教师多年经验的结晶,每人自己准备一本错题集;

做好做净一本习题集它是使知识拓宽;

这些看似平凡简单,但是确实老师亲身的体验,用心观察我们的中考、高考状元,其实他们每天重复的不就是老师刚刚说的吗?

没有宝典神功,只有普普通通。最最难能可贵的是坚持。

资源可以的话,找几套往届的期末考试题,是自己县区的,其他县区也可以(考点差不多一样的),在规定时间内,摸摸底,熟悉每个章节考的的题型,练练自己的做题效率。很多同学第一次做练习出错,如果不及时纠正、反思,而仅仅是把答案改正,那么他没有真正地弄明白自己到底错在什么地方,也就没弄明白如何应用这部分知识,最终会导致在今后遇到类似的问题一错再错。

八年级上册数学知识点归纳总结 第13篇

(一)运用公式法:

我们知道整式乘法与因式分解互为逆变形。如果把乘法公式反过来就是把多项式分解因式。于是有:

a2-b2=(a+b)(a-b)

a2+2ab+b2=(a+b)2

a2-2ab+b2=(a-b)2

如果把乘法公式反过来,就可以用来把某些多项式分解因式。这种分解因式的方法叫做运用公式法。

(二)平方差公式

1、平方差公式

(1)式子:a2-b2=(a+b)(a-b)

(2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。这个公式就是平方差公式。

(三)因式分解

1、因式分解时,各项如果有公因式应先提公因式,再进一步分解。

2、因式分解,必须进行到每一个多项式因式不能再分解为止。

(四)完全平方公式

(1)把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反过来,就可以得到:a2+2ab+b2=(a+b)2

a2-2ab+b2=(a-b)2

这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。

把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式。

上面两个公式叫完全平方公式。

(2)完全平方式的形式和特点

①项数:三项

②有两项是两个数的的平方和,这两项的符号相同。

③有一项是这两个数的积的两倍。

(3)当多项式中有公因式时,应该先提出公因式,再用公式分解。

(4)完全平方公式中的a、b可表示单项式,也可以表示多项式。这里只要将多项式看成一个整体就可以了。

(5)分解因式,必须分解到每一个多项式因式都不能再分解为止。

八年级上册数学知识点归纳总结 第14篇

一.知识框架

二.知识概念

1.算术平xxx:一般地,如果一个正数x的平方等xxx,即x2=a,那么正数x叫做a的算术平xxx,记作。0的算术平xxx为0;从定义可知,只有当a≥0时,xxx有算术平xxx。

2.平xxx:一般地,如果一个数x的平xxx等xxx,即x2=a,那么数x就叫做a的平xxx。

3.正数有两个平xxx(一正一负)它们互为相反数;0只有一个平xxx,就是它本身;负数没有平xxx。

4.正数的立xxx是正数;0的立xxx是0;负数的立xxx是负数。

5.数a的相反数是-a,一个正实数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0

实数部分主要要求学生了解无理数和实数的概念,知道实数和数轴上的点一一对应,能估算无理数的大小;了解实数的运算法则及运算律,会进行实数的运算。重点是实数的意义和实数的分类;实数的运算法则及运算律。

八年级上册数学知识点归纳总结 第15篇

一、 在平面内,确定物体的位置一般需要两个数据。

二、平面直角坐标系及有关概念

1、平面直角坐标系

在平面内,两条互相垂直且有公共原点的数轴,组成平面直角坐标系。其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;x轴和y轴统称坐标轴。它们的公共原点O称为直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。

2、为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。

注意:x轴和y轴上的点(坐标轴上的点),不属于任何一个象限。

3、点的坐标的概念

对于平面内任意一点P,过点P分别x轴、y轴向作垂线,垂足在上x轴、y轴对应的数a,b分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标。

点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有,分开,横、纵坐标的位置不能颠倒。平面内点的坐标是有序实数对,当 时,(a,b)和(b,a)是两个不同点的坐标。

平面内点的与有序实数对是一一对应的。

4、不同位置的点的坐标的特征

(1)、各象限内点的坐标的特征

点P(x,y)在第一象限:x0

点P(x,y)在第二象限:x0

点P(x,y)在第三象限:x0

点P(x,y)在第四象限:x0

(2)、坐标轴上的点的特征

点P(x,y)在x轴上,y=0 ,x为任意实数

点P(x,y)在y轴上,x=0 ,y为任意实数

点P(x,y)既在x轴上,又在y轴上, x,y同时为零,即点P坐标为(0,0)即原点

(3)、两条坐标轴夹角平分线上点的坐标的特征

点P(x,y)在第一、三象限夹角平分线(直线y=x)上,x与y相等

点P(x,y)在第二、四象限夹角平分线上,x与y互为相反数

(4)、和坐标轴平行的直线上点的坐标的特征

位于平行于x轴的直线上的各点的纵坐标相同。

位于平行于y轴的直线上的各点的横坐标相同。

(5)、关于x轴、y轴或原点对称的点的坐标的特征

点P与点p关于x轴对称 横坐标相等,纵坐标互为相反数,即点P(x,y)关于x轴的对称点为P(x,-y)

点P与点p关于y轴对称 纵坐标相等,横坐标互为相反数,即点P(x,y)关于y轴的对称点为P(-x,y)

点P与点p关于原点对称 横、纵坐标均互为相反数,即点P(x,y)关于原点的对称点为P(-x,-y)

(6)、点到坐标轴及原点的距离

点P(x,y)到坐标轴及原点的距离:

(1)点P(x,y)到x轴的距离等于|y|;

(2)点P(x,y)到y轴的距离等于|x|;

(3)点P(x,y)到原点的距离等于根号x__x+y__y

三、坐标变化与图形变化的规律:

坐标(x,y)的变化

图形的变化

x a或y a

被横向或纵向拉长(压缩)为原来的a倍

x a,y a

放大(缩小)为原来的a倍

x (-1)或y (-1)

关于y轴或x轴对称

x (-1),y (-1)

关于原点成中心对称

x +a或y+ a

沿x轴或y轴平移a个单位

x +a,y+ a

沿x轴平移a个单位,再沿y轴平移a个单

八年级上册数学知识点归纳总结 第16篇

(有理数总可以用有限小数或无限循环小数表示)

一般地,如果一个正数x的平方等xxx,那么这个正数x就叫做a的算术平xxx。

特别地,我们规定0的算术平xxx是0。

一般地,如果一个数x的平方等xxx,那么这个数x就叫做a的平xxx(也叫二次xxx)

一个正数有两个平xxx;0只有一个平xxx,它是0本身;负数没有平xxx。

求一个数a的平xxx的运算,叫做开平方,其中a叫做被开方数。

一般地,如果一个数x的立方等xxx,那么这个数x就叫做a的立xxx(也叫做三次xxx)。

正数的立xxx是正数;0的立xxx是0;负数的立xxx是负数。

求一个数a的立xxx的运算,叫做开立方,其中a叫做被开方数。

有理数和无理数统称为实数,即实数可以分为有理数和无理数。

每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数。即实数和数轴上的点是一一对应的。

在数轴上,右边的点表示的数比左边的点表示的数大。

实数知识点

平xxx:

①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平xxx。

②如果一个数X的平方等于A,那么这个数X就叫做A的平xxx。

③一个正数有2个平xxx/0的平xxx为0/负数没有平xxx。

④求一个数A的平xxx运算,叫做开平方,其中A叫做被开方数。

立xxx:

①如果一个数X的立方等于A,那么这个数X就叫做A的立xxx。

②正数的立xxx是正数、0的立xxx是0、负数的立xxx是负数。

③求一个数A的立xxx的运算叫开立方,其中A叫做被开方数。

实数:

①实数分有理数和无理数。

②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。

③每一个实数都可以在数轴上的`一个点来表示。

打好基础

数学基础包括基础知识和基本技能。基础知识是指数学公式,定理,原理和概念之间的内在和外在联系。基本技能指的是计算技巧,绘图技巧以及使用公式解决问题。技能等等。只要掌握了基础知识和基本技能,学生就可以灵活运用数学知识来解决各种问题。

注意新旧知识之间的联系

数学知识是初中的基础。学生可以合理地分配时间在初中复习这部分知识,同时学习新知识。新知识的学习通常是通过旧知识或以前学习知识的延续来引入的。因此,在学习数学的过程中,学生应注意接触新旧知识,巩固和提高对数学知识的掌握程度。

善于总结和整理

要想把数学学好的话,我们在学习之后,对于重点内容,我们一定要善于总结和整理,不断的强化记忆一下重点知识点。

加法:①同号相加,取相同的符号,把绝对值相加。②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。③一个数与0相加不变。

减法:减去一个数,等于加上这个数的相反数。

乘法:①两数相乘,同号得正,异号得负,绝对值相乘。②任何数与0相乘得0。③乘积为1的两个有理数互为倒数。

除法:①除以一个数等于乘以一个数的倒数。②0不能作除数。

乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。

高中数学学习方法

1怎么才能提高高考数学成绩

一、看课本补基础

基础很差,那就不要总想着有什么捷径,不要给自己找理由去偷懒,积累的过程从来就没有捷径,看课本补上基础,是一个缓慢但却最实际最靠谱的方法,特别是高三第一轮复习的时候,对于概念,公式,如何推导公式等一定要重点弄懂,还有每个知识点后面的例题,至于有同学会问那些课后习题需要做么?我觉得应该没有那么多时间,而且那些针对性也不强,毕竟有些必修课本是面向全部学生,没有分文理科的。

二、跟着老师步骤去看课本补基础

在第一轮复习的时候,很多同学会觉得很多知识点都不懂并且还会有不知从哪里去看课本好,这时老师复习节奏很重要,你就不要自己计划今天要复习课本哪里,第一轮复习可以跟着老师步骤,老师讲到哪,就去看这部分知识点的内容,具体按照上一步骤。

2提高高考数学成绩的技巧

背例题

这个是一个比较冷门但是效果奇好的提高数学成绩的方法。这个办法就是,遇到你不会的题目,如果怎么都做不出来,你就不用花时间弄懂它了,把它背下来,但是不要什么题都背,要背那种中等难度的题,高难的题一般以后也用不上,简单的你自己就会做。这样做一段时间,你会发现你节省了很多时间,遇到不会的题你也会往里面“套答案”了。

课后复习

八年级上册数学知识点归纳总结 第17篇

四边形的相关概念

1、四边形

在同一平面内,由不在同一直线上的四条线段首尾顺次相接组成的图形叫做四边形。

2、四边形具有不稳定性

3、四边形的内角和定理及外角和定理

四边形的内角和定理:四边形的内角和等于360°。

四边形的外角和定理:四边形的外角和等于360°。

推论:多边形的内角和定理:n边形的内角和等于(n?2)?180°;

多边形的外角和定理:任意多边形的外角和等于360°。

6、设多边形的边数为n,则多边形的对角线共有n(n?3)条。从n边形的`一个顶点出2发能引(n-3)条对角线,将n边形分成(n-2)个xxx。

八年级上册数学知识点归纳总结 第18篇

分数的加减法

1、通分与xxx虽都是针对分式而言,但却是两种相反的变形。xxx是针对一个分式而言,而通分是针对多个分式而言;xxx是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来、

2、通分和xxx都是依据分式的基本性质进行变形,其共同点是保持分式的值不变。

3、一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备。

4、通分的依据:分式的基本性质。

5、通分的关键:确定几个分式的公分母。

通常取各分母的所有因式的最高次幂的积作公分母,这样的公分母叫做最xxx分母。

6、类比分数的通分得到分式的通分:

把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分。

7、同分母分式的加减法的法则是:同分母分式相加减,分母不变,把分子相加减。

同分母的分式加减运算,分母不变,把分子相加减,这就是把分式的运算转化为整式运算。

8、异分母的分式加减法法则:异分母的分式相加减,先通分,变为同分母的分式,然后再加减。

9、同分母分式相加减,分母不变,只须将分子作加减运算,但注意每个分子是个整体,要适时添上括号。

10、对于整式和分式之间的加减运算,则把整式看成一个整体,即看成是分母为1的分式,以便通分。

11、异分母分式的加减运算,首先观察每个公式是否最简分式,能xxx的先xxx,使分式简化,然后再通分,这样可使运算简化。

12、作为最后结果,如果是分式则应该是最简分式。

八年级上册数学知识点归纳总结 第19篇

初二上学期数学知识点归纳

一、勾股定理

1、勾股定理

直角xxx两直角边a,b的平方和等于斜边c的平方,即a2+b2=c2。

2、勾股定理的逆定理

如果xxx的三边长a,b,xxx这种关系,那么这个xxx是直角xxx。

3、勾股数

满足的三个正整数,称为勾股数。

常见的勾股数组有:(3,4,5);(5,12,13);(8,15,17);(7,24,25);(20,21,29);(9,40,41);……(这些勾股数组的倍数仍是勾股数)。

二、证明

1、对事情作出判断的句子,就叫做命题。即:命题是判断一件事情的句子。

2、xxx内角和定理:xxx三个内角的和等于180度。

(1)证明xxx内角和定理的思路是将原xxx中的三个角凑到一起组成一个平角。一般需要作辅助。

(2)xxx的外角与它相邻的内角是互为补角。

3、xxx的外角与它不相邻的内角关系

(1)xxx的一个外角等于和它不相邻的两个内角的和。

(2)xxx的一个外角大于任何一个和它不相邻的内角。

4、证明一个命题是真命题的基本步骤

(1)根据题意,画出图形。

(2)根据条件、结论,结合图形,写出已知、求证。

(3)经过分析,找出由已知推出求证的途径,写出证明过程。在证明时需注意:①在一般情况下,分析的过程不要求写出来。②证明中的每一步推理都要有根据。如果两条直线都和第三条直线平行,那么这两条直线也相互平行。

八年级上册数学知识点

(一)运用公式法

我们知道整式乘法与因式分解互为逆变形。如果把乘法公式反过来就是把多项式分解因式。于是有:

a2-b2=(a+b)(a-b)

a2+2ab+b2=(a+b)2

a2-2ab+b2=(a-b)2

如果把乘法公式反过来,就可以用来把某些多项式分解因式。这种分解因式的方法叫做运用公式法。

(二)平方差公式

平方差公式

(1)式子:a2-b2=(a+b)(a-b)

(2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。这个公式就是平方差公式。

(三)因式分解

1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。

2.因式分解,必须进行到每一个多项式因式不能再分解为止。

(四)完全平方公式

(1)把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反过来,就可以得到:

a2+2ab+b2=(a+b)2

a2-2ab+b2=(a-b)2

这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。

把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式。

上面两个公式叫完全平方公式。

(2)完全平方式的形式和特点

①项数:三项

②有两项是两个数的的平方和,这两项的符号相同。

③有一项是这两个数的积的两倍。

(3)当多项式中有公因式时,应该先提出公因式,再用公式分解。

(4)完全平方公式中的a、b可表示单项式,也可以表示多项式。这里只要将多项式看成一个整体就可以了。

(5)分解因式,必须分解到每一个多项式因式都不能再分解为止。

初二数学知识点归纳

第一章分式

1分式及其基本性质分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变

2分式的运算

(1)分式的乘除乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

(2)分式的加减加减法法则:同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减

3整数指数幂的加减乘除法

4分式方程及其解法

第二章反比例函数

1反比例函数的表达式、图像、性质

图像:双曲线

表达式:y=k/x(k不为0)

性质:两支的增减性相同;

2反比例函数在实际问题中的应用

八年级上册数学知识点归纳总结 第20篇

轴对称

一.知识框架

二.知识概念

1.对称轴:如果一个xxx某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。

2.性质:(1)轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

(2)角平分线上的点到角两边距离相等。

(3)线段垂直平分线上的任意一点到线段两个端点的距离相等。

(4)与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

(5)轴对称图形上对应线段相等、对应角相等。

3.等腰xxx的性质:等腰xxx的两个底角相等,(等边对等角)

4.等腰xxx的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一”。

5.等腰xxx的判定:等角对等边。

6.等边xxx角的特点:三个内角相等,等于60°,

7.等边xxx的判定:三个角都相等的xxx是等腰xxx。

有一个角是60°的等腰xxx是等边xxx

有两个角是60°的xxx是等边xxx。

8.直角xxx中,30°角所对的直角边等于斜边的一半。

9.直角xxx斜边上的中线等于斜边的一半。

本章内容要求学生在建立在轴对称概念的基础上,能够对生活中的图形进行分析鉴赏,亲身经历数学美,正确理解等腰xxx、等边xxx等的性质和判定,并利用这些性质来解决一些数学问题。

八年级上册数学知识点归纳总结 第21篇

全等xxx知识点

1、全等图形:能够完全重合的两个图形就是全等图形。

2、全等图形的性质:全等多边形的对应边、对应角分别相等。

3、全等xxx:xxx是特殊的多边形,因此,全等xxx的对应边、对应角分别相等。同样,如果两个xxx的边、角分别对应相等,那么这两个xxx全等。

说明:

全等xxx对应边上的高,中线相等,对应角的平分线相等;全等xxx的周长,面积也都相等。

这里要注意:

(1)周长相等的两个xxx,不一定全等;

(2)面积相等的两个xxx,也不一定全等。

小练习

1、下列说法中正确的说法为()

xxx等图形的形状相同、大小相等;②全等xxx的对应边相等;③全等xxx的对应角相等;④全等xxx的周长、面积分别相等,

A、①②③④B、①③④C、①②④D、②③④

2、一个正方形的侧面展开图有()个全等的正方形

A、2个B、3个C、4个D、6个

3、对于两个图形,给出下列结论,其中能获得这两个图形全等的结论共有()

①两个图形的周长相等;②两个图形的面积相等;③两个图形的周长和面积都相等;④两个图形的形状相同,大小也相等、

A、1个B、2个C、3个D、4个

xxx全等的判定知识点

1、xxx全等的判定公理及推论有:

(1)“边角边”简称“SAS”,两边和它们的夹角对应相等的两个xxx全等(“边角边”或“SAS”)。

(2)“角边角”简称“ASA”,两个角和它们的夹边分别对应相等的两个xxx全等(“角边角”或“ASA”)。

(3)“边边边”简称“SSS”,三边对应相等的两个xxx全等(“边边边”或“SSS”)。

(4)“角角边”简称“AAS”,有两角和其中一角的对边对应相等的两个xxx全等(“角角边”或“AAS”)。

2、直角xxx全等的判定

利用一般xxx全等的判定都能证明直角xxx全等、

斜边和一条直角边对应相等的两个直角xxx全等(“斜边、直角边”或“HL”)

注意:两边一对角(SSA)和三角(AAA)对应相等的两个xxx不一定全等。

小练习

1、已知AB=AD,∠BAE=∠DAC,要使△ABC≌△ADE,可补充的条件是______

核心考点:全等xxx的判定

2、xxx师傅在做完门框后,常常在门框上斜钉两根木条,这样做的数学原理是______

核心考点:xxx的稳定性

3、将两根钢条AA’、BB’的中点O连在一起,使AA’、BB’可以绕着点O自由旋转,就做成了一个测量工件,则A’B’的长等于内槽宽AB,那么判定△OAB≌△OA’B’的理由是______

核心考点:全等xxx的判定

角的平分线的性质知识点

1、角平分线推论:角的内部到角的两边的距离相等的点在叫的平分线上。

2、判定定理:到角的两边距离相等的点在该角的角平分线上。

3、证明两xxx全等或利用它证明线段或角的相等的基本方法步骤:

①、确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰xxx、等所隐含的边角关系),

②、回顾xxx判定,搞清我们还需要什么,

③、正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题)

八年级上册数学知识点归纳总结 第22篇

1.勾股定理

1、勾股定理

直角xxx两直角边a,b的平方和等于斜边c的平方,即a2b2c22、勾股定理的逆定理

如果xxx的三边长a,b,xxx关系a2b2c2,那么这个xxx是直角xxx。

勾股数:满足a2b2c2的三个正整数,称为勾股数。

2.实数

一、实数的概念及分类

1、实数的分类正有理数有理数零有限小数和无限循环小数实数负有理数正无理数无理数无限不循环小数负无理数

2、无理数:无限不循环小数叫做无理数。

在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:

(1)开方开不尽的数,如7,32等;π

(2)有特定意义的数,如圆周率π,或化简后含有π的数,如+8等;

(3)有特定结构的数,如等;

(4)某些三角函数值,如sin60等二、实数的倒数、相反数和绝对值1、相反数

实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=b,反之亦成立。2、绝对值

在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。(|a|≥0)。零的绝对值是它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。

3、倒数

如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。零没有倒数。

4、数轴

规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。

解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。

5、估算

三、平xxx、算数平xxx和立xxx

1、算术平xxx:一般地,如果一个正数x的平方等xxx,即x2=a,那么这个正数x就叫做a的算术平xxx。特别地,0的算术平xxx是0。

表示方法:记作“a”,读作根号a。

性质:正数和零的算术平xxx都只有一个,零的算术平xxx是零。

2、平xxx:一般地,如果一个数x的平方等xxx,即x2=a,那么这个数x就叫做a的平xxx(或二次xxx)。

表示方法:正数a的平xxx记做“a”,读作“正、负根号a”。

性质:一个正数有两个平xxx,它们互为相反数;零的平xxx是零;负数没有平xxx。开平方:求一个数a的平xxx的运算,叫做开平方。a0注意a的双重非负性:a0

3、立xxx

一般地,如果一个数x的立方等xxx,即x=a那么这个数x就叫做a的立xxx(或三次xxx)。

表示方法:记作3a

性质:一个正数有一个正的立xxx;一个负数有一个负的立xxx;零的立xxx是零。注意:3a3a,这说明三次根号内的负号可以移到根号外面。

四、实数大小的比较

1、实数比较大小:正数大于零,负数小于零,正数大于一切负数;数轴上的两个点所表示的数,右边的总比左边的大;两个负数,绝对值大的反而小。

2、实数大小比较的几种常用方法

(1)数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。

(2)求差比较:设a、b是实数,

ab0ab,ab0ab,ab0ab

(3)求商比较法:设a、b是两正实数,1ab;baab1ab;ab1ab;

(4)绝对值比较法:设a、b是两负实数,则abab。

(5)平方法:设a、b是两负实数,则abab。五、算术平xxx有关计算(二次根式)

1、含有二次根号“2、性质:

2(1)(a)a(a0)

22”;被开方数a必须是非负数。

a(a0)

(2)a2aa(a0)

第1页共5页数学知识必须经过自己的加工、创造,才能真正领会,学以致用!

(3)abababab(a0,b0)(abab(a0,b0))n(n3)6、设多边形的边数为n,则多边形的对角线共有

(a0,b0)(abab(a0,b0))2条。从n边形的一个顶点出

3、运算结果若含有“a”形式,必须满足:

(1)被开方数的因数是整数,因式是整式;

(2)被开方数中不含能开得尽方的因数或因式

六、实数的运算

(1)六种运算:加、减、乘、除、乘方、开方

(2)实数的运算顺序

先算乘方和开方,再算乘除,最后算加减,如果有括号,就先算括号里面的。

(3)运算律

加法交换律abba

加法结合律(ab)ca(bc)乘法交换律abba

乘法结合律(ab)ca(bc)乘法对加法的分配律a(bc)abac

3.图形的平移与旋转

一、平移

1、定义

在平面内,将一个图形整体沿某方向移动一定的距离,这样的图形运动称为平移。

2、性质

平移前后两个图形是全等图形,对应点连线平行且相等,对应线段平行且相等,对应角相等。

二、旋转

1、定义

在平面内,将一个图形绕某一定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角叫做旋转角。

2、性质

旋转前后两个图形是全等图形,对应点到旋转中心的距离相等,对应点与旋转中心的连线所成的角等于旋转角。

4.四边形性质探索

一、四边形的相关概念

1、四边形

在同一平面内,由不在同一直线上的四条线段首尾顺次相接组成的图形叫做四边形。

2、四边形具有不稳定性

3、四边形的内角和定理及外角和定理

四边形的内角和定理:四边形的内角和等于360°。四边形的外角和定理:四边形的外角和等于360°。

推论:多边形的内角和定理:n边形的内角和等于(n2)180°;多边形的外角和定理:任意多边形的外角和等于360°。

发能引(n-3)条对角线,将n边形分成(n-2)个xxx。

二、平行四边形

1、平行四边形的定义

两组对边分别平行的四边形叫做平行四边形。

2、平行四边形的性质

(1)平行四边形的对边平行且相等。

(2)平行四边形相邻的角互补,对角相等

(3)平行四边形的对角线互相平分。

(4)平行四边形是中心对称图形,对称中心是对角线的交点。常用点:

(1)若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段的中点是对角线的交点,并且这条直线二等分此平行四边形的面积。

(2)推论:夹在两条平行线间的平行线段相等。

3、平行四边形的判定

(1)定义:两组对边分别平行的四边形是平行四边形

(2)定理

1:两组对角分别相等的四边形是平行四边形

(3)定理2:两组对边分别相等的四边形是平行四边形

(4)定理3:对角线互相平分的四边形是平行四边形

(5)定理4:一组对边平行且相等的四边形是平行四边形

4、两条平行线的距离

两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线的距离。

平行线间的距离处处相等。

5、平行四边形的面积S平行四边形=底边长×高=ah

三、矩形

1、矩形的定义

有一个角是直角的平行四边形叫做矩形。

2、矩形的性质

(1)矩形的对边平行且相等

(2)矩形的四个角都是直角

(3)矩形的对角线相等且互相平分

(4)矩形既是中心对称图形又是轴对称图形;对称中心是对角线的交点(对称中心到矩形四个顶点的距离相等);对称轴有两条,是对边中点连线所在的直线。

3、矩形的判定

(1)定义:有一个角是直角的平行四边形是矩形

(2)定理1:有三个角是直角的四边形是矩形

(3)定理2:对角线相等的平行四边形是矩形4、矩形的面积S矩形=长×宽=ab四、菱形

1、菱形的定义:有一组邻边相等的平行四边形叫做菱形

第2页共5页数学知识必须经过自己的加工、创造,才能真正领会,学以致用!

2、菱形的性质

(1)菱形的四条边相等,对边平行

(2)菱形的相邻的角互补,对角相等

(3)菱形的对角线互相垂直平分,并且每一条对角线平分一组对角

(4)菱形既是中心对称图形又是轴对称图形;对称中心是对角线的交点(对称中心到菱形四条边的距离相等);对称轴有两条,是对角线所在的直线。

3、菱形的判定

(1)定义:有一组邻边相等的平行四边形是菱形

(2)定理1:四边都相等的四边形是菱形

(3)定理2:对角线互相垂直的平行四边形是菱形

4、菱形的面积

S菱形=底边长×高=两条对角线乘积的一半

五、正方形(3~10分)

1、正方形的定义有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。

2、正方形的性质

(1)正方形四条边都相等,对边平行

(2)正方形的四个角都是直角

(3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角

(4)正方形既是中心对称图形又是轴对称图形;对称中心是对角线的交点;对称轴有四条,是对角线所在的直线和对边中点连线所在的直线。

3、正方形的判定

判定一个四边形是正方形的主要依据是定义,途径有两种:先证它是矩形,再证它是菱形。先证它是菱形,再证它是矩形。

4、正方形的面积

设正方形边长为a,对角线长为b,S正方形=a2

(三)等腰梯形1、等腰梯形的定义

两腰相等的梯形叫做等腰梯形。

2、等腰梯形的性质

(1)等腰梯形的两腰相等,两底平行。

(2)等腰梯形同一底上的两个角相等,同一腰上的两个角互补。

(3)等腰梯形的对角线相等。

(4)等腰梯形是轴对称图形,它只有一条对称轴,即两底的垂直平分线。

3、等腰梯形的判定

(1)定义:两腰相等的梯形是等腰梯形

(2)定理:在同一底上的两个角相等的梯形是等腰梯形

(3)对角线相等的梯形是等腰梯形。(选择题和填空题可直接用)

(四)梯形的面积

(1)如图,S梯形ABCD12(CDAB)DE

(2)梯形中有关图形的面积:

①SABDSBAC;②SAODSBOC;③SADCSBCD

七、有关中点四边形问题的知识点:

(1)顺次连接任意四边形的四边中点所得的四边形是平行四边形;

(2)顺次连接矩形的四边中点所得的四边形是菱形;

(3)顺次连接菱形的四边中点所得的四边形是矩形;

(4)顺次连接等腰梯形的四边中点所得的四边形是菱形;

(5)顺次连接对角线相等的四边形四边中点所得的`四边形是菱形;

(6)顺次连接对角线互相垂直的四边形四边中点所得的四边形是矩形;

(7)顺次连接对角线互相垂直且相等的四边形四边中点所得的四边形是正方形;

八、中心对称图形

1、定义

在平面内,一个图形绕某个点旋转180°,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心。

2、性质

(1)关于中心对称的两个图形是全等形。

(2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。

(3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。

3、判定

如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。

九、四边形、矩形、菱形、正方形、梯形、等腰梯形、直角梯形的关系图:

b22

六、梯形

(一)1、梯形的相关概念

一组对边平行而另一组对边不平行的四边形叫做梯形。

梯形中平行的两边叫做梯形的底,通常把较短的底叫做上底,较长的底叫做下底。梯形中不平行的两边叫做梯形的腰。梯形的两底的距离叫做梯形的高。2、梯形的判定

(1)定义:一组对边平行而另一组对边不平行的四边形是梯形。

(2)一组对边平行且不相等的四边形是梯形。

(二)直角梯形的定义:一腰垂直于底的梯形叫做直角梯形。一般地,梯形的分类如下:一般梯形

梯形直角梯形特殊梯形

等腰梯形

第3页共5页数学知识必须经过自己的加工、创造,才能真正领会,学以致用!

5.位置的确定

一、在平面内,确定物体的位置一般需要两个数据。

二、平面直角坐标系及有关概念1、平面直角坐标系

在平面内,两条互相垂直且有公共原点的数轴,组成平面直角坐标系。其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;x轴和y轴统称坐标轴。它们的公共原点O称为直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。

2、为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。

注意:x轴和y轴上的点(坐标轴上的点),不属于任何一个象限。

3、点的坐标的概念

对于平面内任意一点P,过点P分别x轴、y轴向作垂线,垂足在上x轴、y轴对应的数a,b分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标。

点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。平面内点的坐标是有序实数对,当ab时,(a,b)和(b,a)是两个不同点的坐标。

平面内点的与有序实数对是一一对应的。

4、不同位置的点的坐标的特征

(1)、各象限内点的坐标的特征

点P(x,y)在第一象限x0,y0

点P(x,y)在第二象限x0,y0点P(x,y)在第三象限x0,y0点P(x,y)在第四象限x0,y0

(2)、坐标轴上的点的特征

点P(x,y)在x轴上y0,x为任意实数点P(x,y)在y轴上x0,y为任意实数

点P(x,y)既在x轴上,又在y轴上x,y同时为零,即点P坐标为(0,0)即原点

(3)、两条坐标轴夹角平分线上点的坐标的特征

点P(x,y)在第一、三象限夹角平分线(直线y=x)上x与y相等点P(x,y)在第二、四象限夹角平分线上x与y互为相反数

(4)、和坐标轴平行的直线上点的坐标的特征位于平行于x轴的直线上的各点的纵坐标相同。位于平行于y轴的直线上的各点的横坐标相同。

(5)、关于x轴、y轴或原点对称的点的坐标的特征

点P与点p’关于x轴对称横坐标相等,纵坐标互为相反数,即点P(x,y)关于x轴的对称点为P’(x,-y)

点P与点p’关于y轴对称纵坐标相等,横坐标互为相反数,即点P(x,y)关于y轴的对称点为P’(-x,y)

点P与点p’关于原点对称横、纵坐标均互为相反数,即点P(x,y)关于原点的对称点为P’(-x,-y)

(6)、点到坐标轴及原点的距离点P(x,y)到坐标轴及原点的距离:

(1)点P(x,y)到x轴的距离等于y

(2)点P(x,y)到y轴的距离等于x

(3)点P(x,y)到原点的距离等于三、坐标变化与图形变化的规律:

坐标(x,y)的变化x×a或y×ax×a,y×ax×(-1)或y×(-1)x×(-1),y×(-1)x+a或y+ax+a,y+axy22

图形的变化被横向或纵向拉长(压缩)为原来的a倍放大(缩小)为原来的a倍关于y轴或x轴对称关于原点成中心对称沿x轴或y轴平移a个单位沿x轴平移a个单位,再沿y轴平移a个单6.一次函数

一、函数:

一般地,在某一变化过程中有两个变量x与y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。

二、自变量取值范围

使函数有意义的自变量的取值的全体,叫做自变量的取值范围。一般从整式(取全体实数),分式(分母不为0)、二次根式(被开方数为非负数)、实际意义几方面考虑。

三、函数的三种表示法及其优缺点

(1)关系式(解析)法

两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做关系式(解析)法。

(2)列表法

把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。

(3)图象法

用图象表示函数关系的方法叫做图象法。

四、由函数关系式画其图像的一般步骤

(1)列表:列表给出自变量与函数的一些对应值

(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点

(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。

五、正比例函数和一次函数

1、正比例函数和一次函数的概念

一般地,若两个变量x,y间的关系可以表示成ykxb(k,b为常数,k0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。

特别地,当一次函数ykxxxx的b=0时(即ykx)(k为常数,k0),称y是x的正比例函数。

2、一次函数的图像:所有一次函数的图像都是一条直线3、一次函数、正比例函数图像的主要特征:

一次函数ykxb的图像是经过点(0,b)的直线;正比例函数ykx的图像是经过原点(0,0)的直线。

第4页共5页数学知识必须经过自己的加工、创造,才能真正领会,学以致用!

k的符号b的符号函数图像y0x图像特征b>0图像经过一、二、三象限,y随x的增大而增大。k>0yb00x图像经过一、二、四象限,y随x的增大而减小K

八年级上册数学知识点归纳总结 第23篇

第十一章全等xxx

1、全等xxx的性质:全等xxx对应边相等、对应角相等。

2、全等xxx的判定:三边相等(SSS)、两边和它们的夹角相等(SAS)、两角和它们的夹边(ASA)、两角和其中一角的对边对应相等(AAS)、斜边和直角边相等的两直角xxx(HL)。

3、角平分线的性质:角平分线平分这个角,角平分线上的点到角两边的距离相等

4、角平分线推论:角的内部到角的两边的距离相等的点在叫的平分线上。

5、证明两xxx全等或利用它证明线段或角的相等的基本方法步骤:①、确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰xxx、等所隐含的边角关系),②、回顾xxx判定,搞清我们还需要什么,③、正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题)。

第十二章轴对称

1、如果一个xxx某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。

2、轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

3、角平分线上的点到角两边距离相等。

4、线段垂直平分线上的任意一点到线段两个端点的距离相等。

5、与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

6、轴对称图形上对应线段相等、对应角相等。

7、画一图形关于某条直线的轴对称图形的步骤:找到关键点,画出关键点的对应点,按照原图顺序依次连接各点。

8、点(x,y)关于x轴对称的点的坐标为(x,—y)

点(x,y)关于y轴对称的点的坐标为(—x,y)

点(x,y)关于原点轴对称的点的坐标为(—x,—y)

9、等腰xxx的性质:等腰xxx的两个底角相等,(等边对等角)

等腰xxx的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一”。

10、等腰xxx的判定:等角对等边。

11、等边xxx的三个内角相等,等于60°,

12、等边xxx的判定:三个角都相等的xxx是等腰xxx。

有一个角是60°的等腰xxx是等边xxx。

有两个角是60°的xxx是等边xxx。

13、直角xxx中,30°角所对的直角边等于斜边的一半。

14、直角xxx斜边上的中线等于斜边的一半

第十三章实数

※算术平xxx:一般地,如果一个正数x的平方等xxx,即x2=a,那么正数x叫做a的算术平xxx,记作。0的算术平xxx为0;从定义可知,只有当a≥0时,xxx有算术平xxx。

※平xxx:一般地,如果一个数x的平xxx等xxx,即x2=a,那么数x就叫做a的平xxx。

※正数有两个平xxx(一正一负)它们互为相反数;0只有一个平xxx,就是它本身;负数没有平xxx。

※正数的立xxx是正数;0的立xxx是0;负数的立xxx是负数。

数a的相反数是—a,一个正实数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0

第十四章一次函数

1、画函数图象的一般步骤:一、列表(一次函数只用列出两个点即可,其他函数一般需要列出5个以上的点,所列点是自变量与其对应的函数值),二、描点(在直角坐标系中,以自变量的值为横坐标,相应函数的值为纵坐标,描出表格中的个点,一般画一次函数只用两点),三、连线(依次用平滑曲线连接各点)。

2、根据题意写出函数解析式:关键找到函数与自变量之间的等量关系,列出等式,既函数解析式。

3、若两个变量x,y间的关系式可以表示成y=kx+b(k≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。特别地,当b=0时,称y是x的正比例函数。

4、正比列函数一般式:y=kx(k≠0),其图象是经过原点(0,0)的一条直线。

5、正比列函数y=kx(k≠0)的图象是一条经过原点的直线,当k>0时,直线y=kx经过第一、三象限,y随x的增大而增大,当k<0时,直线y=kx经过第二、四象限,y随x的增大而减小,在一次函数y=kx+xxx:k=__>0时,y随x的增大而增大;当k<0时,y随x的增大而减小。

6、已知两点坐标求函数解析式(待定系数法求函数解析式):

把两点带入函数一般式列出方程组

求出待定系数

把待定系数值再带入函数一般式,得到函数解析式

7、会从函数图象上找到一元一次方程的`解(既与x轴的交点坐标横坐标值),一元一次不等式的解集,二元一次方程组的解(既两函数直线交点坐标值)

第十五章整式的乘除与因式分解

1、同底数幂的乘法

※同底数幂的乘法法则:(m,n都是正数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:

①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a可以是一个具体的数字式字母,也可以是一个单项或多项式;

②指数是1时,不要误以为没有指数;

③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;

④当三个或三个以上同底数幂相乘时,法则可推广为(其中m、n、p均为正数);

⑤公式还可以逆用:(m、n均为正整数)

2、幂的乘方与积的乘方

※1、幂的乘方法则:(m,n都是正数)是幂的乘法法则为基础推导出来的,但两者不能混淆。

※2、底数有负号时,运算时要注意,底数是a与(—a)时不是同底,但可以利用乘方法则化成同底,如将(—a)3化成—a3。

※3、底数有时形式不同,但可以化成相同。

※4、要注意区别(ab)n与(a+b)n意义是不同的,不要误以为(a+b)n=an+bn(a、b均不为零)。

※5、积的乘方法则:积的乘方,等于把积每一个因式分别乘方,再把所得的幂相乘,即(n为正整数)。

※6、幂的乘方与积乘方法则均可逆向运用。

3、整式的乘法

※(1)单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。

单项式乘法法则在运用时要注意以下几点:

①积的系数等于各因式系数积,先确定符号,再计算绝对值。这时容易出现的错误的是,将系数相乘与指数相加混淆;

②相同字母相乘,运用同底数的乘法法则;

③只在一个单项式里含有的字母,要连同它的指数作为积的一个因式;

④单项式乘法法则对于三个以上的单项式相乘同样适用;

⑤单项式乘以单项式,结果仍是一个单项式。

※(2)单项式与多项式相乘

单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。

单项式与多项式相乘时要注意以下几点:

①单项式与多项式相乘,积是一个多项式,其项数与多项式的项数相同;

②运算时要注意积的符号,多项式的每一项都包括它前面的符号;

③在混合运算时,要注意运算顺序。

※(3)多项式与多项式相乘

多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。

多项式与多项式相乘时要注意以下几点:

①多项式与多项式相乘要防止漏项,检查的方法是:在没有合并同类项之前,积的项数应等于原两个多项式项数的积;

②多项式相乘的结果应注意合并同类项;

③对含有同一个字母的一次项系数是1的两个一次二项式相乘,其二次项系数为1,一次项系数等于两个因式中常数项的和,常数项是两个因式中常数项的积。对于一次项系数不为1的两个一次二项式(mx+a)和(nx+b)相乘可以得

4、平方差公式

¤1、平方差公式:两数和与这两数差的积,等于它们的平方差,

※即。

¤其结构特征是:

①公式左边是两个二项式相乘,两个二项式中第一项相同,第二项互为相反数;

②公式右边是两项的平方差,即相同项的平方与相反项的平方之差。

5、完全平方公式

¤1、完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。

¤即;

¤口决:首平方,尾平方,2倍乘积在中央;

¤2、结构特征:

①公式左边是二项式的完全平方;

②公式右边共有三项,是二项式中二项的平方和,再加上或减去这两项乘积的2倍。

¤3、在运用完全平方公式时,要注意公式右边中间项的符号,以及避免出现这样的错误。

添括号法则:添正不变号,添负各项变号,去括号法则同样

6、同底数幂的除法

※1、同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即(a≠0,m、n都是正数,且m>n)。

※2、在应用时需要注意以下几点:

①法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a≠0。

②任何不等于0的数的0次幂等于1,即,如,(—),则00无意义。

③任何不等于0的数的—p次幂(p是正整数),等于这个数的p的次幂的倒数,即(a≠0,p是正整数),而0—1,0—3都是无意义的;当a>0时,a—p的值一定是正的;当a<0时,a—p的值可能是正也可能是负的,如,

④运算要注意运算顺序。

7、整式的除法

¤1、单项式除法单项式

单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式;

¤2、多项式除以单项式

多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加,其特点是把多项式除以单项式转化成单项式除以单项式,所得商的项数与原多项式的项数相同,另外还要特别注意符号。

8、分解因式

※1、把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式。

※2、因式分解与整式乘法是互逆关系。

因式分解与整式乘法的区别和联系:

(1)整式乘法是把几个整式相乘,化为一个多项式;

(2)因式分解是把一个多项式化为几个因式相乘。

八年级上册数学知识点归纳总结 第24篇

1全等xxx的对应边、对应角相等

2边角边公理(SAS)有两边和它们的夹角对应相等的两个xxx全等

3角边角公理(ASA)有两角和它们的夹边对应相等的两个xxx全等

4推论(AAS)有两角和其中一角的对边对应相等的两个xxx全等

5边边边公理(SSS)有三边对应相等的两个xxx全等

6斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角xxx全等

7定理1在角的平分线上的点到这个角的两边的距离相等

8定理2到一个角的两边的距离相同的点,在这个角的平分线上

9角的平分线是到角的两边距离相等的所有点的集合

10等腰xxx的性质定理等腰xxx的两个底角相等(即等边对等角)

21推论1等腰xxx顶角的平分线平分底边并且垂直于底边

22等腰xxx的顶角平分线、底边上的中线和底边上的高互相重合

23推论3等边xxx的各角都相等,并且每一个角都等于60°

24等腰xxx的判定定理如果一个xxx有两个角相等,那么这两个角所对的边也相等(等角对等边)

25推论1三个角都相等的xxx是等边xxx

26推论2有一个角等于60°的等腰xxx是等边xxx

27在直角xxx中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

28直角xxx斜边上的中线等于斜边上的一半

29定理线段垂直平分线上的点和这条线段两个端点的距离相等

30逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

八年级上册数学知识点归纳总结 第25篇

1、刻画数据的集中趋势(平均水平)的量:平均数 、众数、中位数

2、平均数

平均数:一般地,对于n个数,我们把它们的和与n之商叫做这n个数的算术平均数,简称平均数。

加权平均数。

3、众数

一组数据中出现次数最多的那个数据叫做这组数据的众数。

4、中位数

一般地,将一组数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。

第七章 平行线的证明

1、平行线的性质

一般地,如果两条线互相平行的直线被第三条直线所截,那么同位角相等,内错角相等,同旁内角互补。

也可以简单的说成:

两直线平行,同位角相等;

两直线平行,内错角相等;

两直线平行,同旁内角互补。

2、判定平行线

两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。

也可以简单说成:

同位角相等两直线平行 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;如果同旁内角互补,那么这两条直线平行。

其他两条可以简单说成:

内错角相等两直线平行

同旁内角相等两直线平行