四年级下册知识点总结 第1篇
1.由三条线段围成的图形(每相邻两条线段的端点相连)叫做xxx。
2.xxx有3个角、3条边、3个顶点。
3.从xxx的一个顶点到它的对边做一条垂线,顶点和垂足之间的线段叫做xxx的高,这条边叫做xxx的底。
4.为了表达方便,用字母A、B、C分别表示xxx的三个顶点,xxx可表示成xxxABC。
5.xxx具有稳定性。
6.xxx的任意两边的和大于第三边。
7.xxx按角分成:
(1)锐角xxx(三个内角都是锐角的xxx)
(2)直角xxx(有一个角是直角的xxx)
(3)钝角xxx(有一个角是钝角的xxx)
8.xxx按边分成:
(1)等腰xxx(有两条边相等,相等的两条边叫做xxx的腰;有两个角相等,相等的两个角叫做底角。)
(2)等边xxx(三边相等,三个内角相等都是60°)
(3)一般xxx
9.xxx中只能有一个直角;xxx中只能有一个钝角;
xxx中至少有两个锐角,最多有三个锐角。
10.xxx的内角和是180°。
11.最少用2个相同直角xxx可以拼一个平行四边形。最少用3个相同等边xxx可以拼一个梯形。最少用2个相同等边xxx可以拼一个平行四边形。最少用2个相同等腰直角xxx可以拼一个正方形。最少用2个相同直角xxx可以拼一个长方形。
12.无论是什么形状的图形,没有重叠,没有空隙地铺在平面上,就是密铺。
数学万级数的读法法则
1、先读万级,再读个级;
2、万级的数要按个级的读法来读,再在后面加上一个“万”字;
3、每级末位不管有几个0都不读,其它数位有一个0或连续几个零都只读一个“零”。
小学数学必背公式
关系表达式
1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数
2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度
4、单价×数量=总价总价÷单价=数量总价÷数量=单价
5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率
6、加数+加数=和和-一个加数=另一个加数
7、被减数-减数=差被减数-差=减数差+减数=被减数
8、因数×因数=积积÷一个因数=另一个因数
9、被除数÷除数=商被除数÷商=除数商×除数=被除数
单位间进率
1公里=1千米1千米=1000米
1米=10分米1分米=10厘米1厘米=10毫米
1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米
1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米
1吨=1000千克1千克=1000克=1公斤=1市斤
1公顷=10000平方米1亩=平方米
1升=1立方分米=1000毫升1毫升=1立方厘米
四年级下册知识点总结 第2篇
1、平均数是通过把多的部分移给少的部分,使各部分都相等而得到的数,所以平均数在最大数与最小数之间
2、平均数=总数÷总分数
3、平均数是统计中的一个重要概念,也是一个非常抽象的概念,在具体情境中体会为什么要学平均数,在统计的背景中理解平均数的含义,在比较、观察中把握平均数的`特征,进而运用平均数解决问题,了解它的价值。
1、复式条形统计图:用两种以上的长方形直条表示不同数量的条形统计图。
2、复式条形统计图要画两种以上的直条,为了区别可以用不同的颜色或者线条来表示。
3、与复式统计表相比,复式条形统计图更便于比较几组数据的大小,提供的信息更多,使用起来更加方便。
4、复式条形统计图优点:可以直观的看出不同项目数据是多少,能形象的比较不同的数据。
5、复式条形统计图缺点:需要自己计算总数,不大方便。
6、复式条形统计图的制作步骤:
①根据统计资料整理数据
②画出纵轴和横轴(纵轴高度的确定:要确定一个长度来表示一定的数量。横轴长度的确定:要根据纸的大小、字数的多少来确定)
③画直条或条形的宽度要一致,条形之间的间隔要相等。
④不同的直条做不同的标记(如颜色不同或在其中一组画上条纹)
⑤写上总标题、数量单位和制图日期
小学数学梯形的面积怎么求
梯形面积与周长
梯形的面积公式:(上底+下底)×高÷2、
用字母表示:(a+b)×h÷2
梯形的面积公式2:中位线×高
用字母表示:l·h(l表示中位线长度)
另外对角线互相垂直的梯形:对角线×对角线÷2
梯形的周长公式:上底+下底+腰+腰,用字母表示:L=a+b+c+d
等腰梯形的周长公式:上底+下底+2腰,用字母表示:a+c+2b。
数学学习方法分享
数学学习技巧
在学习过程中,要准确地掌握抽象概念的本质含义,了解从实际模型中抽象为理论的演变过程。对所学理论知识,要在更大范围内寻求它的具体实例,使之具体化,尽量将所学的理论知识和思维方法应用于实践。
学数学指导
1、上课认真听讲是打好数学基础的重要环节,也是牢固掌握基础知识的根本途径。
2、在解决问题时,我们可以试着用不同的方法,如假设法,特殊值法,整体法。
3、深刻理解知识点,仔细阅读课本,认真听讲,理解联系实际。
3怎样学好数学
主要是指养成思考的习惯,学会思考的方法。独立思考是学习数学必须具备的能力。
同学们在学习时,要边听(课)边想,边看(书)边想,边做(题)边想,通过自己积极思考,深刻理解数学知识,归纳总结数学规律,灵活解决数学问题,这样才能把老师讲的、课本上写的变成自己的知识。
四年级下册知识点总结 第3篇
一、单式折线统计图
1、折线统计图的特点:既可以反映出数量的多少,又能表示出数量的增减变化。
2、绘制折线统计图的方法:
①画出横轴和纵轴(补画统计图时此步骤已给出);
②确定一个单位长度表示数量多少(补画统计图时此步骤已给出);
③描点,描点时应注意先找准横轴上的点,再找准纵轴上相对应的点,过两点分别做横轴、纵轴的垂线,两条垂线的交点就是所要描的点,在交点处点上实心点;
④用线段顺次连接所有点,并标注数据;
⑤标注好日期和标题。(日期也可不标注)
3、折线统计图的应用:可以根据折线统计图发现问题、解决问题,并进行合理地推测。
(知识巧记)统计图,类型多,条形、折线一一说。
条形数量好比较,折线增减更明了。
绘制折线较简单,描点连线来解决。
完成绘图细分析,解决问题更容易。
二、复式折线统计图
1、复式折线统计图:如果在统计过程中存在两组(或多组)数据,且需要在一幅统计图中表示这两组(或多组)数据,就要用两种(或多种)不同颜色(或不同形式)的折线来表示不同数量的变化情况,这种统计图就是复式折线统计图。
2、复式折线统计图的特点:复式折线统计图不但能表示出各组数据的多少,数据的增减变化的情况,而且可以比较各组数据的变化趋势。
3、复式折线统计图的绘制方法:与单式折线统计图的绘制方法基本相同,只是用不同的折线表示表示不同的量,需标明图例。
4、运用横向、纵向、综合、对比等不同的观察方法,可以读懂复式折线统计图,从中获取更多的信息,并能根据信息回答或提出相应的问题,同时进行简单地分析和合理地推测。
小学数学新课标的基本理念
1、义务教育阶段的数学课程应突出体现基础性、普及性和发展性,使数学教育面向全体学生,实现:人人学有价值的数学;人人都能获得必需的数学;不同的人在数学上得到不同的发展。
2、数学是人们生活、劳动和学习必不可少的工具,能够帮助人们处理数据、进行计算、推理和证明,数学模型可以有效地描述自然现象和社会现象;数学为其他科学提供了语言、思想和方法,是一切重大技术发展的基础;数学在提高人的推理能力、抽象能力、想像力和创造力等方面有着独特的作用;数学是人类的一种文化,它的内容、思想、方法和语言是现代文明的重要组成部分。
3、学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。内容的呈现应采用不同的表达方式,以满足多样化的学习需求。有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。由于学生所处的文化环境、家庭背景和自身思维方式的不同,学生的数学学习活动应当是一个生动活泼的、主动的和富有个性的过程。
小数计算法则
小数加减法计算法则
计算小数加减法,先把小数点对齐(也就是把相同的数位上的数对齐),再按照整数加减法则进行计算,最后在得xxx对齐横线上的小数点位置,点上小数点。
小数乘法的计算法则
计算小数乘法,先按照乘法的法则算出积,再看因数中一共几位小数,就从积的右边起数出几位,点上小数点。
四年级下册知识点总结 第4篇
1、加法运算定律:
①加法交换律:两个数相加,交换加数的位置,和不变。
a+b=b+a
②加法结合律:三个数相加,可以先把前两个数相加,再加上第三个数;或者先把后两个数相加,再加上第一个数,和不变。
(a+b)+c=a+(b+c)
③加法的这两个定律往往结合起来一起使用。
如:165+93+35=93+(165+35)
2、连减的性质:一个数连续减去两个数,等于这个数减去那两个数的和。
a—b—c=a—(b+c)
3、乘法运算定律:
①乘法交换律:两个数相乘,交换因数的位置,积不变。
a×b=b×a
②乘法结合律:三个数相乘,可以先把前两个数相乘,再乘以第三个数,也可以先把后两个数相乘,再乘以第一个数,积不变。
(a×b)×c=a×(b×c)
乘法的这两个定律往往结合起来一起使用。
如:125×78×8的简算。
③乘法分配律:两个数的和与一个数相乘,可以先把这两个数分别与这两个数相乘,再把积相加。
(a+b)×c=a×c+b×c
4、连除的性质:一个数连续除以两个数,等于除以这两个数的积。
a÷b÷c=a÷(b×c)
5、有关简算的拓展:
102×38—38×2
125×25×32
37×96+37×3+37
125×88
。98
—1。98
易错的情况:
38×99+99
小学数学四大领域主要内容
数与代数:的认识,数的表示,数的大小,数的运算,数量的估计;
图形与几何:空间与平面的基本图形,图形的性质和分类;图形的平移、旋转、轴对称;
统计与概率:收集、整理和描述数据,处理数据;
实践与综合应用:以一类问题为载体,学生主动参与的学习活动,是帮助学生积累数学活动经验的重要途径。
数学整除的特征
1、能被2整除的数的特征:个位上是0、2、4、6、8。
2、能被5整除的数的特征:个位上是0或5。
3、能被3整除的数的特征:一个数的各个数位上的数之和能被3整除,这个数就能被3整除。