榆树范文网

高中物理运动的描述知识点总结(必备13篇)

92

高中物理运动的描述知识点总结 第1篇

一、质点、参考系

1.质点:用来代替物体的有质量的点.它是一种理想化模型.

2.参考系:为了研究物体的运动而选定用来作为参考的物体.参考系可以任意选取.通常以地面或相对于地面不动的物体为参考系来研究物体的运动.

二、位移和速度

1.位移和路程

(1)位移:描述物体位置的变化,用从初位置指向末位置的有向线段表示,是矢量.

(2)路程是物体运动路径的长度,是标量.

2.速度

(1)平均速度:在变速运动中,物体在某段时间内的位移与发生这段位移所用时间的比值,即=t(x),是矢量.

(2)瞬时速度:运动物体在某一时刻(或某一位置)的速度,是矢量.

3.速率和平均速率

(1)速率:瞬时速度的大小,是标量.

(2)平均速率:路程与时间的比值,不一定等于平均速度的大小.

三、加速度

1.定义式:a=Δt(Δv);单位是m/s2.

2.物理意义:描述速度变化的快慢.

3.方向:与速度变化的方向相同.

考点一对质点模型的理解

1.质点是一种理想化的物理模型,实际并不存在.

2.物体能否被看做质点是由所研究问题的性质决定的,并非依据物体自身大小来判断.

3.物体可被看做质点主要有三种情况:

(1)多数情况下,平动的物体可看做质点.

(2)当问题所涉及的空间位移远大于物体本身的大小时,可以看做质点.

(3)有转动但转动可以忽略时,可把物体看做质点.

考点二平均速度和瞬时速度

1.平均速度与瞬时速度的区别

平均速度与位移和时间有关,表示物体在某段位移或某段时间内的平均快慢程度;瞬时速度与位置或时刻有关,表示物体在某一位置或某一时刻的快慢程度.

2.平均速度与瞬时速度的联系

(1)瞬时速度是运动时间Δt→0时的平均速度.

(2)对于匀速直线运动,瞬时速度与平均速度相等.

考点三速度、速度变化量和加速度的关系

1.速度、速度变化量和加速度的比较

2.物体加、减速的判定

(1)当av同向或夹角为锐角时,物体加速.

(2)当av垂直时,物体速度大小不变.

(3)当av反向或夹角为钝角时,物体减速

【思想方法与技巧】

物理思想——用极限法求瞬时物理量

1.极限法:如果把一个复杂的物理全过程分解成几个小过程,且这些小过程的变化是单一的.那么,选取全过程的两个端点及中间的极限来进行分析,其结果必然包含了所要讨论的物理过程,从而能使求解过程简单、直观,这就是极限思想方法.

极限法只能用于在选定区间内所研究的物理量连续、单调变化(单调增大或单调减小)的情况.

2.用极限法求瞬时速度和瞬时加速度

(1)公式v=Δt(Δx)中当Δt→0时v是瞬时速度.

(2)公式a=Δt(Δv)中当Δt→0时a是瞬时加速度.

高中物理运动的描述知识点总结 第2篇

第一章.运动的描述

考点一:时刻与时间间隔的关系

时间间隔能展示运动的一个过程,时刻只能显示运动的一个瞬间。对一些关于时间间隔和时刻的表述,能够正确理解。如:

第4s末、xxx、第5s初均为时刻;4s内、第4s、第2s至第4s内均为时间间隔。

区别:时刻在时间轴上表示一点,时间间隔在时间轴上表示一段。

考点二:路程与位移的关系

位移表示位置变化,用由初位置到末位置的有向线段表示,是矢量。路程是运动轨迹的长度,是标量。只有当物体做单向直线运动时,位移的大小等于路程。一般情况下,路程位移的大小。

考点三:速度与速率的关系

速度速率

物理意义描述物体运动快慢和方向的物理量,是矢量描述物体运动快慢的物理量,是标量

分xxx均速度、瞬时速度速率、平均速率(=路程/时间)

决定因素平均速度由位移和时间决定由瞬时速度的大小决定

方向平均速度方向与位移方向相同;瞬时速度方向为该质点的运动方向无方向

联系它们的单位相同(m/s),瞬时速度的大小等于速率

考点四:速度、加速度与速度变化量的关系

速度加速度速度变化量

意义描述物体运动快慢和方向的物理量描述物体速度变化快慢和方向的物理量描述物体速度变化大小程度的物理量,是一过程量

定义式

单位m/sm/s2m/s

决定因素v的大小由v0、a、t决定a不是由v、△v、△t决定的,而是由f和m决定。由v与v0决定,而且,也由a与△t决定

方向与位移x或△x同向,即物体运动的方向与△v方向一致由或决定方向

大小①位移与时间的比值②位移对时间的变化率③x-t图象中图线上点的切线斜率的大小值①速度对时间的变化率②速度改变量与所用时间的比值③vt图象中图线上点的切线斜率的大小值

高中物理运动的描述知识点总结 第3篇

力学部分:

1、基本概念:

力、合力、分力、力的平行四边形法则、三种常见类型的力、力的三要素、时间、时刻、位移、路程、速度、速率、瞬时速度、平均速度、平均速率、加速度、共点力平衡(平衡条件)、线速度、角速度、周期、频率、向心加速度、向心力、动量、冲量、动量变化、功、功率、能、动能、重力势能、弹性势能、机械能、简谐运动的位移、回复力、受迫振动、共振、机械波、振幅、波长、波速。

2、基本规律:

匀变速直线运动的基本规律(12个方程);

三力共点平衡的特点;

xxx运动定律(xxx第一、第二、第三定律);

万有引力定律;

天体运动的基本规律(行星、人造地球卫星、万有引力完全充当向心力、近地极地同步三颗特殊卫星、变轨问题);

动量定理与动能定理(力与物体速度变化的关系—冲量与动量变化的关系—功与能量变化的关系);

动量守恒定律(四类守恒条件、方程、应用过程);

功能基本关系(功是能量转化的量度)

重力做功与重力势能变化的关系(重力、分子力、电场力、引力做功的特点);

功能原理(非重力做功与物体机械能变化之间的关系);

机械能守恒定律(守恒条件、方程、应用步骤);

简谐运动的基本规律(两个理想化模型一次全振动四个过程五个量、简谐运动的对称性、单摆的振动周期公式);简谐运动的图像应用;

xxx的传播特点;波长、波速、周期的关系;xxx的图像应用;

3、基本运动类型:

运动类型受力特点备注

直线运动所受合外力与物体速度方向在一条直线上一般变速直线运动的受力分析

匀变速直线运动同上且所受合外力为恒力1.匀加速直线运动

2.匀减速直线运动

曲线运动所受合外力与物体速度方向不在一条直线上速度方向沿轨迹的切线方向

合外力指向轨迹内侧

(类)平抛运动所受合外力为恒力且与物体初速度方向垂直运动的合成与分解

匀速圆周运动所受合外力大小恒定、方向始终沿半径指向圆心

(合外力充当向心力)一般圆周运动的受力特点

向心力的受力分析

简谐运动所受合外力大小与位移大小成正比,方向始终指向平衡位置回复力的受力分析

4、基本:

力的合成与分解(平行四边形、三角形、多边形、正交分解);

三力平衡问题的处理方法(封闭三角形法、相似三角形法、多力平衡问题—正交分解法);

对物体的受力分析(隔离体法、依据:力的产生条件、物体的运动状态、xxx摩擦力的分析方法—假设法);

处理匀变速直线运动的解析法(解方程或方程组)、图像法(匀变速直线运动的s-t图像、v-t图像);

解决动力学问题的三大类方法:xxx运动定律结合运动学方程(恒力作用下的宏观低速运动问题)、动量、能量(可处理变力作用的问题、不需考虑中间过程、注意运用守恒观点);

针对简谐运动的对称法、针对xxx图像的描点法、平移法

5、常见题型:

合力与分力的关系:两个分力及其合力的大小、方向六个量中已知其中四个量求另外两个量。

斜面类问题:(1)斜面上静止物体的受力分析;(2)斜面上运动物体的受力情况和运动情况的分析(包括物体除受常规力之外多一个某方向的力的分析);(3)整体(斜面和物体)受力情况及运动情况的分析(整体法、个体法)。

动力学的两大类问题:(1)已知运动求受力;(2)已知受力求运动。

竖直面内的圆周运动问题:(注意向心力的分析;绳拉物体、杆拉物体、轨道内侧外侧问题;最高点、最低点的特点)。

人造地球卫星问题:(几个近似;黄金变换;注意公式中各物理量的物理意义)。

动量机械能的综合题:

(1)单个物体应用动量定理、动能定理或机械能守恒的题型;

(2)系统应用动量定理的题型;

(3)系统综合运用动量、能量观点的题型:

①碰撞问题;

②爆炸(反冲)问题(包括静止原子核衰变问题);

③滑块长木板问题(注意不同的`初始条件、滑离和不滑离两种情况、四个方程);

④子弹射木块问题 高中英语;

⑤弹簧类问题(竖直方向弹簧、水平弹簧振子、系统内物体间通过弹簧相互作用等);

⑥单摆类问题:

⑦工件皮带问题(水平传送带,倾斜传送带);

⑧人车问题;人船问题;人气球问题(某方向动量守恒、平均动量守恒);

机械波的图像应用题:

(1)机械波的传播方向和质点振动方向的互推;

(2)依据给定状态能够画出两点间的基本波形图;

(3)根据某时刻波形图及相关物理量推断下一时刻波形图或根据两时刻波形图求解相关物理量;

(4)机械波的干涉、衍射问题及声波的多普勒效应。

电磁学部分:

1、基本概念:

电场、电荷、点电荷、电荷量、电场力(静电力、库仑力)、电场强度、电场线、匀强电场、电势、电势差、电势能、电功、等势面、静电屏蔽、电容器、电容、电流强度、电压、电阻、电阻率、电热、电功率、热功率、纯电阻电路、非纯电阻电路、电动势、内电压、路端电压、内电阻、磁场、磁感应强度、安培力、洛伦兹力、磁感线、电磁感应现象、磁通量、感应电动势、自感现象、自感电动势、正弦交流电的周期、频率、瞬时值、最大值、有效值、感抗、容抗、电磁场、电磁波的周期、频率、波长、波速

2、基本规律:

电量平分原理(电荷守恒)

库伦定律(注意条件、比较-两个近距离的带电球体间的电场力)

电场强度的三个表达式及其适用条件(定义式、点电荷电场、匀强电场)

电场力做功的特点及与电势能变化的关系

电容的定义式及平行板电容器的决定式

部分电路欧姆定律(适用条件)

电阻定律

串并联电路的基本特点(总电阻;电流、电压、电功率及其分配关系)

焦耳定律、电功(电功率)三个表达式的适用范围

闭合电路欧姆定律

基本电路的动态分析(串反并同)

电场线(磁感线)的特点

等量同种(异种)电荷连线及中垂线上的场强和电势的分布特点

常见电场(磁场)的电场线(磁感线)形状(点电荷电场、等量同种电荷电场、等量异种电荷电场、点电荷与带电金属板间的电场、匀强电场、条形磁铁、蹄形磁铁、通电直导线、环形电流、通电螺线管)

电源的三个功率(总功率、损耗功率、输出功率;电源输出功率的最大值、)

电动机的三个功率(输入功率、损耗功率、输出功率)

电阻的伏安特性曲线、电源的伏安特性曲线(图像及其应用;注意点、线、面、斜率、截距的物理意义)

安培定则、xxx则、楞次定律(三条表述)、右手定则

电磁感应的判定条件

感应电动势大小的计算:法拉第电磁感应定律、导线垂直切割磁感线

通电自感现象和断电自感现象

正弦交流电的产生原理

电阻、感抗、容抗对交变电流的作用

变压器原理(变压比、变流比、功率关系、多股线圈问题、原线圈串、并联用电器问题)

3、常见仪器:

示波器、示波管、电流计、电流表(磁电式电流表的原理)、电压表、定值电阻、电阻箱、滑动变阻器、电动机、电解槽、多用电表、速度选择器、质普仪、回旋加速器、磁流体发电机、电磁流量计、日光灯、变压器、自耦变压器。

4、实验部分:

(1)描绘电场中的等势线:各种静电场的模拟;各点电势高低的判定;

(2)电阻的测量:①分类:定值电阻的测量;电源电动势和内电阻的测量;电表内阻的测量;②方法:伏安法(电流表的内接、外接;接法的判定;误差分析);欧姆表测电阻(欧姆表的使用方法、操作步骤、读数);半偏法(并联半偏、串联半偏、误差分析);替代法;*电桥法(桥为电阻、灵敏电流计、电容器的情况分析);

(3)测定金属的电阻率(电流表外接、滑动变阻器限流式接法、螺旋测微器、游标卡尺的读数);

(4)小灯泡伏安特性曲线的测定(电流表外接、滑动变阻器分压式接法、注意曲线的变化);

(5)测定电源电动势和内电阻(电流表内接、数据处理:解析法、图像法);

(6)电流表和电压表的改装(分流电阻、分压电阻阻值的计算、刻度的修改);

(7)用多用电表测电阻及黑箱问题;

(8)练习使用示波器;

(9)仪器及连接方式的选择:①电流表、电压表:主要看量程(电路中可能提供的最大电流和最大电压);②滑动变阻器:没特殊要求按限流式接法,如有下列情况则用分压式接法:要求测量范围大、多测几组数据、滑动变阻器总阻值太小、测伏安特性曲线;

(10)传感器的应用(光敏电阻:阻值随光照而减小、热敏电阻:阻值随温度升高而减小)

5、常见题型:

电场中移动电荷时的功能关系;

一条直线上三个点电荷的平衡问题;

带电粒子在匀强电场中的加速和偏转(示波器问题);

全电路中一部分电路电阻发生变化时的电路分析(应用闭合电路欧姆定律、欧姆定律;或应用“串反并同”;若两部分电路阻值发生变化,可考虑用极值法);

电路中连接有电容器的问题(注意电容器两极板间的电压、电路变化时电容器的充放电过程);

通电导线在各种磁场中在磁场力作用下的运动问题;(注意磁感线的分布及磁场力的变化);

通电导线在匀强磁场中的平衡问题;

带电粒子在匀强磁场中的运动(匀速圆周运动的半径、周期;在有界匀强磁场中的一段圆弧运动:找圆心-画轨迹-确定半径-作辅助线-应用几何求解;在有界磁场中的运动时间);

闭合电路中的金属棒在水平导轨或斜面导轨上切割磁感线时的运动问题;

两根金属棒在导轨上垂直切割磁感线的情况(左右手定则及楞次定律的应用、动量观点的应用);

带电粒子在复合场中的运动(正交、平行两种情况):

①.重力场、匀强电场的复合场;

②.重力场、匀强磁场的复合场;

③.匀强电场、匀强磁场的复合场;

④.三场合一。

高中物理运动的描述知识点总结 第4篇

重力势能

1.电势能的概念

(1)电势能

电荷在电场中具有的势能。

(2)电场力做功与电势能变化的关系

在电场中移动电荷时电场力所做的功在数值上等于电荷电势能的减少量,即WAB=εA-εB。

①当电场力做正功时,即WAB>0,则εA>εB,电势能减少,电势能的减少量等于电场力所做的功,即Δε减=WAB。

②当电场力做负功时,即WAB<0,则εA<εB,电势能在增加,增加的电势能等于电场力做功的绝对值,即Δε增=εB-εA=-WAB=|WAB|,但仍可以说电势能在减少,只不过电势能的减少量为负值,即ε减=εA-εB=WAB。

说明:某一物理过程中其物理量的增加量一定是该物理量的末状态值减去其初状态值,减少量一定是初状态值减去末状态值。

(3)零电势能点

在电场中规定的任何电荷在该点电势能为零的点。理论研究中通常取无限远点为零电势能点,实际应用中通常取大地为零电势能点。

说明:①零电势能点的选择具有任意性。

②电势能的数值具有相对性。

③某一电荷在电场中确定两点间的电势能之差与零电势能点的选取无关。

2.电势的概念

(1)定义及定义式

电场中某点的电荷的电势能跟它的电量比值,叫做这一点的电势。

(2)电势的单位:伏(V)。

(3)电势是标量。

(4)电势是反映电场能的性质的物理量。

(5)零电势点

规定的电势能为零的点叫零电势点。理论研究中,通常以无限远点为零电势点,实际研究中,通常取大地为零电势点。

(6)电势具有相对性

电势的数值与零电势点的选取有关,零电势点的选取不同,同一点的电势的数值则不同。

(7)顺着电场线的方向电势越来越低。电场强度的方向是电势降低最快的方向。

(8)电势能与电势的关系:ε=qU。

高中物理运动的描述知识点总结 第5篇

1、重力

由于地球的吸引而使物体受到的力叫做重力。物体受到的重力G与物体质量m的关系是G=mg,g称为重力加速度或自由落体加速度,与物体所处位置的高低和纬度有关。重力的方向竖直向下,在南北极或赤道上指向地心。物体各部分受到重力的等效作用点叫做重心,重心位置与物体的形状和质量分布有关。

2、万有引力

存在于自然界任何两个物体之间的力。万有引力F与两个物体的质量m1 、m2和它们之间距离r的关系是,G称为引力常量,适用于任何两个物体,其大小通常取。 万有引力的方向在两物体的连线上。

3、弹力

发生弹性形变的物体,由于要恢复原状而对与它接触的物体产生的力。弹簧的弹力F与其形变量x之间的关系是F=kx,k称为弹簧的劲度系数,单位为N/m,与弹簧的长短、粗细、材料和横截面积等因素有关。弹力的方向与形变的方向相反。弹簧都有弹性限度,超过弹性限度后,前述力与形变量的关系不再成立。

4、静摩擦力

两个相互接触的物体,当它们发生相对运动或具有相对运动的趋势时,在接触面产生阻碍相对运动或相对运动趋势的力叫做摩擦力。当两个物体间只有相对运动的趋势,而没有相对运动,这时的摩擦力叫做静摩擦力。两个物体间的静摩擦力有一个限度,两个物体刚刚开始相对运动时,它们之间的摩擦力称为最xxx摩擦力。两个物体间实际发生的静摩擦力F在0和最xxx摩擦力Fmax之间。静摩擦力的方向总是沿着接触面,并且跟物体相对运动趋势的方向相反。

5、滑动摩擦力

当一个物体在另一个物体表面滑动时,受到另一个物体阻碍它滑动的力。滑动摩擦力的大小跟压力(两个物体表面间的垂直作用力)成正比。滑动摩擦力f与压力FN之间的关系是f=uFN,u称为动摩擦因数,与相互接触的两个物体的材料、接触面的情况有关。滑动摩擦力的方向总是沿着接触面,并且跟物体的相对运动方向相反。

6、静电力

静止的点电荷之间的力。静电力F与两个点电荷q1、q2和它们之间的距离r的关系是,k称为静电力常量,其大小为。两个点电荷带同种电荷时,它们之间的作用力为斥力;两个点电荷带异种电荷时,它们之间的作用力为引力。静电力也称库仑力。

7、电场力

试探电荷(带电体)在电场中受到的力。电场力F与试探电荷的电荷量q之间的关系是F=Eq,E称为电场强度,大小由电场本身决定,方向与正电荷所受电场力的方向相同,其单位为N/C。

8、安培力

通电导线在磁场中受到的力。当直导线与匀强磁场方向垂直时,导线所受安培力F与导线中电流强度I,导线的长度L,磁感应强度B之间的关系是F=BIL。安培力的方向可由xxx则确定。

9、洛伦兹力

带电粒子在磁场中运动时受到的力。当粒子运动的方向与磁感应强度方向垂直时,粒子所受的洛伦兹力与粒子的电荷量q,粒子运动的速度v,磁感应强度B之间的关系是F=qvB。安培力的方向可由xxx则确定。安培力是大量带电粒子所受洛伦兹力的宏观表现。

10、分子力

存在于分子间的作用力。分子力比较复杂,分子间同时存在着引力和斥力,当分子间距离为r0时,引力与斥力的合力为0,当r>r0时合力表现为引力,r

11、核力

存在于原子核内核子之间的一种力。核力是强相互作用的一种表现,在原子核尺度内,核力比库仑力大的多;核力是短程力,作用范围在之内。

总结

重力的本质是万有引力,是物体和地球之间万有引力的具体化,若不考虑地球自转的影响,地面上的物体所受的重力等于地球对物体的引力。弹力、摩擦力、静电力、电场力、安培力、洛伦兹力的本质是电磁相互作用。核力是一种强相互作用。还有一种基本相互作用称为弱相互作用,弱相互作用与放射现象有关。四种基本相互作用构筑了力的体系。

高中物理运动的描述知识点总结 第6篇

一、匀变速直线运动的基本规律

1.速度与时间的关系式:vv0+at.

2.位移与时间的关系式:xv0t+2(1)at2.

3.位移与速度的关系式:v2-v0(2)=2ax.

二、匀变速直线运动的推论

1.平均速度公式:=v2(t)=2(v0+v).

2.位移差公式:Δxx2-x1=x3-x2=…=xnxn-1=aT2.

可以推广到xmxn=(mn)aT2.

3.初速度为零的匀加速直线运动比例式

(1)1T末,2T末,3T末……瞬时速度之比为:

v1∶v2∶v3∶…∶vn=1∶2∶3∶…∶n.

(2)1T内,2T内,3T内……位移之比为:

x1∶x2∶x3∶…∶xn=1∶22∶32∶…∶n2.

(3)第一个T内,第二个T内,第三个T内……位移之比为:

xⅠ∶xⅡ∶xⅢ∶…∶xn=1∶3∶5∶…∶(2n-1).

(4)通过连续相等的位移所用时间之比为:

t1∶t2∶t3∶…∶tn=1∶(-1)∶(-)∶…∶(-).

三、自由落体运动和竖直上抛运动的规律

1.自由落体运动规律

(1)速度公式:vgt.

(2)位移公式:h=2(1)gt2.

(3)速度—位移关系式:v2=2gh.

2.竖直上抛运动规律

(1)速度公式:vv0-gt.

(2)位移公式:hv0t-2(1)gt2.

(3)速度—位移关系式:v2-v0(2)=-2gh.

(4)上升的最大高度:h=0().

(5)上升到最大高度用时:t=g(v0).

考点一匀变速直线运动基本公式的应用

1.速度时间公式vv0+at、位移时间公式xv0t+2(1)at2、位移速度公式v2-v0(2)=2ax,是匀变速直线运动的三个基本公式,是解决匀变速直线运动的基石.

2.匀变速直线运动的基本公式均是矢量式,应用时要注意各物理量的符号,一般规定初速度的方向为正方向,当v0=0时,一般以a的方向为正方向.

3.求解匀变速直线运动的一般步骤

分析图(画过程)→动性质(判断运)→方向(选取正)→列方程(选用公式)→并讨论(解方程)

4.应注意的问题

①如果一个物体的运动包含几个阶段,就要分段分析,各段交接处的速度往往是联系各段的纽带.

②对于刹车类问题,当车速度为零时,停止运动,其加速度也突变为零.求解此类问题应先判断车停下所用时间,再选择合适公式求解.

③物体先做匀减速直线运动,速度减为零后又反向做匀加速直线运动,全程加速度不变,可以将全程看做匀减速直线运动,应用基本公式求解.

考点二匀变速直线运动推论的应用

1.推论公式主要是指:①=v2(t)=2(v0+vt),②ΔxaT2,①②式都是矢量式,在应用时要注意v0与vt、Δxa的方向关系.

2.①式常与x=·t结合使用,而②式中T表示等时间隔,而不是运动时间.

考点三自由落体运动和竖直上抛运动

1.自由落体运动为初速度为零、加速度为g的匀加速直线运动.

2.竖直上抛运动的重要特性

3.竖直上抛运动的研究方法

物理思想——用转换法求解多个物体的运动

在涉及多体问题和不能视为质点的研究对象问题时,应用“转化”的思想方法转换研究对象、研究角度,就会使问题清晰、简捷.通常主要涉及以下两种转化形式:

(1)将多体转化为单体:研究多物体在时间或空间上重复同样运动问题时,可用一个物体的运动取代多个物体的运动.

(2)将线状物体的运动转化为质点运动:长度较大的物体在某些问题的研究中可转化为质点的运动问题.如求列车通过某个路标的时间,可转化为车尾(质点)通过与列车等长的位移所经历的时间.

有什么不懂可以关注私信我,老师很愿意帮助大家。

高中物理运动的描述知识点总结 第7篇

一、力 物体的平衡

1.力是物体对物体的作用,是物体发生形变和改变物体的运动状态(即产生加速度)的原因. 力是矢量。

2.重力

(1)重力是由于地球对物体的吸引而产生的.

[注意]重力是由于地球的吸引而产生,但不能说重力就是地球的吸引力,重力是万有引力的一个分力. 但在地球表面附近,可以认为重力近似等于万有引力

(2)重力的大小:地球表面G=mg,离地面高h处。

(3)重力的方向:竖直向下(不一定指向地心)。

(4)重心:物体的各部分所受重力合力的作用点,物体的重心不一定在物体上.

3.弹力

(1)产生原因:由于发生弹性形变的物体有恢复形变的趋势而产生的.

(2)产生条件:

①直接接触;

②有弹性形变.

(3)弹力的方向:与物体形变的方向相反,弹力的受力物体是引起形变的物体,xxx物体是发生形变的物体.在点面接触的情况下,垂直于面;

在两个曲面接触(相当于点接触)的情况下,垂直于过接触点的公切面.

①绳的拉力方向总是沿着绳且指向绳收缩的方向,且一根轻绳上的张力大小处处相等.

②轻杆既可产生压力,又可产生拉力,且方向不一定沿杆.

(4)弹力的大小:一般情况下应根据物体的运动状态,利用平衡条件或xxx定律来求解.弹簧弹力可由xxx定律来求解.

xxx定律:在弹性限度内,弹簧弹力的大小和弹簧的形变量成正比,即F=为弹簧的劲度系数,它只与弹簧本身因素有关,单位是N/m.

4.摩擦力

(1)产生的条件:

①相互接触的物体间存在压力;

②接触面不光滑;

③接触的物体之间有相对运动(滑动摩擦力)或相对运动的趋势(静摩擦力),这三点缺一不可.

(2)摩擦力的方向:沿接触面切线方向,与物体相对运动或相对运动趋势的方向相反,与物体运动的方向可以相同也可以相反.

(3)判断静摩擦力方向的方法:

①假设法:首先假设两物体接触面光滑,这时若两物体不发生相对运动,则说明它们原来没有相对运动趋势,也没有静摩擦力;若两物体发生相对运动,则说明它们原来有相对运动趋势,并且原来相对运动趋势的方向跟假设接触面光滑时相对运动的方向相同.然后根据静摩擦力的方向跟物体相对运动趋势的方向相反确定静摩擦力方向.

②平衡法:根据二力平衡条件可以判断静摩擦力的方向.

(4)大小:先判明是何种摩擦力,然后再根据各自的规律去分析求解.

①滑动摩擦力大小:利用公式f=μF N 进行计算,其中FN 是物体的正压力,不一定等于物体的重力,甚至可能和重力无关.或者根据物体的运动状态,利用平衡条件或xxx定律来求解.

②静摩擦力大小:静摩擦力大小可在0与max 之间变化,一般应根据物体的运动状态由平衡条件或xxx定律来求解.

5.物体的受力分析

(1)确定所研究的物体,分析周围物体对它产生的作用,不要分析该物体施于其他物体上的力,也不要把作用在其他物体上的力错误地认为通过“力的传递”作用在研究对象上.

(2)按“性质力”的顺序分析.即按重力、弹力、摩擦力、其他力顺序分析,不要把“效果力”与“性质力”混淆重复分析.

(3)如果有一个力的方向难以确定,可用假设法分析.先假设此力不存在,想像所研究的物体会发生怎样的运动,然后审查这个力应在什么方向,对象才能满足给定的运动状态.

6.力的合成与分解

(1)合力与分力:如果一个力作用在物体上,它产生的效果跟几个力共同作用产生的效果相同,这个力就叫做那几个力的合力,而那几个力就叫做这个力的分力.

(2)力合成与分解的根本方法:平行四边形定则.

(3)力的合成:求几个已知力的合力,叫做力的合成.共点的两个力(F 1 和F 2 )合力大小F的取值范围为:|F 1 -F 2 |≤F≤F 1 +F 2 .

(4)力的分解:求一个已知力的分力,叫做力的分解(力的分解与力的合成互为逆运算).

在实际问题中,通常将已知力按力产生的实际作用效果分解;为xxx些问题的研究,在很多问题中都采用正交分解法.

7.共点力的平衡

(1)共点力:作用在物体的同一点,或作用线相交于一点的几个力.

(2)平衡状态:物体保持匀速直线运动或静止叫平衡状态,是加速度等于零的状态.

(3)共点力作用下的物体的平衡条件:物体所受的合外力为零,即∑F=0,若采用正交分解法求解平衡问题,则平衡条件应为:∑Fx =0,∑Fy =0.

(4)解决平衡问题的常用方法:隔离法、整体法、图解法、三角形相似法、正交分解法等等.

二、直线运动

1.机械运动:一个物体相对于另一个物体的位置的改变叫做机械运动,简称运动,它包括平动,转动和振动等运动形式.为了研究物体的运动需要选定参照物(即假定为不动的物体),对同一个物体的运动,所选择的参照物不同,对它的运动的描述就会不同,通常以地球为参照物来研究物体的运动.

2.质点:用来代替物体的只有质量没有形状和大小的点,它是一个理想化的物理模型.仅凭物体的大小不能做视为质点的依据。

3.位移和路程:位移描述物体位置的变化,是从物体运动的初位置指向末位置的有向线段,是矢量.路程是物体运动轨迹的长度,是标量.

路程和位移是完全不同的概念,仅就大小而言,一般情况下位移的大小小于路程,只有在单方向的直线运动中,位移的大小才等于路程.

4.速度和速率

(1)速度:描述物体运动快慢的物理量.是矢量.

①平均速度:质点在某段时间内的位移与发生这段位移所用时间的比值叫做这段时间(或位移)的平均速度v,即v=s/t,平均速度是对变速运动的粗略描述.

②瞬时速度:运动物体在某一时刻(或某一位置)的速度,方向沿轨迹上质点所在点的切线方向指向前进的一侧.瞬时速度是对变速运动的精确描述.

(2)速率:

①速率只有大小,没有方向,是标量.

②平均速率:质点在某段时间内通过的路程和所用时间的比值叫做这段时间内的平均速率.在一般变速运动中平均速度的大小不一定等于平均速率,只有在单方向的直线运动,二者才相等.

5.加速度

(1)加速度是描述速度变化快慢的物理量,它是矢量.加速度又叫速度变化率.

(2)定义:在匀变速直线运动中,速度的变化Δv跟发生这个变化所用时间Δt的比值,叫做匀变速直线运动的加速度,用a表示.

(3)方向:与速度变化Δv的方向一致.但不一定与v的方向一致.

[注意]加速度与速度无关.只要速度在变化,无论速度大小,都有加速度;只要速度不变化(匀速),无论速度多大,加速度总是零;只要速度变化快,无论速度是大、是小或是零,物体加速度就大.

6.匀速直线运动

(1)定义:在任意相等的时间内位移相等的直线运动叫做匀速直线运动.

(2)特点:a=0,v=恒量.

(3)位移公式:S=vt.

7.匀变速直线运动

(1)定义:在任意相等的时间内速度的变化相等的直线运动叫匀变速直线运动.

(2)特点:a=恒量

以上各式均为矢量式,应用时应规定正方向,然后把矢量化为代数量求解,通常选初速度方向为正方向,凡是跟正方向一致的取“+”值,跟正方向相反的取“-”值.

8.重要结论

(1)匀变速直线运动的质点,在任意两个连续相等的时间T内的位移差值是恒量。

(2)匀变速直线运动的质点,在某段时间内的中间时刻的瞬时速度,等于这段时间内的平均速度。

9.自由落体运动

(1)条件:初速度为零,只受重力作用.

(2)性质:是一种初速为零的匀加速直线运动,a=g.

10.运动图像

(1)位移图像:

①图像上一点切线的斜率表示该时刻所对应速度;

②图像是直线表示物体做匀速直线运动,图像是曲线则表示物体做变速运动;

③图像与横轴交叉,表示物体从参考点的一边运动到另一边.

(2)速度图像:

①在速度图像中,可以读出物体在任何时刻的速度;

②在速度图像中,物体在一段时间内的位移大小等于物体的速度图像与这段时间轴所围面积的值.

③在速度图像中,物体在任意时刻的加速度就是速度图像上所对应的点的切线的斜率.

④图线与横轴交叉,表示物体运动的速度反向.

⑤图线是直线表示物体做匀变速直线运动或匀速直线运动;图线是曲线表示物体做变加速运动.

高中物理运动的描述知识点总结 第8篇

第一章运动的描述

第一节认识运动

机械运动:物体在空间中所处位置发生变化,这样的运动叫做机械运动。

运动的特*:普遍*,永恒*,多样*

参考系

1.任何运动都是相对于某个参照物而言的,这个参照物称为参考系。

2.参考系的选取是自由的。

(1)比较两个物体的运动必须选用同一参考系。

(2)参照物不一定静止,但被认为是静止的。

1.在研究物体运动的过程中,如果物体的大小和形状在所研究问题中可以忽略是,把物体简化为一个点,认为物体的质量都集中在这个点上,这个点称为质点。

2.质点条件:

(1)物体中各点的运动情况完全相同(物体做平动)

(2)物体的大小(线度)<<它通过的距离

3.质点具有相对*,而不具有绝对*。

4.理想化模型:根据所研究问题的*质和需要,抓住问题中的主要因素,忽略其次要因素,建立一种理想化的模型,使复杂的问题得到简化。(为便于研究而建立的一种高度抽象的理想客体)

第二节时间位移

时间与时刻

1.钟表指示的一个读数对应着某一个瞬间,就是时刻,时刻在时间轴上对应某一点。两个时刻之间的间隔称为时间,时间在时间轴上对应一段。

△t=t2—t1

2.时间和时刻的单位都是秒,符号为s,常见单位还有in,h。

3.通常以问题中的初始时刻为零点。

路程和位移

1.路程表示物体运动轨迹的长度,但不能完全确定物*置的变化,是标量。

2.从物体运动的起点指向运动的重点的有向线段称为位移,是矢量。

3.物理学中,只有大小的物理量称为标量;既有大小又有方向的物理量称为矢量。

4.只有在质点做单向直线运动是,位移的大小等于路程。两者运算法则不同。

第三节记录物体的运动信息

打点记时器:通过在纸带上打出一系列的点来记录物体运动信息的仪器。(电火花打点记时器——火花打点,电磁打点记时器——电磁打点);一般打出两个相邻的点的时间间隔是。

第四节物体运动的速度

物体通过的路程与所用的时间之比叫做速度。

平均速度(与位移、时间间隔相对应)

物体运动的平均速度v是物体的位移s与发生这段位移所用时间t的比值。其方向与物体的位移方向相同。单位是/s。

v=s/t

瞬时速度(与位置时刻相对应)

瞬时速度是物体在某时刻前后无穷短时间内的平均速度。其方向是物体在运动轨迹上过该点的切线方向。瞬时速率(简称速率)即瞬时速度的大小。

速率≥速度

第五节速度变化的快慢加速度

1.物体的加速度等于物体速度变化(vt—v0)与完成这一变化所用时间的比值

a=(vt—v0)/t

不由△v、t决定,而是由f、决定。

3.变化量=末态量值—初态量值……表示变化的大小或多少

4.变化率=变化量/时间……表示变化快慢

5.如果物体沿直线运动且其速度均匀变化,该物体的运动就是匀变速直线运动(加速度不随时间改变)。

6.速度是状态量,加速度是*质量,速度改变量(速度改变大小程度)是过程量。

第六节用图象描述直线运动

匀变速直线运动的位移图象

图象是描述做匀变速直线运动的物体的位移随时间的变化关系的曲线。(不反映物体运动的轨迹)

2.物理中,斜率≠tanα(2坐标轴单位、物理意义不同)

3.图象中两图线的交点表示两物体在这一时刻相遇。

匀变速

直线运动的速度图象

图象是描述匀变速直线运动的物体岁时间变化关系的图线。(不反映物体运动轨迹)

2.图象与时间轴的面积表示物体运动的位移,在t轴上方位移为正,下方为负,整个过程中位移为各段位移之和,即各面积的代数和。

高中物理运动的描述知识点总结 第9篇

1、电场基本规律

1、库仑定律

(1)定律内容:真空中两个静止点电荷之间的相互作用力,与它们的电荷量的乘积成正比,与它们的距离的平方成反比,作用力的方向在它们的连线上。

(2)表达式:k=×109N·m2/C2xxx电力常量

(3)适用条件:真空中静止的点电荷。

2、电荷守恒定律

电荷既不会创生,也不会消灭,它只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分,在转移过程中,电荷的总量保持不变。

(1)三种带电方式:摩擦起电,感应起电,接触起电。

(2)元电荷:最小的带电单元,任何带电体的带电量都是元电荷的整数倍,e=

×10-19C——密立根测得e的值。

2、电场能的性质

1、电场能的基本性质:电荷在电场中移动,电场力要对电荷做功。

2、电势φ

(1)定义:电荷在电场中某一点的电势能Ep与电荷量的比值。

(2)定义式:φ——单位:伏(V)——带正负号计算

(3)特点:

1、电势具有相对性,相对参考点而言。但电势之差与参考点的选择无关。

2、电势一个标量,但是它有正负,正负只表示该点电势比参考点电势高,还是低。

3、电势的大小由电场本身决定,与Ep和q无关。

4、电势在数值上等于单位正电荷由该点移动到零势点时电场力所做的功。

(4)电势高低的判断方法

1、根据电场线判断:沿着电场线电势降低。φA>φB

2、根据电势能判断:

正电荷:电势能大,电势高;电势能小,电势低。

负电荷:电势能大,电势低;电势能小,电势高。

结论:只在电场力作用下,静止的电荷从电势能高的地方向电势能低的地方运动。

3、电势能Ep

(1)定义:电荷在电场中,由于电场和电荷间的相互作用,由位置决定的能量。电荷在某点的电势能等于电场力把电荷从该点移动到零势能位置时所做的功。

(2)定义式:——带正负号计算

(3)特点:

1、电势能具有相对性,相对零势能面而言,通常选大地或无穷远处为零势能面。

2、电势能的变化量Ep与零势能面的选择无关。

4、电势差UAB

(1)定义:电场中两点间的电势之差。也叫电压。

(2)定义式:UAB=φA-φB

(3)特点:

1、电势差是标量,但是却有正负,正负只表示起点和终点的电势谁高谁低。若UAB>0,则UBA<0。

2、单位:伏

3、电场中两点的电势差是确定的,与零势面的选择无关

4、U=Ed匀强电场中两点间的电势差计算公式。——电势差与电场强度之间的关系。

5、静电平衡状态

(1)定义:导体内不再有电荷定向移动的稳定状态

(2)特点:

1、处于静电平衡状态的导体,内部场强处处为零。

2、感应电荷在导体内任何位置产生的电场都等于外电场在该处场强的大小相等,方向相反。

3、处于静电平衡状态的整个导体是个等势体,导体表面是个等势面。

4、电荷只分布在导体的外表面,在导体表面的分布与导体表面的弯曲程度有关,越弯曲,电荷分布越多。

6、电场力做功WAB

(1)电场力做功的特点:电场力做功与路径无关,只与初末位置有关,即与初末位置的电势差有关。

(2)表达式:WAB=UABq—带正负号计算(适用于任何电场)WAB=Eqd—d沿电场方向的距离。——匀强电场

(3)电场力做功与电势能的关系WAB=-Ep=EpA-EPB

结论:电场力做正功,电势能减少电场力做负功,电势能增加

7、等势面

(1)定义:电势相等的点构成的面。

(2)特点:

等势面上各点电势相等,在等势面上移动电荷,电场力不做功。

等势面与电场线垂直

两等势面不相交

等势面的密集程度表示场强的大小:疏弱密强。

画等势面时,相邻等势面间的电势差相等。

(3)判断电场线上两点间的电势差的大小:靠近场源(场强大)的两间的电势差大于远离场源(场强小)相等距离两点间的电势差。

8、高中物理静电场公式总结

1.两种电荷、电荷守恒定律、元电荷:e=×10-19C

2.库仑定律:F=kQ1Q2/r2 (在真空中)

3.电场强度:E=F/q(定义式、计算式)

4.真空点(源)电荷形成的电场E=kQ/r2

5.匀强电场的场强E=UAB/d

6.电场力:F=qE

7.电势与电势差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q

8.电场力做功:WAB=qUAB=Eqd

9.电势能:EA=qφA

10.电势能的变化ΔEAB=EB-EA

11.电场力做功与电势能变化ΔEAB=-WAB=-qUAB (电势能的增量等于电场力做功的负值)

12.电容C=Q/U(定义式,计算式)

13.平行板电容器的电容C=εr*S/4πkd=εS/d

14.带电粒子在电场中的加速(Vo=0):W=ΔEK或qU=mVt2 /2,Vt=(2qU/m)1/2

15.带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下) xxx 垂直电场方向:匀速直线运动L=Vot(在带等量异种电荷的平行极板中:E=U/d) 抛运动 平行电场方向:初速度为零的匀加速直线运动d=at2 /2,a=F/m=qE/m

高中物理运动的描述知识点总结 第10篇

一、重力及其相互作用

1、力是物体之间的相互作用,有力必有xxx物体和受力物体。力的大小、方向、作用点叫力的三要素。用一条有向线段把力的三要素表示出来的方法叫力的图示。

按照力命名的依据不同,可以把力分为:

①按性质命名的力(例如:重力、弹力、摩擦力、分子力、电磁力等。)

②按效果命名的力(例如:拉力、压力、支持力、动力、阻力等)。

力的作用效果:

①形变;②改变运动状态。

2、重力:

由于地球的吸引而使物体受到的力。重力的大小G=mg,方向竖直向下。作用点叫物体的重心;重心的位置与物体的质量分布和形状有关。质量均匀分布,形状规则的物体的重心在其几何中心处。薄板类物体的重心可用悬挂法确定,

注意:重力是万有引力的一个分力,另一个分力提供物体随地球自转所需的向心力,在两极处重力等于万有引力。由于重力远大于向心力,一般情况下近似认为重力等于万有引力。

3、四种基本相互作用

万用引力相互作用、电磁相互作用、强相互作用、弱相互作用

二、弹力:

(1)内容:发生形变的物体,由于要恢复原状,会对跟它接触的且使其发生形变的物体产生力的作用,这种力叫弹力。

(2)条件:①接触;②形变。但物体的形变不能超过弹性限度。

(3)弹力的方向和产生弹力的那个形变方向相反。(平面接触面间产生的弹力,其方向垂直于接触面;曲面接触面间产生的弹力,其方向垂直于过研究点的曲面的切面;点面接触处产生的弹力,其方向垂直于面、绳子产生的弹力的方向沿绳子所在的直线。)

(4)大小:

①弹簧的弹力大小由F=kx计算,

②一般情况弹力的大小与物体同时所受的其他力及物体的运动状态有关,应结合平衡条件或xxx定律确定。

三、滑动摩擦力

1、两个相互接触的物体有相对滑动时,物体之间存在的摩擦叫做滑动摩擦。

2、在滑动摩擦中,物体间产生的阻碍物体相对滑动的作用力,叫做滑动摩擦力。

3、滑动摩擦力f的大小跟正压力N(≠G)成正比。即:f=μN

4、μ称为动摩擦因数,与相接触的物体材料和接触面的粗糙程度有关。0<μ<1。

5、滑动摩擦力的方向总是与物体相对滑动的方向相反,与其接触面相切。

6、条件:直接接触、相互挤压(弹力),相对运动/趋势。

7、摩擦力的大小与接触面积无关,与相对运动速度无关。

8、摩擦力可以是阻力,也可以是动力。

9、计算:公式法/二力平衡法。

四、研究静摩擦力

1、当物体具有相对滑动趋势时,物体间产生的摩擦叫做静摩擦,这时产生的摩擦力叫静摩擦力。

2、物体所受到的静摩擦力有一个最大限度,这个最大值叫最xxx摩擦力。

3、静摩擦力的方向总与接触面相切,与物体相对运动趋势的方向相反。

4、静摩擦力的大小由物体的运动状态以及外部受力情况决定,与正压力无关,平衡时总与切面外力平衡。0≤F=f0≤fm

5、最xxx摩擦力的大小与正压力接触面的粗糙程度有关。fm=μ0·N(μ≤μ0)

6、静摩擦有无的判断:概念法(相对运动趋势);二力平衡法;xxx运动定律法;假设法(假设没有静摩擦)。

高中物理运动的描述知识点总结 第11篇

一、能量的转化与守恒

1.化学能:由于化学反应,物质的分子结构变化而产生的能量。

2.核能:由于核反应,物质的原子结构发生变化而产生的能量。

3.能量守恒定律:能量既不会消灭,也不会创生,它只会从一种形式转化为另一种形式,或者从一个物体转移到另一个物体,而能的总量保持不变。

内容:能量既不会消灭,也不会创生,它只会从一种形式转化为其他形式,或者从一个物体转移到另一个物体,而在转化和转移的过程中,能量的总量保持不变。

E机械能1+E其它1=E机械能2+E其它2

能量耗散:无法将释放能量收集起来重新利用的现象叫能量耗散,它反映了自然界中能量转化具有方向性。

二、能源与社会

1.可再生能源:可以长期提供或可以再生的能源。

2.不可再生能源:一旦消耗就很难再生的能源。

3.能源与环境:合理利用能源,减少环境污染,要节约能源、开发新能源。

三、开发新能源

1.太阳能

2.核能

3.核能发电

4、其它新能源:地热能、潮汐能、风能。

四、能源的分类和能量的转化

能源品种繁多,按其来源可以分为三大类:一是来自地球以外的太阳能,除太阳的辐射能之外,煤炭、石油、天然气、水能、风能等都间接来自太阳能;第二类来自地球本身,如地热能,原子核能(核燃料铀、钍等存在于地球自然界);第三类则是由月球、太阳等天体对地球的引力而产生的能量,如潮汐能。

【一次能源】指在自然界现成存在,可以直接取得且不必改变其基本形态的能源,如煤炭、天然气、地热、水能等。由一次能源经过加工或转换成另一种形态的能源产品,如电力、焦炭、汽油、柴油、煤气等属于二次能源。

【常规能源】也叫传统能源,就是指已经大规模生产和广泛利用的能源。表2-1所统计的几种能源中如煤炭、石油、天然气、核能等都属一次性非再生的常规能源。而水电则属于再生能源,如葛洲坝水电站和未来的三峡水电站,只要长江水不干涸,发电也就不会停止。煤和石油天然气则不然,它们在地壳中是经千百万年形成的(按现在的采用速率,石油可用几十年,煤炭可用几百年),这些能源短期内不可能再生,因而人们对此有危机感是很自然的。

【新能源】指以新技术为基础,系统开发利用的能源。其中最引人注目的是太阳能的利用。据估计太阳辐射到地球表面的能量是目前全世界能量消费的万倍。如何把这些能量收集起来为我们所用,是科学家们十分关心的问题。植物的光合作用是自然界“利用”太阳能极为成功的范例。它不仅为大地带来了郁郁葱葱的森林和养育万物的粮菜瓜果,地球蕴藏的煤、石油、天然气的起源也与此有关。寻找有效的光合作用的模拟体系、利用太阳能使水分解为氢气和氧气及直接将太阳能转变为电能等都是当今科学技术的重要课题,一直受到各国政府和工业界的支持与鼓励。

以上是从能源的使用进行分类的方法,若从物质运动的形式看,不同的运动形式,各有对应的能量,如机械能(包括动能和势能)、热能、电能、光能等等。各种形式的能量可以互相转化,如动能可与势能互相转化(建筑工地打夯的落锤的上、下运动所包括的能量转化过程);化学能可与电能互相转化(化学电池和电解就是实现这种转化的两种过程)。在能量相互转化过程中,尽管做功的效率因所用工具或技术不同而有差别,但是折算成同种能量时,其总值却是不变的,这就是能量转化和能量守恒定律,这是自然界中一条极为基本的定律(另一条为质量守恒定律),也是识破各式各样永动机的有力判据。在能量转化过程过中,未能做有用功的部分称为“无用功”,通常以热的形式表现。

物质体系中,分子的动能、势能、电子能量和核能等的总和称为内能。内能的绝对值至今尚无法直接测定,但体系状态发生变化时,内能的变化以功或热的形式表现,它们是可以被精确测量的。体系的内能、热效应和功之间的关系式为:

E=Q+W

其中E是体系内能的变化,Q是体系从外界吸收的热量,W是外界对体系所做的功。这就是著名的热力学第一定律的数学表达式,也就是能量守恒定律的数学表达式。应用上述公式时,要注意各种物理量的正、负号,即:

E──(+)体系内能增加, (-)体系内能体系减少;

Q──(+)体系吸收热量, (-)体系放出能量;

W──(+)外界对体系做功, (-)体系对外界做功。

例如 g乙醇在℃时气化,需吸收 854 J的热,这些乙醇由液态变成气态,在101 kPa压力下所做的体积膨胀功为,这是体系对外界所做的功,应为负值,所以该体系内能的变化E=[854+(- )]J=+791J,E为正值,即体系内能增加了791J。

能源的利用,其实就是能量的转化过程。如煤燃烧放热使蒸汽温度升高的过程就是化学能转化为蒸汽内能的过程;高温蒸汽推动发电机发电的过程是内能转化为电能的过程;电能通过电动机可转化为机械能;电能通过白炽灯泡或荧光灯管可转化为光能;电能通过电解槽可转化为化学能等等。柴草、煤炭、石油和天然气等常用能源所提供的能量都是随化学变化而产生的,多种新能源的利用也与化学变化有关。化学变化的实质是化学键的改组,所以了解化学键及键能等基本概念,将有助于加深对能源问题的认识。

高中物理运动的描述知识点总结 第12篇

1、磁现象:

磁性:物体能够吸引钢铁、钴、镍一类物质的性质叫磁性。

磁体:具有磁性的物体,叫做磁体。

磁体的分类:①形状:条形磁体、蹄形磁体、针形磁体;

③保持磁性的时间长短:硬磁体(永磁体)、软磁体。

磁极:磁体上磁性最强的部分叫磁极。磁体两端的磁性最强,中间的磁性最弱。

磁体的指向性:可以在水平面内自由转动的条形磁体或磁针,静止后总是一个磁极指南(叫南极,用S表示),另一个磁极指北(叫北极,用N表示)。

磁极间的相互作用:同名磁极互相排斥,异名磁极互相吸引。

无论磁体被摔碎成几块,每一块都有两个磁极。

磁化:一些物体在磁体或电流的作用下会获得磁性,这种现象叫做磁化。

钢和软铁都能被磁化:软铁被磁化后,磁性很容易消失,称为软磁性材料;钢被磁化后,磁性能长期保持,称为硬磁性材料。所以钢是制造永磁体的好材料。

2、磁场:

磁场:磁体周围的空间存在着一种看不见、摸不着的物质,我们把它叫做磁场。

磁场的基本性质:对放入其中的磁体产生磁力的作用。

磁场的方向:物理学中把小磁针静止时北极所指的方向规定为该点磁场的方向。

磁感线:在磁场中画一些有方向的曲线,方便形象的描述磁场,这样的曲线叫做磁感线。对磁感线的认识:

①磁感线是假想的曲线,本身并不存在;

②磁感线切线方向就是磁场方向,就是小磁针静止时N极指向;

③在磁体外部,磁感线都是从磁体的N极出发,回到S极。在磁体内部正好相反。 ④磁感线的疏密可以反应磁场的强弱,磁性越强的地方,磁感线越密;

3、地磁场:

地磁场:地球本身是一个巨大的磁体,在地球周围的空间存在着磁场,叫做地磁场。

指南针:小磁针指南的叫南极(S),指北的叫北极(N),小磁针能够指南北是因为受到了地磁场的作用。地磁场的北极在地理南极附近;地磁场的南极在地理北极附近。

地磁偏角:地理的两极和地磁的两极并不重合,磁针所指的南北方向与地理的南北极方向稍有偏离(地磁偏角),世界上最早记述这一现象的人是我国宋代的学者xxx。

高中物理运动的描述知识点总结 第13篇

功、功率、机械能和能源

1.做功两要素:力和物体在力的方向上发生位移

2.功:功是标量,只有大小,没有方向,但有正功和负功之分,单位为焦耳(J)

3.物体做正功负功问题(将α理解为F与xxx的角,更为简单)

(1)当α=90度时,W=0.这表示力F的方向跟位移的方向垂直时,力F不做功,

如小球在水平桌面上滚动,桌面对球的支持力不做功。

(2)当α<90度时,cosα>0,W>0.这表示力F对物体做正功。

如人用力推车前进时,人的推力F对车做正功。

(3)当α大于90度小于等于180度时,cosα<0,W<0.这表示力F对物体做负功。

如人用力阻碍车前进时,人的推力F对车做负功。

一个力对物体做负功,经常说成物体克服这个力做功(取绝对值)。

例如,竖直向上抛出的球,在向上运动的过程中,重力对球做了-6J的功,可以说成球克服重力做了6J的功。说了“克服”,就不能再说做了负功

4.动能是标量,只有大小,没有方向。表达式

5.重力势能是标量,表达式

(1)重力势能具有相对性,是相对于选取的参考面而言的。因此在计算重力势能时,应该明确选取零势面。

(2)重力势能可正可负,在零势面上方重力势能为正值,在零势面下方重力势能为负值。

6.动能定理:

W为外力对物体所做的总功,m为物体质量,v为末速度,为初速度

解答思路:

①选取研究对象,明确它的运动过程。

②分析研究对象的受力情况和各力做功情况,然后求各个外力做功的代数和。

③明确物体在过程始末状态的动能和。

④列出动能定理的方程。

7.机械能守恒定律:(只有重力或弹力做功,没有任何外力做功。)

解题思路:

①选取研究对象----物体系或物体

②根据研究对象所经历的物理过程,进行受力,做功分析,判断机械能是否守恒。

③恰当地选取参考平面,确定研究对象在过程的初、末态时的机械能。

④根据机械能守恒定律列方程,进行求解。

8.功率的表达式:,或者P=FV功率:描述力对物体做功快慢;是标量,有正负

9.额定功率指机器正常工作时的最大输出功率,也就是机器铭牌上的标称值。

实际功率是指机器工作中实际输出的功率。机器不一定都在额定功率下工作。实际功率总是小于或等于额定功率。

10、能量守恒定律及能量耗散