求定积分的方法总结 第1篇
定积分的计算方法小结
为大家献上定积分的计算方法小结的论文,欢迎各位数学毕业的同学阅数列通项公式的求法!
摘要:本文通过对定积分计算方法的总结以达到更进一步提高高职学生学习高等数学的积极性,提高解题能力,增强分析问题解决问题的技能。
关键词:定积分;原函数;对称性;奇偶性
在高职高专院校高等数学的教学过程中,微积分是一个很重要的内容。其中定积分是函数微积分的重要组成部分。xxx给出几种常用定积分的计算方法,这是本人在数学实践中的一些总结,仅供参考。
1.原函数方法
此方法先求出被积函数的原函数,然后借助于积分的基本公式把原积分转化成原函数在积分区间端点上函数之差。设f(x)在[a,b]上连续,且, 则。
例1 求。
解 因为x2是x/2的一个原函数,所以。
2.分部积分法
设f(x),g(x)在[a,b]上有连续的导数, 则。
例2 求。
解 在分布积分公式中取f(x)=Inx,g(x)=x,于是有。
3.换元法
设f(x)在[a,b]上连续,在上有连续的导数,其中且在上不变号。则
例3求
解 令u=1+2x,有
4.利用奇偶函数性质计算积分
奇偶函数在对称区间上的`积分性质:
例4求。
解 因为x/2在[-2,2]上是奇函数,所以。
5.利用周期函数性质计算积分
周期函数的性质:设T为一个正的常数,xxx有:f(x+T)=f(x)成立,又设a为任意实数,n为正实数,则有:。
例5 求。
解 是以为周期的周期函数。于是有
计算定积分的方法还有很多,如泰勒级数法,递推公式法,欧拉公式等。以上给出的方法是比较基本常用的方法,比较符合学生的知识功底,适合高职学生学习掌握。
参考文献:
[1]xxx等. 数学分析[M]. 北京:高等教育出版社. .
[2]盛祥耀. 高等数学[M]. 北京:高等教育出版社. .
求定积分的方法总结 第2篇
定积分
定积分是积分的一种,是函数f(x)在区间[a,b]上积分和的'极限。
定积分就是求函数f(X)在区间[a,b]中的图像包围的面积。即由y=0,x=a,x=b,y=f(X)所围成图形的面积。这个图形称为曲边梯形,特例是曲边三角形。
一个函数,可以存在不定积分,而不存在定积分;也可以存在定积分,而不存在不定积分。一个连续函数,一定存在定积分和不定积分;若只有有限个间断点,则定积分存在;若有跳跃间断点,则原函数一定不存在,即不定积分一定不存在。
求定积分的方法总结 第3篇
1、原函数存在定理
●定理如果函数f(x)在区间I上连续,那么在区间I上存在可导函数F(x),使对任一x∈I都有F’(x)=f(x);简单的说连续函数一定有原函数。
●分部积分法
如果被积函数是幂函数和正余弦或幂函数和指数函数的乘积,就可以考虑用分部积分法,并设幂函数和指数函数为u,这样用一次分部积分法就可以使幂函数的幂降低一次。如果被积函数是幂函数和对数函数或幂函数和反三角函数的乘积,就可设对数和反三角函数为u。
2、对于初等函数来说,在其定义区间上,它的原函数一定存在,但原函数不一定都是初等函数。
定积分
1、定积分解决的典型问题
(1)曲边梯形的面积(2)变速直线运动的路程
2、函数可积的充分条件
●定理设f(x)在区间[a,b]上连续,则f(x)在区间[a,b]上可积,即连续=>可积。
●定理设f(x)在区间[a,b]上有界,且只有有限个间断点,则f(x)在区间[a,b]上可积。
3、定积分的若干重要性质
●性质如果在区间[a,b]上f(x)≥0则∫abf(x)dx≥0。
●推论如果在区间[a,b]上f(x)≤g(x)则∫abf(x)dx≤∫abg(x)dx。
●推论|∫abf(x)dx|≤∫ab|f(x)|dx。
●性质设M及m分别是函数f(x)在区间[a,b]上的最大值和最小值,则m(b-a)≤∫abf(x)dx≤M(b-a),该性质说明由被积函数在积分区间上的最大值及最小值可以估计积分值的大致范围。
●性质(定积分中值定理)如果函数f(x)在区间[a,b]上连续,则在积分区间[a,b]上至少存在一个点,使下式成立:∫abf(x)dx=f()(b-a)。
4、关于广义积分
设函数f(x)在区间[a,b]上除点c(a
定积分的应用
1、求平面图形的面积(曲线围成的面积)
●直角坐标系下(含参数与不含参数)
●极坐标系下(r,θ,x=rcosθ,y=rsinθ)(扇形面积公式S=R2θ/2)
●旋转体体积(由连续曲线、直线及坐标轴所围成的面积绕坐标轴旋转而成)(且体积V=∫abπ[f(x)]2dx,其中f(x)指曲线的方程)
●平行截面面积为已知的立体体积(V=∫abA(x)dx,其中A(x)为截面面积)
●功、水压力、引力
●函数的平均值(平均值y=1/(b-a)*∫abf(x)dx)
求定积分的方法总结 第4篇
一、不定积分的概念和性质
若F(x)f(x),则f(x)dxF(x)C, C为积分常数不可丢!
性质1f(x)dxf(x)或 df(x)dxf(x)dx或
df(x)dxf(x) dx
性质2F(x)dxF(x)C或dF(x)F(x)C
性质3[f(x)g(x)]dx
或[f(x)g(x)]dx
二、基本积分公式或直接积分法
基本积分公式 f(x)dxg(x)dx g(x)dx;kf(x)dxkf(x)dx. f(x)dx
kdxkxC
xxdx1x1C(为常数且1)1xdxlnxC ax
edxeCadxlnaC xx
cosxdxsinxCsinxdxcosxC
dxdx22tanxCC
secxtanxdxsecxCcscxcotxdxcscxC
dxarctanxCarccotx
C1x2arcsinxC(arccosxC)
直接积分法:对被积函数作代数变形或三角变形,化成能直接套用基本积分公式。 代数变形主要是指因式分解、加减拆并等;三角变形主要是指三角恒等式。
三、换元积分法:
1.第一类换元法(凑微分法)
g(x)dxf((x))(x)dxf((x))d(x)
注 (1)常见凑微分:
u(x)f(u)du[F(u)C]u(x).
111dxd(axc), xdxd(x2c),2dc), dxd(ln|x|
c) a2x1dxd(arctanx)d(arccotxd(arcsinx)d(arccosx) 1+x2
(2)适用于被积函数为两个函数相乘的情况:
若被积函数为一个函数,比如:e2xdxe2x1dx, 若被积函数多于两个,比如:sinxcosx1sin4xdx,要分成两类;
(3)一般选择“简单”“熟悉”的那个函数写成(x);
(4)若被积函数为三角函数偶次方,降次;奇次方,拆项;
2.第二类换元法
f(x)dxx(t)f((t))(t)dtf((t))(t)dtt1(x)G(t)Ct1(x) 常用代换类型:
(1) 对被积函数直接去根号;
(2) 到代换x1; t
(3) 三角代换去根号
atantxasect、
xasint(orxacost)
f(xdx,t
f(xx,x
asect
f(xx,xasint
f(xx,xatant f(ax)dx,ta
f(xx,t
三、分部积分法:uvdxudvuvvduuvuvdx.
注 (1)u的选取原则:按“ 反对幂三指” 的顺序,谁在前谁为u,后面的为v;
(2)uvdx要比uvdx容易计算;
(3)适用于两个异名函数相乘的情况,若被积函数只有一个,比如:
arcsinx1dx,
(4)多次使用分部积分法: uu求导 vv积分(t;
求定积分的方法总结 第5篇
一、原函数
定义1 如果对任一xI,都有F(x)f(x) 或 dF(x)f(x)dx
则称F(x)为f(x)在区间I 上的原函数。
例如:(sinx)cosx,即sinx是cosx的原函数。 [ln(xx2)
原函数存在定理:如果函数f(x)在区间I 上连续,则f(x)在区间I 上一定有原函数,即存在区间I 上的可导函数F(x),使得对任一xI,有F(x)f(x)。
注1:如果f(x)有一个原函数,则f(x)就有无穷多个原函数。
设F(x)是f(x)的原函数,则[F(x)C]f(x),即F(x)C也为f(x)的原函数,其中C为xxx数。
注2:如果F(x)与G(x)都为f(x)在区间I 上的原函数,则F(x)与G(x)之差为常数,即F(x)G(x)C(C为常数)
注3:如果F(x)为f(x)在区间I 上的一个原函数,则F(x)C(C为xxx数)可表达f(x)的任意一个原函数。
1x2,即ln(xx2)是1x2的原函数。
二、不定积分
定义2 在区间I上,f(x)的带有xxx数项的原函数,成为f(x)在区间I上的不定积分,记为f(x)dx。
如果F(x)为f(x)的一个原函数,则
f(x)dxF(x)C,(C为xxx数)
三、不定积分的几何意义
图 5—1 设F(x)是f(x)的一个原函数,则yF(x)在平面上表示一条曲线,称它为f(x)f(x)的不定积分表示一族积分曲线,它们是由f(x)的某一条积分曲线沿着y轴方向作任意平行移动而产生的`所有积分曲线组成的.显然,族中的每一条积分曲线在具有同一横坐标x的点处有互相平行的切线,其斜率都等于f(x).
在求原函数的具体问题中,往往先求出原函数的一般表达式yF(x)C,再从中确定一个满足条件 y(x0)y0 (称为初始条件)的原函数yy(x).从几何上讲,就是从积分曲线族中找出一条通过点(x0,y0)的积分曲线.
四、不定积分的性质(线性性质)
[f(x)g(x)]dxf(x)dxg(x)dx
k为非零常数) kf(x)dxkf(x)dx(
五、基本积分表
∫ a dx = ax + C,a和C都是常数
∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -1 ∫ 1/x dx = ln|x| + C
∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 1
∫ e^x dx = e^x + C
∫ cosx dx = sinx + C
∫ sinx dx = - cosx + C
∫ cotx dx = ln|sinx| + C = - ln|cscx| + C
∫ tanx dx = - ln|cosx| + C = ln|secx| + C
∫ secx dx =ln|cot(x/2)| + C
= (1/2)ln|(1 + sinx)/(1 - sinx)| + C
= - ln|secx - tanx| + C = ln|secx + tanx| + C
∫ cscx dx = ln|tan(x/2)| + C
= (1/2)ln|(1 - cosx)/(1 + cosx)| + C
= - ln|cscx + cotx| + C = ln|cscx - cotx| + C
∫ sec^2(x) dx = tanx + C
∫ csc^2(x) dx = - cotx + C
∫ secxtanx dx = secx + C
∫ cscxcotx dx = - cscx + C
∫ dx/(a^2 + x^2) = (1/a)arctan(x/a) + C
∫ dx/√(a^2 - x^2) = arcsin(x/a) + C
∫ dx/√(x^2 + a^2) = ln|x + √(x^2 + a^2)| + C
∫ dx/√(x^2 - a^2) = ln|x + √(x^2 - a^2)| + C
∫ √(x^2 - a^2) dx = (x/2)√(x^2 - a^2) - (a^2/2)ln|x + √(x^2 - a^2)| + C ∫ √(x^2 + a^2) dx = (x/2)√(x^2 + a^2) + (a^2/2)ln|x + √(x^2 + a^2)| + C ∫ √(a^2 - x^2) dx = (x/2)√(a^2 - x^2) + (a^2/2)arcsin(x/a) + C
六、第一换元法(凑微分)
设F(u)为f(u)的原函数,即F(u)f(u) 或 f(u)duF(u)C 如果 u(x),且(x)可微,则 dF[(x)]F(u)(x)f(u)(x)f[(x)](x) dx
即F[(x)]为f[(x)](x)的原函数,或
f[(x)](x)dxF[(x)]C[F(u)C]u(x)[f(u)du]因此有
定理1 设F(u)为f(u)的原函数,u(x)可微,则
f[(x)](x)dx[f(u)du]
公式(2-1)称为第一类换元积分公式。 u(x)u(x) (2-1)
f[(x)](x)dxf[(x)]d(x)[f(u)du]u(x)
1f(axb)d(axb)1[f(u)du]f(axb)dxuaxb
求定积分的方法总结 第6篇
分析积分区间是否关于原点对称,即为[-a,a],如果是,则考虑被积函数的整体或者经过加减拆项后的部分是否具有奇偶性,如果有,则考虑使用“偶倍奇零”性质简化定积分计算。
考虑被积函数是否具有周期性,如果是周期函数,考虑积分区间的长度是否为周期的整数倍,如果是,则利用周期函数的定积分在任一周期长度的区间上的定积分相等的结论简化积分计算。
考察被积函数是否可以转换为“反对幂指三”五类基本函数中两个类型函数的'乘积,或者是否包含有正整数n参数,或者包含有抽象函数的导数乘项,如果是,可考虑使用定积分的分部积分法计算定积分。
考察被积函数是否包含有特定结构的函数,比如根号下有平方和、或者平方差(或者可以转换为两项的平和或差的结构),是否有一次根式,对于有理式是否分母次数比分子次数高2次以上;是否包含有指数函数或对数函数,对于具有这样结构的积分,考虑使用三角代换、根式代换、倒代换或指数、对数代换等;换元的函数一般选取严格单调函数;与不定积分不同的是,在变量换元后,定积分的上下限必须转换为新的积分变量的范围,依据为:上限对上限、下限对下限;并且换元后直接计算出关于新变量的定积分即为最终结果,不再需要逆变换换元!
求定积分的方法总结 第7篇
定积分
定积分是积分的一种,是函数f(x)在区间[a,b]上积分和的极限。
定积分就是求函数f(X)在区间[a,b]中的图像包围的`面积。即由y=0,x=a,x=b,y=f(X)所围成图形的面积。这个图形称为曲边梯形,特例是曲边三角形。
一个函数,可以存在不定积分,而不存在定积分;也可以存在定积分,而不存在不定积分。一个持续函数,一定存在定积分和不定积分;若只有有限个间断点,则定积分存在;若有跳跃间断点,则原函数一定不存在,即不定积分一定不存在。