化工原理公式总结 第1篇
《化工原理》重要公式 第一章 流体流动 牛顿粘性定律 dy du μτ= 静力学方xxx g z p g z p 2211 +=+ρ ρ 机械能守恒式 f e h u g z p h u g z p +++=+++2222222111 ρρ 动量守恒 )(12X X m X u u q F -=∑ xxx μμρ dG du ==Re 阻力损失 22 u d l h f λ= ????d q d u h V f ∞∞ 层流 Re 64=λ 或 2 32d ul h f ρμ= 局部阻力 2 2 u h f ζ= 当量直径 ∏ =A d e 4 孔板流量计 ρP ?=20 0A C q V , g R i )(ρρ-=?P 第二章 流体输送机械 管路特性 242)(8V e q g d d l z g p H πζλ ρ+∑+?+?= 泵的有效功率 e V e H gq P ρ= 泵效率 a e P P =η
最大允许安装高度 100][-∑--=f V g H g p g p H ρρ])[(+-r NPSH 风机全压换算 ρ ρ''T T p p = 第四章 流体通过颗粒层的流动 物料衡算: 三个去向: 滤液V ,滤饼中固体) (饼ε-1V ,滤饼中液体ε饼V 过滤速率基本方xxx )(22 e V V KA d dV +=τ , 其中 φμ 012r K S -?=P 恒速过滤 τ22 2 KA VV V e =+ 恒压过滤 τ222KA VV V e =+ 生产能力 τ ∑=V Q 回转真空过滤 e e q q n K q -+=2? 板框压滤机洗涤时间(0=e q ,0=S ) τμμτV V W W W W 8P P ??= 第五章 颗粒的沉降和流态化 xxx斯沉降公式 μρρ18)(2 g d u p p t -=, 2R e
化工原理公式总结 第2篇
一、流体力学及其输送 1.单元操作:物理化学变化的单个操作过xxx,如过滤、蒸馏、萃取。 2.四个基本概念:物料衡算、能量衡算、平衡关系、过xxx速率。 3.牛顿粘性定律:F=±τA=±μAdu/dy ,(F :剪应力;A :面积;μ:粘度;du/dy :速度梯度)。 4.两种流动形态:层流和湍流。流动形态的判据xxxRe=duρ/μ;层流—2000—过渡—4000—湍流。当流体层流时,其平均速度是最大流速的1/2。 5.连续性方xxx:A1u1=A2u2;伯努力方xxx:gz+p/ρ+1/2u2=C 。 6.流体阻力=沿xxx阻力+局部阻力;xxx公式:沿xxx压降:Δpf=λlρu2/2d ,沿xxx阻力:Hf=Δpf/ρg=λl u2/2dg(λ:摩擦系数);层流时λ=64/Re ,湍流时λ=F(Re ,ε/d),(ε:管壁粗糙度);局部阻力hf=ξu2/2g ,(ξ:局部阻力系数,情况不同计算方法不同) 7.流量计:变压头流量计(测速管、孔板流量计、文丘里流量计);变截面流量计。孔板流量计的特点;结构简单,制造容易,安装方便,得到广泛的使用。其不足之处在于局部阻力较大,孔口边缘容易被流体腐蚀或磨损,因此要定期进行校正,同时流量较小时难以测定。 转子流量计的特点——恒压差、变截面。 8.离心泵主要参数:流量、压头、效率(容积效率?v :考虑流量泄漏所造成的能量损失;水力效率?H :考虑流动阻力所造成的能量损失;机械效率?m :考虑轴承、密封填料和轮盘的摩擦损失。)、轴功率;工作点(提供与所需水头一致);安装高度(气蚀现象,气蚀余量);泵的型号(泵口直径和扬xxx);气体输送机械:通风机、鼓风机、压缩机、真空泵。 9. 常温下水的密度1000kg/m3,标准状态下空气密度 kg/m3 1atm =101325Pa= (1)被测流体的压力 > 大气压 表压 = 绝压-大气压 (2)被测流体的压力 < 大气压 真空度 = 大气压-绝压= -表压 10. 管路总阻力损失的计算 11. 离心泵的构件: 叶轮、泵壳(蜗壳形)和 轴封装置 离心泵的叶轮闭式效率最高,适用于输送洁净的液体。半闭式和开式效率较低,常用于输送浆料或悬浮液。 气缚现象:贮槽内的液体没有吸入泵内。汽蚀现象:泵的安装位置太高,叶轮中各处xxx高于被输送液体的饱和蒸汽压。原因(①安装高度太高②被输送流体的温度太高,液体蒸汽压过高;③吸入管路阻力或压头损失太高)各种泵:耐腐蚀泵:输送酸、碱及浓氨水等腐蚀性液体 12. 往复泵的流量调节 (1)正位移泵 流量只与泵的几何尺寸和转速有关,与管路特性无关,压头与流量无关,受管路的承压能力所限制,这种特性称为正位移性,这种泵称为正位移泵。 往复泵是正位移泵之一。正位移泵不能采用出口阀门来调节流量,否则流量急剧上升,导致示损坏。 (2)往复泵的流量调节 第一,旁路调节,如图2-28所示,采用旁路阀调节主管流量,但泵的流量是不变的。 第二,改变曲柄转速和活塞行xxx。使用变速电机或变速装置改变曲柄转速,达到调 节流量,使用蒸汽机则更为方便。改变活塞行xxx则不方便。 13.流体输送机械分类 14.离心泵特性曲线: 222'2e 2e 2u d l l u d l l u d l h h h f f f ??? ? ??++=???? ??+=??? ??+=+=∑∑∑∑∑∑ζλλζλ
化工原理公式总结 第3篇
化工原理知识 绪论 1、单元操作:(Unit Operations): 用来为化学反应过xxx创造适宜的条件或将反应物分离制成纯净品,在化工生产_有的过xxx称为单元操作(12)。 单元操作特点: ①所有的单元操作都是物理性操作,不改变化学性质。②单元操作是化工生产过xxx_有的操作。③单元操作作用于不同的化工过xxx时,基本原理相同,所用设备也是通用的。单元操作理论基础:(11、12) 质量守恒定律:输入=输出+积存 能量守恒定律:对于稳定的过,xxx输入=输出 动量守恒定律:动量的输入=动量的输出+动量的积存 2、研究方法: 实验研究方法(经验法):用量纲分析和相似论为指导,依靠实验来确定过xxx变量之间的关系,通常用无量纲数群(或称准数)构成的关系来表达。 数学模型法(半经验半理论方法):通过分析,在抓住过xxx本质的前提下,对过xxx做出合理的简化,得出能基本反映过xxx机理的物理模型。(04) 3、因次分析法与数学模型法的区别:(08B) 数学模型法(半经验半理论)因次论指导下的实验研究法 实验:寻找函数形式,决定参数
第二章:流体输送机械 一、概念题 1、离心泵的压头(或扬xxx): 离心泵的压头(或扬xxx):泵向单位重量的液体提供的机械能。以H 表示,单位为m 。 2、离心泵的理论压头: 理论压头:离心泵的叶轮叶片无限多,液体完全沿着叶片弯曲的表面流动而无任何其他的流动,液体为粘性等于零的理想流体,泵在这种理想状态下产生的压头称为理论压头。 实际压头:离心泵的实际压头与理论压头有较大的差异,原因在于流体在通过泵的过xxx中存在着压头损失,它主要包括:1)叶片间的环流,2)流体的阻力损失,3)冲击损失。 3、气缚现象及其防止: 气缚现象:离心泵开动时如果泵壳内和吸入管内没有充满液体,它便没有抽吸液体的能力,这是因为气体的密度比液体的密度小的多,随叶轮旋转产生的离心力不足以造成吸上液体所需要的真空度。像这种泵壳内因为存在气体而导致吸不上液的现象称为气缚。 防止:在吸入管底部装上止逆阀,使启动前泵内充满液体。 4、轴功率、有效功率、效率 有效功率:排送到管道的液体从叶轮获得的功率,用Ne 表示。 效率: 轴功率:电机输入离心泵的功率,用N 表示,单位为J/S,W 或kW 。 二、简述题 1、离心泵的工作点的确定及流量调节 工作点:管路特性曲线与离心泵的特性曲线的交点,就是将液体送过管路所需的压头与泵对液体所提供的压头正好相对等时的流量,该交点称为泵在管路上的工作点。 流量调节: 1)改变出口阀开度——改变管路特性曲线; 2)改变泵的转速——改变泵的特性曲线。 2、离心泵的工作原理、过xxx: 开泵前,先在泵内灌满要输送的液体。 开泵后,泵轴带动叶轮一起高速旋转产生离心力。液体在此作用下,从叶轮中心被抛向 g QH N e ρ=η/e N N =η ρ/g QH N =
化工原理公式总结 第4篇
《化工原理》重要概念 第一章流体流动 质点含有大量分子的流体微团,其尺寸远小于设备尺寸,但比起分子自由xxx却要大得多。 连续性假定假定流体是由大量质点组成的、彼此间没有间隙、完全充满所占空间的连续介质。 拉格朗日法选定一个流体质点 , 对其跟踪观察,描述其运动参数 ( 如位移、速度等 ) 与时间的关系。 欧拉法在固定空间位置上观察流体质点的运动情况,如空间各点的速度、xxx、密度等,即直接描述各有关运动参数在空间各点的分布情况和随时间的变化。 轨线与流线轨线是同一流体质点在不同时间的位置连线,是拉格朗日法考察的结果。流线是同一瞬间不同质点在速度方向上的连线,是欧拉法考察的结果。 系统与控制体系统是采用拉格朗日法考察流体的。控制体是采用欧拉法考察流体的。 理想流体与实际流体的区别理想流体粘度为零,而实际流体粘度不为零。 粘性的物理本质分子间的引力和分子的热运动。通常液体的粘度随温度增加而减小,因为液体分子间距离较小,以分子间的引力为主。气体的粘度随温度上升而增大,因为气体分子间距离较大,以分子的热运动为主。 总势能流体的xxx能与位能之和。 可压缩流体与不可压缩流体的区别流体的密度是否与xxx有关。有关的称为可压缩流体,无关的称为不可压缩流体。 xxx方xxx的物理意义流体流动中的位能、xxx能、动能之和保持不变。 平均流速流体的平均流速是以体积流量相同为原则的。 动能校正因子实际动能之平均值与平均速度之动能的比值。 均匀分布同一横截面上流体速度相同。 均匀流段各流线都是平行的直线并与截面垂直 , 在定态流动条件下该截面上的流体没有加速度 , 故沿该截面势能分布应服从静力学原理。
层流与湍流的本质区别是否存在流体速度 u 、xxx p 的脉动性,即是否存在流体质点的脉动性。 第二章流体输送机械 管路特性方xxx管路对能量的需求,管路所需压头随流量的增加而增加。 输送机械的压头或扬xxx流体输送机械向单位重量流体所提供的能量 (J/N) 。 离心泵主要构件叶轮和蜗壳。 离心泵理论压头的影响因素离心泵的压头与流量,转速,叶片形状及直径大小有关。 叶片后弯原因使泵的效率高。 气缚现象因泵内流体密度小而产生的压差小,无法吸上液体的现象。 离心泵特性曲线离心泵的特性曲线指 H e~ q V ,η~ q V , P a~ q V 。 离心泵工作点管路特性方xxx和泵的特性方xxx的交点。 离心泵的调节手段调节出口阀,改变泵的转速。 汽蚀现象液体在泵的最低xxx处 ( xxx口 ) 汽化形成气泡,又在叶轮中因xxx升高而溃灭,造成液体对泵设备的冲击,引起振动和侵蚀的现象。 必需汽蚀余量 (NPSH)r 泵入口处液体具有的动能和xxx能之和必须超过饱和蒸汽xxx能多少 离心泵的选型 ( 类型、型号 ) ①根据泵的工作条件,确定泵的类型;②根据管路所需的流量、压头,确定泵的型号。 正位移特性流量由泵决定,与管路特性无关。 往复泵的调节手段旁路阀、改变泵的转速、冲xxx。 离心泵与往复泵的比较 ( 流量、压头 ) 前者流量均匀,随管路特性而变,后者流量不均匀,不随管路特性而变。前者不易达到高压头,后者可达高压头。前者流量调节用泵出口阀,无自吸作用,启动时关出口阀;后者流量调节用旁路阀,有自吸作用,启动时开足管路阀门。 通风机的全压、动风压通风机给每立方米气体加入的能量为全压 (Pa=J/m 3 ) ,其中动能部分为动风压。